4 Euler Tours and Hamilton
Cycles

4.1 EULER TOURS

A trail that traverses every edge of G is called an Euler trail of G because
Euler was the first to investigate the existence of such trails in graphs. In the
earliest known paper on graph theory (Euler, 1736), he showed that it was
impossible to cross each of the seven bridges of Kénigsberg once and only
once during a walk through the town. A plan of Kdnigsberg and the river
Pregel is shown in figure 4.1a. As can be seen, proving that such a walk is
impossible amounts to showing that the graph of figure 4.1b contains no
Euler trail. ,

A tour of G is a closed walk that traverses each edge of G at least once.
An Euler tour is a tour which traverses each edge exactly once (in other
words, a closed Euler trail). A graph is eulerian if it contains an Euler tour.

Theorem 4.1 A nonempty connected graph is eulerian if and only if it has
no vertices of odd degree. '

Proof Let G be eulerian, and let C be an Euler tour of G with origin
(and terminus) u. Each time a vertex v occurs as an internal vertex of C, two
of the edges incident with v are accounted for. Since an Euler tour contains

C

(a) ' (b)

Figure 4.1. The bridges of Kénigsberg and their graph
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every edge of G, d(v) is even for all v # u. Similarly, since C starts and ends
at u, d(u) is also even. Thus G has no vertices of odd degree.

- Conversely, suppose that G is a noneulerian connected graph with
at least one edge and no vertices of odd degree. Choose such a graph G with
as few edges as possible. Since each vertex of G has degree at least two, G
contains a closed trail (exercise 1.7.2). Let C be a closed trail of maximum
possible length in G. By assumption, C is not an Euler tour of G and so
G — E(C) has some component G' with ¢(G') >0. Since C is itself eulerian,
it has no vertices of odd degree; thus the connected graph G' also has no
vertices of odd degree. Since £(G') < &(G), it follows from the choice of G
that G' has an Euler tour C'. Now, because G is connected, there is a vertex
v in V(C)N V(C'), and we may assume, without loss of generality, that v

the origin and terminus of both C and C’. But then CC' is a closed trall of G'
with e(CC')>¢(C), contradlctlng the choice of C [

Corollary 4.1 A connected graph has an Euler trail if and only if it has at
most two vertices of odd degree.

Proof If G has an Euler trail then, as in the proof of theorem 4.1, each
vertex other than the origin and terminus of this trail has even degree.

Conversely, suppose that G is a nontrivial connected graph with at most
two vertices of odd degree. If G has no such vertices then, by theorem 4.1,
G has a closed Euler trail. Otherwise, G has exactly two vertices, u and v,
of odd degree. In this case, let G +e denote the graph obtained from G by
the addition of a new edge e joining u and v. Clearly, each vertex of G +e
has even degree and so, by theorem 4.1, G+e has an Euler tour C="
Vo€1V1 . . . €c+1Ve+1, Where e; =e. The trail v,e,v,. .. €..10..1 is an Euler trail
of G U | | - '

Exercises,

4.1.1 Which of the following figures can be drawn without lifting one’s pen
from the paper or covering a line more than once?

4.1.2 If possible, dfaw an eulerian graph G with v even and ¢ odd;
otherwise, explam why there is no such graph.
4.1.3 Show that if G is eulerian, then every block of G is eulerian.
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4.1.4 Show that if G has no vertices of odd degree, then there are
edge-disjoint  cycles C,,C,,...,Cn such that E(G)=
E(C)UE(C)U...UE(Cy).

4.1.5 Show that if a connected graph G has 2k > 0 vertices of odd degree,
then there are k edge-disjoint trails Qi, Q,, . . ., Q, in G such that
E(G) = E(Q1)) UE(Q)U . ..U E(Q)).

4.1.6* Let G be nontrivial and eulerian, and let v € V. Show that every trail
of G with origin v can be extended to an Euler tour of G if and only
if G—v is a forest. (O. Ore)

4.2 HAMILTON CYCLES

A path that contains every vertex of G is called a Hamilton path of G;
similarly, a Hamilton cycle of G is a cycle that contains every vertex of G.
Such paths and cycles are named after Hamilton (1856), who described, in a
letter to his friend Graves, a mathematical game on the dodecahedron
(figure 4.2a) in which one person sticks five pins in any five consecutive
vertices and the other is required to complete the path so formed to a

(a) (b)
Figure 4.2. (a) The dodecahedron; (b) the Herschel graph

spanning cycle. A graph is hamiltonian if it contains a Hamilton cycle. The
dodecahedron is hamiltonian (see figure 4.2a); the Herschel graph (figure
4.2b) is nonhamiltonian, because it is bipartite and has an odd number of
vertices. , .

In contrast with the case of eulerian graphs, no nontrivial necessary and
sufficient condition for a graph to be hamiltonian is known; in fact, the
problem of finding such a condition is one of the main unsolved problems of
graph theory. '

We shall first present a simple, but useful, necessary condition.

Theorem 4.2 If G is hamiltonian theh,' for every nonempty proper subset S
of V :

«(G-S)=<|S| (4.1)
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Proof Let C be a Hamilton cycle of G. Then, for every nonempty
proper subset S of V

w(C-S)=|S|
Also, C—S is a spanning subgraph of G—S and so
o(G-8)=w(C-S)
The theorem follows 0

As an illustration of the above theorem, consider the graph of figure 4.3.
This graph has nine vertices; on deleting the three indicated in black, four
components remain. Therefare (4.1) is not satisfied and it follows from
theorem 4.2 that the graph is nonhamiltonian.

We thus see that theorem 4.2 can sometimes be applied to show that a
particular graph is nonhamiltonian. However, this method does not always

Figure 4.3

work; for instance, the Petersen graph (figure 4.4) is nonhamiltonian, but
one cannot deduce this by using theorem 4.2.

We now discuss sufficient conditions for a graph G to be hamiltonian;
since a graph is hamiltonian if and only if its underlying simple graph is
hamiltonian, it suffices to limit our discussion to simple graphs. We start with
a result due to Dirac (1952).

Theorem 4.3 If G is a simple graph with »=3 and 8=v/2, then G is
hamiltonian. ‘ :

Proof By contradiction. Suppose that the theorem is false, and let G be
a maximal nonhamiltonian simple graph with v =3 and & = v/2. Since v =3,
G cannot be complete. Let u and v be nonadjacent vertices in G. By the
choice of G, G + uv is hamiltonian. Moreover, since G is nonhamiltonian,
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Figure 4.4. The Petersen graph

each Hamilton cycle of G +uv must contain the edge uv. Thus there is a
Hamilton path v,v;...v, in G with origin u =v, and terminus v = v,. Set

S={vi|uvi., € E} and T={v]|vwv €E}
Since v, S UT we have

ISUT|<v | 4.2)
Furthermore

ISNT|=0 4.3)

since if SNT contained some vertex v, then G would have the Hamilton

cycle v1vz ... VLV, ... ViV, coONtrary to assumption (see figure 4.5).
Using (4.2) and (4.3) we obtain

d(u)+d(v)=|S|+|T|=|SUT|+|SNT|<w (4.4)
But this contradicts the hypothesis that §=v/2 0O

Vi vz V3 Vi Visen Vi A

Figure 4.5

Bondy and Chvatal (1974) observed that the proof of theorem 4.3 can be
modified to yield stronger sufficient conditions than that obtained by Dirac.
The basis of their approach is the following lemma.

Lemma 4.4.1 Let G be a simple graph and let u and v be nonadjacent
vertices in G such that

d(u)+d@)=v (4.5)




56 | Graph Theory with Applications
Then G is hamiltonian if and only if G+uv is hamiltonian. |

Proof If G is hamiltonian then, trivially, so too is G+ uv. Conversely,
suppose that G +uv is hamiltonian but G is not. Then, as in the proof of
theorem 4.3, we obtain (4.4). But this contradicts hypothesis (4.5) [

Lemma 4.4.1 motivates the following definition. The closure of G is the
graph obtained from G by recursively joining pairs of nonadjacent vertices
whose degree sum is at least v until no such pair remains. We denote the
closure of G by ¢(G). ‘

Lemma 4.4.2 ¢(G) is well defined.

Proof Let G; and G, be two graphs obtained from G by recursively
joining pairs of nonadjacent vertices whose degree sum is at least v until no
such pair remains. Denote by e, e, ..., €m and fi, f2, - . ., fo the sequences
of edges added to G in obtaining G, and G, respectively. We shall show
that each e is an edge of G, and each f; is an edge of G..

If possible, let ex.1=uv be the first edge in the sequence €, €z,... ;& that
is not an edge of G.. Set H= G+{es, e, ...,e. It follows from the
definition of G, that :

dH(u) + dH(‘U) =V
By the choice of ex., H is a subgraph of G.. Therefore
| do,(u) + do,(v) =V |

This is a contradiption, since u and v are nonadjacent in G,. Therefore each
e; is an edge of G, and, similarly, each f; is an edge of Gi. Hence G:= G,,
and ¢(G) is well defined 0O '

Figure 4.6 illustrates the construction of the closure of a graph G on six
vertices. It so happens that in this example ¢(G) is complete; note, however,
that this is by no means always the case.

G - | ¢ (G)
Figure 4.6. The closure of a graph
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" Figure 4.7. A hamiltonian graph

Theorem 4.4 A simple graph is hamiltonian if and only if its closure is
hamiltonian. - ,

Proof Apply lemma 4.4.1 each time an edge is added in the formation of
the closure 0 - o

Theorem 4.4 has a number of interesting consequences; 'First, upon
making the trivial observation that all complete graphs on at least three
vertices are hamiltonian, we obtain the following result.

Corollary 4.4 - Let G be av»simple graph with v=3. If,‘ c(G) is complete,
then G is hamiltonian. : S

~ Consider, for example, the graph of figure 4.7. One readily checks that its
‘closure is complete. Therefore, by corollary 4.4, it is hamiltonian. It is
perhaps interesting to note that the graph of figure 4.7 can be obtained from
the graph of figure 4.3 by altering just one end of one edge, and yet we have
results (corollary 4.4 and theorem 4.2) which tell us that this one is
hamiltonian whereas the other is not. - S
Corollary 4.4 can be used to deduce various sufficient conditions for a
graph to be hamiltonian in terms of its vertex degrees. For example, since
c(G) is clearly complete when 6 = v/2, Dirac’s condition (theorem 4.3) is an
immediate corollary. A more general condition than that of Dirac was
“obtained by Chvital (1972). S B o

Theorem 4.5 Let G be a simple graph with degree sequence
(d1,d2, ..., d,), where di=d,=...=<d, and v=3. Suppose that there is no
value of m less than v/2 for which dn=m and d,-.<v—m. Then G is
hamiltonian.
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Proof Let G satisfy the hypothesis of the theorem. We shall show that its
closure c(G) is complete, and the conclusion will then follow from corollary
4.4. We denote the degree of a vertex v in c(G) by d'(v).

Assume that c¢(G) is not complete, and let u and v be two nonadjacent
vertices in c(G) with

d'(u)=d’'(v) (4.6)

and d'(u)+d'(v) as large as possible; since no two ndnadjacent vertices in
c(G) can have degree sum v or more, we have

d'(u)+d'(v)<v | (4.7)

Now denote by S the set of vertices in V\{v} which are nonadjacent to v
in ¢(G), and by T the set of vertnces in V\{u} which are nonadjacent to u in
c(G). Clearly

|IS|=v—1-d'(v) and |T|=v-1-d'(u) (4.8)

Furthermore, by the choice of u and v, each vertex in S has degree at most
d'(u) and each vertex in TU{u} has degree at most d'(v). Setting d'(u)=m
and using (4.7) and (4.8), we find that ¢(G) has at least m vertices of degree
at most m and at least v —m vertices of degree less than v —m. Because G
is a spanning subgraph of ¢(G), the same is true of G; therefore d=m and
d,-=<v—m. But this is contrary to hypothesis since, by (4.6) and (4.7),
m < v/2. We conclude that ¢(G) is indeed complete and hence, by corollary
4.4, that G is hamiltonian 0

One can often deduce that a given graph is hamiltonian simply by
computing its degree sequence and applying theorem 4.5. This method
works with the graph of figure 4.7 but not with the graph G of figure
4.6, even though the closure of the latter graph is complete. From these
examples, we see that theorem 4.5 is stronger than theorem 4.3 but not as
strong as corollary 4.4.

A sequence of real numbers (p1, P2, - - - » o) is said to be majorised by
another such sequence (qi, g2, ..., qn) if pi=q; for 1=i=n. A graph G is
degree-majorised by a graph H if v(G)=v(H) and the nondecreasing
degree sequence of G is majorised by that of H. For instance, the 5-cycle is
degree-majorised by K, because (2, 2, 2, 2, 2) is majorised by (2, 2, 2, 3,
3). The family of degree-maximal nonhamiltonian graphs (those that are
degree-majorised by no others) admits of a simple description. We first
introduce the notion of the join of two graphs. The join G v H of disjoin
graphs G and H is the graph obtained from G + H by joining each vertex of
G toeachvertexof H; it is represented diagrammatically as in figure 4.8.

Now, for 1=m<n/2, let Cn. denote the graph Kunv (Kiu+Ka-2m), de-
picted in figure 4.9a; two specific examples, C,s and C,;s, are shown ir
figures 4.9b and 4.9c.
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Figure 4.8. The join of G and H

That Cy,. is nonhamiltonian follows immediately from theorem 4.2; for if
S denotes the set of m vertices of degree n—1 in Cn., we have
¢o((1nn—-S)==rn-+ﬁl:>|S|

Theorem 4.6 (Chvatal, 1972) I Gisa nonhamiltonian simple graph wnth
v=3, then G is degree-majorised by some Ch,,.

Proof Let G be a nonhamiltonian simple graph with degree sequence
(di, da, ...,d.), where d,<d,=...=<d, and v=3. Then, by theorem 4.5,
there exists m<v/2 such that do=m and d.-n<v—m. Therefore
(d1, dz, . .., d,) is majorised by the sequence

(m,...,m,v—m—l,...,v—m—l,v—l,...,v—l)

with m terms equal to m, v—2m terms equal to v—-m—1 and m terms
equal to v—1, and this latter sequence is the degree sequence of Cn, 0

K%-Zm

(a)

(c)

Figure 4.9. (a) Cy.; (b) Cis; (c) Cas
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. From theorem 4 6 we can deduce a result due to Ore (1961) and Bondy
(1972).

V2 1)+1, then G

is hamiltonian. Moreover, the only nonhamiltonian simple graphs with v

Corollary 4.6 If Gisa snmple graph with v=3 and ¢ >(

vertices and (v; 1)+1 edges are C,, and, for v=35, C,s.

Proof Let G be a nonhamiltonian simple graph with v=3. By theorem
4.6, G is degree-majorised by C,, for some positive integer m < /2.
Therefore, by theorem 1.1,

e(G)=e(Cn.) ' (4.9)

=i(m*+(v-2m)v-m-1)+m(v-1))

- (”'2‘ 1)+1--%(m--1)(m,—2)—(m—1)(1;—2m’—1)
s(”-;1)+1 | | . (4.10)

Furthermore, equality can only hold in (4.9) if G has the same degree
sequence as Cn,.; and equality can only hold in (4.10) if either m =2 and
v=5, or m=1. Hence &(G) can equal (v;

degree sequence as C;,, or C,;s, which is easnly seen to imply that G=C,, or
’ G Cys O

1)+1 only if G has the same

Exercises
4.2.1 Show that if either

(a) G is not 2-connected, or
(b) G is bipartite with bipartition (X, Y) where IXI #|Y],
then G is nonhamiltonian.

4.2.2 A mouse eats his way through a 3x3x3 cube of cheese by
tunnelling through all of the 27 1x1x 1 subcubes. If he starts at
one corner and always moves on to an uneaten subcube, can he
finish at the centre of the cube?

4.2.3  Show that if G has a Hamilton path then, for every proper subset S
of V, o(G-S)=|S|+1.

4.2.4* Let G be a nontrivial s1mple graph with degree sequence
(dy, ds,...,d,), where d;=d,=<...=<d,. Show that if there is no
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4.2.5

4.2.6*

value of m less than (v+1)/2 for which dn<m and d,_ 1 <v—m,

then G has a Hamilton path. (V. Chvatal)
(a) Let G be a simple graph with degree sequence (d;, ds, .. ., d.)
and let G° have degree sequence (d}, d3, . .., d.) where d,<d, <

..=d, and d,=d;=...=d,. Show that if du=dn for all
m=y/2, then G has a Hamllton path.

(b) Deduce that if G is self-complementary, then G has a Hamll-

ton path. - (C. R. J. Clapham)

Let G be a simple bipartite graph with bipartition (X, Y), where

|X|=1Y|=2, and let G have degree sequence (d,d,,...,d,),

427
4.2.8

4.2.9*

4.2.10

. 4.2.11

4.2.12

where d;=d,=<...=d,. Show that if there is no value of m less
than or equal to v/4 for which dn=m and d,,<v/2—m, then G is
hamiltonian. - (V. Chvatal)

Prove corollary 4.6 dlrectly from corollary 4.4.
Show that if G is simple with v=68 and .vs>(v;8)+82 then

G is hamiltonian. (P. Erdos)
Show that if G is a connected graph wrth v >28§, then G has a path
of length at least 28. (G. A. Dirac)

(Dirac, 1952 has also shown that if G is a 2-connected simple graph
with » =28, then G has a cycle of length at least 23.)
Using the remark to exercise 4.2.9, show that every 2k-regular
simple graph on 4k + 1 vertices is hamiltonian (k =1).

(C. St. J. A. Nash-Williams)
G is Hamilton-connected if every two vertices of G are connected
by a Hamilton path.

(a) Show that if G is Hamilton- connected and v=4, then e=
Gv+1)] : ‘

(b)* For v=4, construct a Hamrlton connected graph G with
e =[zGv+1)]. : - (J. W. Moon)

G is hypohamiltonian if G is not hamiltonian but G — v is hamilto-

nian for every v € V. Show that the Petersen graph (figure 4. 4) is

hypohamiltonian.

* (Herz, Duby and Vigué, 1967 have shown that it is, in fact, the

4.2.13*

4.2.14

smallest such graph.)

G is hypotraceable if G has no Hamilton path but G—v has a

Hamilton path for every v € V. Show that the Thomassen graph (p.

240) is hypotraceable. |

(a) Show that there is no Hamllton cycle in the graph Gl below
which contains exactly one of the edges e, and e,. |

(b) Using (a), show that every Hamilton cycle in G, includes the
edge e.

(c) Deduce that the Horton graph (p. 240) is nonhamiltonian.
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4.2.15 Describe a good algorithm for

(a) constructing the closure of a graph;
(b) finding a Hamilton cycle if the closure is complete.

APPLICATIONS

4.3 THE CHINESE POSTMAN PROBLEM

In his job, a postman picks up mail at the post office, delivers it, and then

returns to the post office. He must, of course, cover-each street in his area at

least once. Subject to this condition, he wishes to choose his route in such a

way that he walks as little as possible. This problem is known as the Chinese

postman problem, since it was first considered by a Chinese mathematician,
Kuan (1962).

- In a weighted graph, we define the weight of a tour vee v ... e,00 to be

n

Zl w(e;). Clearly, the Chinese postman problem is just that of finding a

minimum-weight tour in a weighted connected graph with non-negative
‘weights. We shall refer to such a tour as an optimal tour. ,

If G is eulerian, then any Euler tour of G is an optimal tour because an
Euler tour is a tour that traverses each edge exactly once. The Chinese
postman problem is easily solved in this case, since there exists a good
algorithm for determining an Euler tour in an eulerian graph. The al-
gorithm, due to Fleury (see Lucas, 1921), constructs an- Euler tour by
tracing out a trail, subject to the one condition that, at any stage, a cut edge
of the untraced subgraph is taken only if there is no alternative.

Fleury’s Algorithm

1. Choose an arbitrary vertex vo, and set Wy = v,. :
2. Suppose that the trail W= vee,v, ... e;v; has been chosen.
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Then choose an edge e, from E\{ey, e, ..., e} in such a way that
(i) e+ is incident with v;; |
(ii) unless there is no alternative, e, is not a cut edge of

Gi= G—{el, € ..., ei}
3. Stop when step 2 can no longer be implemented.

By its definition, Fleury’s algorithm constructs a trail in G.

Theorem 4.7 1If G is eulerian, then any trail in G constructed by Fleury’s
algorithm is an Euler tour of G.

Proof Let G be eulerian, and let W, = voe,v;...e,v, be a trail in G
constructed by Fleury’s algorithm. Clearly, the terminus v, must be of degree
zero in G,. It follows that v, = vo; in other words, W, is a closed trail.

Suppose, now, that W, is not an Euler tour of G, and let S be the set of
vertices of positive degree in G,.. Then S is nonempty and v, € S, where
S=V\S. Let m be the largest integer such that v, € S and vn.; € S. Since
W. terminates in S, en. is the only edge of [S, S] in G.., and hence is a cut
edge of Gn, (see figure 4.10). | |

Let e be any other edge of G., incident with v, It follows (step 2) that e
must also be a cut edge of G., and hence of G.[S]. But since G.[S]=
G.[S], every vertex in Ga.[S] is of even degree. However, this implies
(exercise 2.2.6a) that G.[S] has no cut edge, a contradiction [

The proof that Fleury’s algorithm is a good algorithm is left as an exercise
(exercise 4.3.2).

If G is not eulerian, then any tour in G and, in particular, an optimal tour
in G, traverses some edges more than once. For example, in the graph of
figure 4.11a xuywvzwyxuwuxzyx is an optimal tour (exercise 4.3.1). Notice
that the four edges ux, xy, yw and wo are traversed twice by this tour.

It is convenient, at this stage, to introduce the operation of duplication of
an edge. An edge e is said to be duplicated when its ends are joined by a

" Figure 4.10
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Figure 4.11

new edge of weight w(e). By duplicating the edges ux, xy, yw and wo in the
graph of figure 4.11a, we obtain the graph shown in figure 4.11b.

We may now rephrase the Chinese postman problem as follows: given a
weighted graph G with non-negative weights,

(i) find, 'by duplicating edges, an eulerian weighted supergraph G* of G

such that w(e) is as small as possible;

eEE(C;\E(G)
(ii) find an Euler tour in G*.

That this is equivalent to the Chinese postman problem follows from the
observation that a tour of G in which edge e is traversed m(e) times
corresponds to an Euler tour in the graph obtained from G by duphcatmg e
m(e)—1 times, and vice versa.

We have already presented a good algorithm for solving (ii), namely
Fleury’s algorithm. A good algorithm for solving (i) has been given by
Edmonds and Johnson (1973). Unfortunately, it is too involved to be
presented here. However, we shall consider one special case which affords.
an easy solution. This is the case where G has exactly two vertlces of odd
degree.

Suppose that G has exactly two vertices u and v of odd degree; let G* be
an eulerian spanning supergraph of G obtained by duplicating edges, and
write E* for E(G¥). Clearly the subgraph G*E*\E] of G* (induced by the
edges of G* that are not in G) also has only the two vertices u and v of odd
degree. It follows from corollary 1.1 that u and v are in the same compo-
nent of G*[E*\E] and hence that they are connected by a (u, v) -path P*.
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Clearly

et-___;\Ew(e) =w(P*)=w(P)

where P is a minimum-weight (u, v)-path in G. Thus Z w(e) is a minimum
€E"\E

when G* is obtained from G by duplicating each of the edges on a
minimum-weight (u, v)-path. A good algorithm for ﬁndmg such a path was
given in section 1.8.

-

Exercises

4.3.1 Show that xuywvzwyxuwovxzyx is an optimal tour in the weighted
graph of figure 4.11a.

4.3.2 Draw a flow diagram summarising Fleury’s algorithm, and show that
it is a good algorithm.

4.4 THE TRAVELLING SALESMAN PROBLEM

A travelling salesman wishes to visit a number of towns and then return to
his starting point. Given the travelling times between towns, how should he
plan his itinerary so that he visits each town exactly once and travels in all
for as short a time as possible? This is known as the travelling salesman
problem In graphical terms, the aim is to find a minimum-weight Hamilton
cycle in a weighted complete graph. We shall call such a cycle an optimal
cycle. In contrast with the shortest path problem and the connector problem,
no efficient algorithm for solving the travelling salesman problem is known.
It is therefore desirable to have a method for obtaining a reasonably good
(but not necessarily optimal) solution. We shall show how some of our
previous theory can be employed to this end.

One possible approach is to first find a Hamilton cycle C, and then search
for another of smaller weight by suitably modifying C. Perhaps the simplest
such modification is as follows.

Let C=v,v,...0,0,. Then, for all i and i such that 1<z+1<]<v, we
can obtain a new Hamnlton cycle

Ci=v10;... v.v,v,_ - Vis1Vjs1Vjsz . XN

by deleting the edges v;vi.; and v;v;+, and addmg the edges viv; and Vi1 Vjus,
as shown in figure 4.12.
If, for some i and j

W(0:0;) + W(0i410541) < W(0:0141) + W(V;0541)

the cycle C; will be an improvement on C.
After performing a sequence of the above modifications, one is left with a
cycle that can be improved no more by these methods. This final cycle will
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4 Viset
Visr Yi
_ Figure 4.12

almost certainly not be optimal, but it is a reasonable assumption that it will
often be fairly good; for greater accuracy, the procedure can be repeated
several times, starting with a different cycle each time.

As an example, consider the weighted graph shown in figure 4.13; it is the
same graph as was used in our illustration of Kruskal’s algorithm in section
2.5.

Starting with the cycle L MC NY Pa Pe T L, we can apply a sequence of
three modifications, as illustrated in figure 4.14, and end up with the cycle
LNYMCTPePalL of weight 192.

An indication of how good our solution is can sometimes be obtained by
applying Kruskal’s algorithm. Suppose that C is an optimal cycle in G.
Then, for any vertex v, C—v is a Hamilton path in G — v, and is therefore a

Pa

Figure 4.13
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Figure 4.14

spanning tree of G —v. It follows that if T is an optimal tree in G — v, and if
e and f are two edges incident with v such that w(e)+w(f) is as small as
possible, then w(T)+ w(e)+w(f) will be a lower bound on w(C). In our
example, taking NY as the vertex v, we find (see figure 4.15) that

w(T)=122  w(e)=21 and w(f)=35

Figure 4.15
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We can therefore conclude that the weight w(C) of an optimal cycle in the
graph of figure 4.13 satisfies

178 = w(C) =192

The methods described here have been further developed by Lin (1965)
and Held and Karp (1970; 1971). In particular, Lin has found that the cycle
modification procedure can be made more efficient by replacing three edges
at a time rather than just two; somewhat surprisingly, however, it is not
advantageous to extend this same idea further. For a survey of the travelling
salesman problem, see Bellmore and Nemhauser (1968).

Exercise

4.4.1* Let G be a weighted complete graph in which the weights satisfy the
triangle inequality: w(xy)+ w(yz)=w(xz) for all x, y, z€ V. Show
that an optimal cycle in G has weight at most 2w(T), where T is an
optimal tree in G.

(D. J. Rosencrantz, R. E. Stearns, P. M. Lewis)
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