S5 Matchings
5.1 MATCHINGS

A subset M of E is called a matching in G if its elements are links and no
two are adjacent in G; the two ends of an edge in M are said to be matched
under M. A matching M saturates a vertex v, and v is said to be M-
saturated, if some edge of M is incident with v; otherwise, v is M-
unsaturated. If every vertex of G is M-saturated, the matching M is perfect.
M is a maximum matching if G has no matching M’ with [M'|>|M|; clearly,
every perfect matching is maximum. Maximum and perfect matchings in
graphs are indicated in figure 5.1.

Let M be a matching in G. An M-alternating path in G is a path whose
edges are alternately in E\M and M. For example, the path vsvgv,0,06 in the
graph of figure 5.1a is an M-alternating path. An M-augmenting path is an
M-alternating path whose origin and terminus are M-unsaturated.

Theorem 5.1 (Berge, 1957) A matching M in G is a maximum matching if
and only if G contains no M-augmenting path.

Proof Let M be a matching in G, and sup_pdse that G contains an
M-augmenting path vov; ... Uzm+1. Define M'c E by

M'= (M\{vlvz, VaV4y ..., Uzm—mzm}) U{Uovl, U203, ..., Uzmvzm+1}

Then M’ is a matching in G, and |M’|=|M|+ 1. Thus M is not a maximum
matching. . ‘
Conversely, suppose that M is not a maximum matching, and let M’ be a
maximum matching in G. Then |
IM'|>|M| | - (5.)
Set H= G[M AM’], where M AM’' denotes the symmetric difference of M
and M’ (see figure 5.2). | :

Figure 5.1. (a) A maximum matching; (b) a perfect matching
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(a) , (b)
Figure 5.2. (a) G, with M heavy and M’ broken; (b) G[M AM']

Each vertex of H has degree either one or two in H, since it can be
incident with at most one edge of M and one edge of M'. Thus each
component of H is either an even cycle with edges alternately in M and M’,
or else a path with edges alternately in M and M'. By (5.1), H contains
more edges of M’ than of M, and therefore some path component P of H
must start and end with edges of M'. The origin and terminus of P, being
M'-saturated in H, are M-unsaturated in G. Thus P is an M-augmenting
pathin G 0

Exercises

5.1.1 (a) Show that every k-cube has a perfect matching (k =2).
(b) Find the number of different perfect matchings in K, and K.

5.1.2 Show that a tree has at most one perfect matching.

5.1.3 For each k >1, find an example of a k-regular simple graph that has

’ no perfect matching.

5.1.4 Two people play a game on a graph G by alternately selecting
distinct vertices vo, vy, U, . . . such that, for i >0, v; is adjacent to v;_;.
The last player able to select a vertex wins. Show that the first player
has a winning strategy if and only if G has no perfect matching.

5.1.5 A k-factor of G is a k-regular spanning subgraph of G, and G is
k-factorable if there are edge-disjoint k-factors H,, H,, ..., H, such
that G=H,UH,U.. -UH,.

(a)* Show that :

() Ka. and K, are 1-factorable;

(ii) the Petersen graph is not 1-factorable.
(b) Which of the following graphs have 2-factors?

N 7
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(c) Using Dirac’s theorem (4.3), show that if G is simple, with v
even and 6 =(v/2)+1, then G has a 3-factor.
5.1.6* Show that Ki..1 can be expressed as the union of n connected
2-factors (n=1).

5.2 MATCHINGS AND COVERINGS IN BIPARTITE GRAPHS

For any set S of vertices in G, we define the neighbour set of S in G to be
the set of all vertices adjacent to vertices in S; this set is denoted by Ng(S).
Suppose, now, that G is a bipartite graph with bipartition (X, Y). In many
applications one wishes to find a matching of G that saturates every vertex
in X; an example is the personnel assignment problem, to be discussed in
section 5.4. Necessary and sufficient conditions for the existence of such a
matching were first given by Hall (1935).

Theorem 5.2 Let G be a bipartite graph with bipartition (X, Y). Then'G
contains a matching that saturates every vertex in X if and only if

IN(S)|=|S| forall ScX | (5.2)

- Proof Suppose that G contains a matching M- which saturates every
vertex in X, and let S be a subset of X. Since the vertices in S are matched
under M with distinct vertices in N(S), we clearly have |N(S)|=|S]|.
~ Conversely, suppose that G is a bipartite graph satisfying (5.2), but that G
contains no matching saturating all the vertices in X. We shall obtain a
contradiction. Let M* be a maximum matching in G. By our supposition,
M?* does not saturate all vertices in X. Let u be an M*-unsaturated vertex
in X, and let Z denote the set of all vertices connected to u by M*-
alternating paths. Since M* is a maximum matching, it follows from theorem
5.1 that u is the only M*-unsaturated vertex in Z. Set S=ZNX and
T=ZNY (see figure 5.3).

Clearly, the vertices in S\{u} are matched under M* with the vertlces in
T Therefore

IT|=1]S]-1 | | (5.3)
and N(S)=2T. In fact, we have
N@©S)=T (54

since every vertex in N(S) is connected to u by an M*-alternating path. But




Matchings | 73

S
r AN Y
u
o]
“ J
2\ g
T=N(S)
Figure 5.3

(5.3) and (5.4) imply that
IN(S)|=18]-1<[$|
contradicting assumption (5.2) O

The above proof provides the basis of a good algorithm for finding a
maximum matching in a bipartite graph. This algorithm will be presented in
section 5.4. '

Corollary 5.2 If G is a k-regular bipartite graph with k >0, then G has a
perfect matching.

Proof Let G be a k-regular bipartite graph with bipartition (X, Y). Since
G is k-regular, k | X|=|E|=k |Y| and so, since k >0, |X|=]|Y|. Now let S
be a subset of X and denote by E; and E, the sets of edges incident with
vertices in S and N(S), respectively. By definition of N(S), E;< E, and
therefore

k [N(S)|=|E:| =|E\| =k |S]

It follows that |[N(S)|=|S| and hence, by theorem 5.2, that G has a matching
M saturating every vertex in X. Since |X|=|Y|, M is a perfect matching [

Corollary 5.2 is sometimes known as the marriage theorem, since it can be
more colourfully restated as follows: if every girl in a village knows exactly k
boys, and every boy knows exactly k girls, then each girl can marry a boy
she knows, and each boy can marry a girl he knows.

A covering of a graph G is a subset K of V such that every edge of G has
at least one end in K. A covering K is a minimum covering if G has no
covering K’ with |K'|<|K| (see figure 5.4).

If K is a covering of G, and M is a matching of G, then K contains at
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(a) , (b)

Figure 5.4. (a) A covering; (b) a minimum covering

least one end of each of the edges in M. Thus, for any matching M and any
covering K, |M|=<|K|. Indeed, if M* is a maximum matching and K is a
minimum covering, then

IM¥<|R| | '(55)

In general, equahty does not hold in (5.5) (see, for example, ﬁgure 5.4).
However, if G is bipartite we do have |M*|=|K|. This result, due to K6nig
(1931), is closely related to Hall’s theorem. Before presenting its proof we
make a simple, but important, observatxon

Lemma 5.3 Let M be a matching and K be a covering such that |M|=|K]|.
Then M is a maximum matching and K is a minimum covering.

Proof If M* is a maximum matching and Kisa minimum covering then,
by (5.5),

IM|=|M*|=|K|=|K|
~ Since |[M|=|K]|, it follows that |M|=|M*| and |K|=|K| O

Theorem 5.3 In a bipartite graph, the number of edges in a maximum
matching is equal to the number of vertices in a minimum covering.

Proof Let G be a bipartite graph with bipartition (X, Y), and let M* be
a maximum matching of G. Denote by U the set of M*-unsaturated vertices
in X, and by Z the set of all vertices connected by M*-alternating paths to
vertices of U. Set S=ZNX and T=ZNY. Then, as in the proof of
theorem 5.2, we have that every vertex in T is M*-saturated and N(S) =
Define K = (X\S)UT (see figure 5.5). Every edge of G must have at least
one of its ends in K. For, otherwise, there would be an edge with one end in
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S and one end in Y\T, contradicting N(S)=T. Thus K is a covering of G
and clearly

IM* = K|

By lemma 5.3, K is a minimum covering, and the theorem follows [

Exercises

5.2.1

5.2.2

5.2.3

5.2.4

5.2.5

Show that it is impossible, using 1 X 2 rectangles, to exactly cover an

8 X 8 square from which two opposite 1X 1 corner squares have been

removed.

(a) Show that a bipartite graph G has a perfect matching if and only
if IN(S)|=|S| for all Sc V.

(b) Give an example to show that the above statement does not
remain valid if the condition that G be bipartite is dropped.

For k >0, show that

(a) every k-regular bipartite graph is 1-factorable;
(b)* every 2k-regular graph is 2-factorable. (J. Petersen)

Let A, As...,A, be subsets of a set S. A system of distinct
representatives for the family (A,, A,,...,A.) is a subset
{ai, az, ..., ax} of S such that ;e A;, 1<i<m, and a; # a; for i#j.
Show that (A,, A,, ..., A.) has a system of distinct representatives if
U Ai|=|J| for all subsets J of {1,2, ..., m}. (P.Hall

i€J

and only if

A line of a matrix is a row or a column of the matrix. Show that the
minimum number of lines containing all the 1’s of a (0, 1)-matrix is
equal to the maximum number of 1’s, no two of which are in the
same line. |
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5.2.6 (a) Prove the following generalisation of Hall’s theorem (5.2): if G
is a blpartlte graph with bipartition (X, Y), the number of edges
in a maximum matching of G is

X~ max {IS| - IN(S)}

(D. Kénig, O. Ore)
(b) Deduce that if G is simple with |X|=|Y|=n and &> (k—1)n,
then G has a matching of cardinality k.

5.2.7 Deduce Hall’s theorem (5.2) from Konig’s theorem (5.3).

5.2.8*% A non-negative real matrix Q is doubly stochastic if the sum of the
entries in each row of Q is 1 and the sum of the entries in each
column of Q is 1. A permutation matrix is a (0, 1)-matrix which has
exactly one 1 in each row and each column. (Thus every permutation
matrix is doubly stochastic.) Show that

(a) every doubly stochastic matrix is necessarily square;
(b) every doubly stochastic matrix Q can be expressed as a convex
linear combination of permutation matrices; that is

Q = clel + C2P2+ ...t CkPk
where each P; 1s a permutation matrix, each ¢; 1s a non-negative real

number, and }; c¢=1. (G. Birkhoff, J. von Neumann)

5.2.9 Let H be a finite group and let K be a subgroup of H. Show that
there exist elements hy, h,, ..., ho€ H such that h;K, h:K, ..., h,K
are the left cosets of K and Khl, Khz, ..., Kh, are the right cosets
of K. (P. Hall)

5.3 PERFECT MATCHINGS

A necessary and sufficient condition for a graph to have a perfect matching

- was obtained by Tutte (1947). The proof given here is due to Lovasz (1973).
A component of a graph is odd or even according as it has an odd or even

number of vertices. We denote by o(G) the number of odd components of G.

Theorem 5.4 G has a perfect matching if and only if |
| o(G-S)=<|S| forall ScV ~ (5.6)

Proof It clearly suffices to prove the theorem for simple graphs.

Suppose first that G has a perfect matching M. Let S be a proper subset
of V, and let G,, G, . ..., G, be the odd components of G —S. Because G; is
odd, some vertex u; of Gi must be matched under M with a vertex v; of S
(see figure 5.6). Therefore, since {vy, va, ..., 0} S S

0(G-8)=n={vy, vy, ..., va}| =|S|
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Conversely, suppose that G satisfies (5.6) but has no perfect matching.
Then G is a spanning subgraph of a maximal graph G* having no perfect
matching. Since G—S is a spanning subgraph of G*-—S we have
0(G*~-S)=0(G—S) and so, by (5.6),

o(G*-S)=|S| forall Sc< V(G* (5.7)

In particular, setting S =@, we see that o(G*) =0, and so v(G*) is even.
Denote by U the set of vertices of degree v—1 in G*. Since G* clearly
has a perfect matching if U= V, we may assume that U# V. We shall show
that G*— U is a disjoint union of complete graphs. Suppose, to the contrary,
that some component of G*— U is not complete. Then, in this component,
there are vertices x, y and z such that xye E(G¥*), yze E(G*) and
xz& E(G*) (exercise 1.6.14). Moreover, since y€ U, there is a vertex w in
G*—U such that ywe E(G¥). The situation is illustrated in figure 5.7.
Since G* is a maximal graph containing no perfect matching, G*+ e has a
perfect matching for all e¢ E(G*). Let M, and M, be perfect matchings in
G*+xz and G*+yw, respectively, and denote by H the subgraph of

y w

Figure 5.7
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Figure 5.8

G*U{xz, yw} induced by M, AM,. Since each vertex of H has degree two,
H is a disjoint union of cycles. Furthermore, all of these cycles are even,
since edges of M, alternate with edges of M, around them. We distinguish
two cases:

Case 1 xz and yw are in different components of H (figure 5.8a). Then,
if yw is in the cycle C of H, the edges of M, in C, together with the edges of
M, not in C, constitute a perfect matching in G*, contradicting the defini-
tion of G*. |

Case 2 xz and yw are in the same component C of H. By symmetry of x
and z, we may assume that the vertices x, y, w and z occur in that order on
C (figure 5.8b). Then the edges of M, in the section yw... 2 of C, together
with the edge yz and the edges of M, not in the section yw...z of C,

Odd components of G -U Even components of G*-U
) A

—
r )
Ommmmm() oooo
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(o o] A O
N




Matchings 79

constitute a perfect matching in G*, again contradicting the definition of
G*.

Since both case 1 and case 2 lead to contradictions, it follows that G*— U
is indeed a disjoint union of complete graphs.

Now, by (5.7), o(G*- U)=|U|. Thus at most |U| of the components of
G*-U are odd. But then G* clearly has a perfect matching: one vertex in
each odd component of G*-U is matched with a vertex of U; the
remaining vertices in U, and in components of G*— U, are then matched as
indicated in figure 5.9.

Since G* was assumed to have no perfect matching we have obtained the
desired contradiction. Thus G does indeed have a perfect matching 0

The above theorem can also be proved with the aid of Hall’s theorem (see
Anderson, 1971). | |
From Tutte’s theorem, we now deduce a result first obtained by Petersen
(1891).

Corollary 5.4 Every 3-regular graph without cut edges has a perfect
matching.

Proof Let G be a 3-regular graph without cut edges, and let S be a
- proper subset of V. Denote by G,, G,,...,G, the odd components of
G - S, and let m; be the number of edges with one end in G; and one end in
S, 1=i=n. Since G is 3-regular

Z;Go d(v)=3v(G) for 1<i=<n (5.8)
and
T d(v)=3s| (5.9)

By (58), m= ¥ d(v)~2e(G) is odd. Now m,#1 since G has no cut
veV(Gy

edge. Thus L

i=3 for 1=i=n (5.10)

It follows from (5.10) and (5.9) that

i=1

oG-S)=n=1¥ mi_%‘;s d(v) =S|

Therefore, by theorem 5.4, G has a perfect matching 0

A 3-regular graph with cut edges need not have a perfect matching. For
example, it follows from theorem 5.4 that the graph G of figure 5.10 has no
perfect matching, since 0(G —v) =3. | ‘
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Figure 5.10

Exercises

5.3.1* Derive Hall’s theorem (5.2) from Tutte’s theorem (5.4).
5.3:2 Prove the following generalisation of corollary 5.4: if G is a(k—1)-
edge-connected k-regular graph wnth v even, then G has a perfect

matching.
5.3.3 Show that a tree G has a perfect matchmg if and only if o(G—v)=
for all ve V. - (V. Chungphalsan)

5.3.4* Prove the following generalisation of Tutte’s theorem (5.4): the
number of edges in a maximum matching of G is 3(v—d), where
d= rgl'__avx{o(G -S)—|S|}. | (C. Berge)

5.3.5 (a) Using Tutte’s theorem (5.4), eharacterise the maximal simple
graphs which have no perfect matching.
(b) Let G be simple, with v even and 8 <v/2. Show that if ¢ >

(g) + (v ) 228 B l) +8(v—8), then G has a perfect matching.

APPLICATIONS

5.4 THE PERSONNEL ASSIGNMENT PROBLEM

In a certain company, n workers X, X, ..., X. are available for n jobs
Y1, Y,..., Y., each worker being qualified for one or more of these jobs.
Can all the men be assigned, one man per job, to jobs for which they are
qualified? This is the personnel assignment problem.
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We construct a bipartite graph G with bipartition (X, Y), where X =
{x1, X2, ..., %o}, Y={y1, y2,...,ya}, and x; is joined to y; if and only if
worker X; is qualified for job Y;. The problem becomes one of determining
whether or not G has a perfect matching. According to Hall’s theorem (5.2),
either G has such a matching or there is a subset S of X such that
IN(S)|<|S|. In the sequel, we shall present an algorithm to solve the
personnel assignment problem. Given any bipartite graph G with bipartition
(X, Y), the algorithm either finds a matching of G that saturates every
vertex in X or, failing this, finds a subset S of X such that [N(S)|<|S|.

The basic idea behind the algorithm is very simple. We start with an
arbitrary matching M. If M saturates every vertex in X, then it is a matching
of the required type. If not, we choose an M-unsaturated vertex u in X and
systematically search for an M-augmenting path with origin u. Our method
of search, to be described in detail below, finds such a path P if one exists;
in this case M =M AE(P) is a larger matching than M, and hence saturates
more vertices in X. We then repeat the procedure with M instead of M. If
such a path does not exist, the set Z of all vertices which are connected to u
by M-alternating paths is found. Then (as in the proof of theorem 5.2)
S =ZNX satisfies [N(S)|<|S]|. |

Let M be a matching in G, and let u be an M-unsaturated vertex in X. A
tree H < G is called an M-alternating tree rooted at u if (i) u e V(H), and (ii)
for every vertex v of H, the unique (u, v)-path in H is an M-alternating
path. An M-alternating tree in a graph is shown in figure 5.11.

Xg

(a) (b)

Figure 5.11. (a) A matching M in G; (b) an M-alternating tree in G
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(a)
Figure 5.12. (a) Case (i); (b) case (ii)

~ The search for an M-augmenting path with origin u involves ‘growing’ an
M-alternating tree H rooted at u. This procedure was first suggested by
Edmonds (1965). Initially, H consists of just the single vertex u. It is then
grown in such a way that, at any stage, either

(i) all vertices of H except u are M-saturated and matched under M (as in
figure 5.12a), or '

(i) H contains an M-unsaturated vertex different from u (as in figure
5.12b).

If (i) is the case (as it is initially) then, setting S=V(H)NX and T=
V(H)N'Y, we have N(S)2T; thus either N(S)=T or N(S)>T.

(a) If N(S)=T then, since the vertices in S\{u} are matched with the
vertices in T, |[N(S)|=|S|— 1, indicating that G has no matching saturat-
ing all vertices in X. '

(b) If N(S) > T, there is a vertex y in Y\T adjacent to a vertex x in S. Since
all vertices of H except u are matched under M, either x = u or else x is
matched with a vertex of H. Therefore xy€ M. If y is M-saturated, with
yz € M, we grow H by adding the vertices y and z and the edges xy and
yz. We are then back in case (i). If y is M-unsaturated, we grow H by
adding the vertex y and the edge xy, resulting in case (ii). The (u, y)-
path of H is then an M-augmenting path with origin u, as required.

Figure 5.13 illustrates the above tree-growing procedure.
The algorithm described above is known as the Hungarian method, and
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Figure 5.13. The tree-growing procedure

can be summarised as follows:

Start with an arbitrary matching M.

1.

2.

If M saturates every vertex in X, stop. Otherwise, let u be an M-
unsaturated vertex in X. Set S={u} and T =40.

If N(S)=T then |N(S)|<|S|, since. |T|=|S|—1. Stop, since by Hall’s
theorem there is no matching that saturates every vertex in X. Other-
wise, let y e N(S)\T.

. If y is M-saturated, let yze M. Replace S by SU{z} and T by T U{y}

and go to step 2. (Observe that |T|=|S|—1 is maintained after this
replacement.) Otherwise, let P be an M-augmenting (u, y)-path. Replace
M by M =M AE(P) and go to step 1. | }

Consider, for example, the graph G in figure 5.144, with initial matching

M ={x.y,, x3y3, x5ys}. In figure 5.14b an M-alternating tree is grown, start-
ing with x,, and the M-augmenting path x,y,x,y, found. This results in a
new matching M = {x,y,, Xy1, x5, xsys}, and an M-alternating tree is now
grown from x, (figures 5.14c and 5.14d) Since there is no M-augmenting
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X1 X2 ) X3 Xq Xs
¥ y2 Y3 Ya Ys
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(d)

Figure 5.14. (a) Matching M; (bl an M-alternating tree; (c) matching M; (d) an
: ' M-alternating tree :

path with origin x4, the algorithm terminates. The set S ={x;, X3, X4}, With
~ neighbour set N(S) ={y,, ys}, shows that G has no perfect matching.

- A flow diagram of the Hungarian method is given in figure:5.15. Since the
algorithm can cycle through the tree-growing procedure, I, at most | X| times
before finding either an S < X such that |[N(S)|<|S| or an M-augmenting
‘path, and since the initial matching can be augmented at most |X| times
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before a matching of the required type is found, it is clear that the
Hungarian method is a good algorithm.

One can find a maximum matching in a bipartite graph by slightly
modifying the above procedure (exercise 5.4.1). A good algorithm that

determines such a matchin

(1965).

Exercise

g in any graph has been given by Edmonds

5.4.1 Describe how the Hungarian method can be used to find a maximum
matching in a bipartite graph.
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5.5 THE OPTIMAL ASSIGNMENT PROBLEM

The Hungarian method, described in section 5.4, is an efficient way of
determining a feasible assignment of workers to jobs, if one exists. However
one may, in addition, wish to take into account the effectiveness of the
workers in their various jobs (measured, perhaps, by the profit to the
company). In this case, one is interested in an assignment that maximises the
total effectiveness of the workers. The problem of finding such an assign-
ment is known as the optimal assignment problem.

Consider a weighted complete bipartite graph with bipartition (X, Y),
where X ={xy,x5,...,%a}, Y={y1, y2,...,y.} and edge xiy; has weight
wi;= w(x:y;), the effectiveness of worker X, in job Y;. The optimal assign-
ment problem is clearly equivalent to that of finding a maximum-weight
perfect matching in this weighted graph. We shall refer to such a matching
as an optimal matching. A

To solve the optimal assignment problem it is, of course, possible to
enumerate all n! perfect matchings and find an optimal one among them.
However, for large n, such a procedure would clearly be most inefficient. In
this section we shall present a good algorithm for finding an optlmal
matching in a weighted complete bipartite graph.

We define a feasible vertex labelling as a real-valued function | on the
vertex set XU Y such that, for all xe X and yeY

1(x)+ 1(y) = w(xy) | (5.11)

(The real number [(v) is called the label of the vertex v.) A feasible vertex
labelling is thus a labelling of the vertices such that the sum of the labels of
the two ends of an edge is at least as large as the weight of the edge. No
matter what the edge weights are, there always exists a feasible vertex
labelling; one such is the function I given by

I(x)= nya%ayx w(xy) if xe X}
I(y)=0 i yeY

If | is a feasible vertex labelling, we denote by E, the set of those edges for
which equality holds in (5.11); that is -

"Ei={xyeE|I(x)+ i(y) =w(xy)}

The spanning subgraph of G with edge set E, is referred to as the equality

- subgraph corresponding to the feasible vertex labelling I, and is denoted by

Gi. The connection between equality subgraphs and optimal matchings is
provided by the following theorem.

(5.12)

Theorem 5.5 Let | be a feasible vertex labelling of G. If G, contains a
perfect matching M*, then M* is an optimal matching of G.
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Proof Suppose that G, contains a perfect matching M*. Since G; is a
spanning subgraph of G, M™ is also a perfect matching of G. Now
w(M* =) w(e)= le(v) (5.13)

eEM*

since each e e M* belongs to the equality subgraph and the ends of edges of
M* cover each vertex exactly once. On the other hand, if M is any perfect

matching of G, then
w(M) = Zw w(e)SV;' l(v) (5.14)

It follows from (5.13) and (5.14) that w(M*) = w(M). Thus M* is an optimal
matching [

The above theorem is the basis of an algorithm, due to Kuhn (1955) and
Munkres (1957), for finding an optimal matching in a weighted complete
bipartite graph. Our treatment closely follows Edmonds (1967).

Starting with an arbitrary feasible vertex labelling | (for example, the one
given in (5.12)), we determine G, choose an arbitrary matching M in G, and
apply the Hungarian method. If a perfect matching is found in G, then, by
theorem 5.5, this matching is optimal. Otherwise, the Hungarian method
terminates in a matching M’ that is not perfect, and an M'-alternating tree
H that contains no M’'-augmenting path and cannot be grown further (in
G,). We then modify [ to a feasible vertex labelling { with the property that
both M’ and H are contained in G; and H can be extended in G Such
modifications in the feasible vertex labelling are made whenever necessary,
until a perfect matching is found in some equality subgraph.

The Kuhn—-Munkres Algorithm

Start with an "arbitrary feasible vertex labelling I, determine G, and
choose an arbitrary matching M in G,

1. If X is M-saturated, then M is a perfect matching (since |X|=]Y]) and
hence, by theorem 5.5, an optimal matching; in this case, stop. Other-
wise, let u be an M-unsaturated vertex. Set S ={u} and T =40.

2. If N(S)>T, go to step 3. Otherwise, Ng(S) = T. Compute

= min{l(x) +I(y) — w(xy)}

ye&T
and the feasible vertex labelling [ given by
" I(v)—a, if vES
) =5 l(v)+e if veT

I(v) otherwise

(Note that a,>0 and that Ng{S) > T.) Replace | by [ and G, by Gi.




88 - Graph Theory with Applications

355 4 1
22022
24410
01100
12133

(3554 1]5
220222
244104
011001
121333
00000
(b)

(35541 4
22022|2
244103
01100/ 0
121333
01100

(d)
Figure 5.16

3. Choose a vertex y in Ng(S)\T. As in the tree-growing procedure of
section - 5.4, consider whether or not y is M-saturated. If y is M-
saturated, with yz e M, replace S by SU{z} and T by TU{y}, and go to
step 2. Otherwise, let P be an M-augmenting (u, y)-path in G,, replace M
by M =M AE(P), and go to step 1. |

In illustrating the Kuhn-Muinkres algorithm, it is convenient to represent
a weighted complete bipartite graph G by a matrix W = [w;;], where wy; is
the weight of edge xiy; in G. We shall start with the matrix of figure 5.16a.
In figure 5.16b, the feasible vertex labelling (5.12) is shown (by placing the
label of x; to the right of row i of the matrix and the label of y; below
column j) and the entries corresponding to edges of the associated equality
subgraph are indicated; the equality subgraph itself is depicted (without
weights) in figure 5.16¢. It was shown in the previous section that this graph
has no perfect matching (the set S ={x,, xs, xs} has neighbour set {y, ys}).
We therefore modify our initial feasible vertex labelling to the one given in
figure 5.16d. An application of the Hungarian method now shows that the
associated equality subgraph (figure 5.16e) has the perfect matching
{X1y4, X2¥1, X3y3, X4y2, Xsys}. This is therefore an optimal matching of G.
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Figure 5.17. The Kuhn-Munkres algorithm
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A flow diagram for the Kuhn-Munkres algorithm is given in figure 5.17.
In cycle II, the number of computations required to compute G is clearly of
order v Since the algorithm can cycle through I and II at most |X| times
before finding an M-augmenting path, and since the initial matching can be
augmented at most |X| times before an optimal matching is found, we see
that the Kuhn—Munkres algorithm is a good algorithm.

Exercise

5.5.1 A diagonal of an n Xn matrix is a set of n entries no two of which
belong to the same row or the same column. The weight of a
diagonal is the sum of the entries in it. Find a minimum-weight
diagonal in the following matrix:

4 5 8 10 11|
7 6 5 7 4
8 5 12 9 6
le 6 13 10 7
4 5 7 9 8
- -
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