7 Independent Sets and
Cliques

7.1 INDEPENDENT SETS

A subset S of V is called an independent set of G if no two vertices of S are
adjacent in G. An independent set is maximum if G has no independent set
S’ with |S|>|S|. Examples of independent sets are shown in figure 7.1.

Recall that a subset K of V such that every edge of G has at least one end
in K is called a covering of G. The two examples of independent sets given
in figure 7.1 are both complements of coverings. It is not difficult to see that
this is always the case.

Theorem 7.1 A set S< V is an independent set of G if and only if V\S is a
covering of G.

Proof By definition, S is an independent set of G if and only if no edge
of G has both ends in S or, equivalently, if and only if each edge has at least
~one end in V\S. But this is so if and only if V\S is a covering of G [

The number of vertices in a maximum independent set of G is called the
independence number of G and is denoted by a(G); similarly, the number of
vertices in a minimum covering of G is the covering number of G and is
denoted by B(G).

Corollary 7.1 a+B=v.

Proof Let S be a maximum independent set of G, and let K be a
minimum covering of G. Then, by theorem 7.1, V\K is an independent set

(a) ()

Figure 7.1. (a) An independent set; (b) a maximum independent set
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and V\S is a covering. Therefore

= |V\K|$a (7.1)
and
= |V\S|2 ' (7.2)

Combmmg (7.1) and (7.2) we have a+B=v 0

The edge analogue of an independent set is a set of links no two of which
are adjacent, that is, a matching. The edge analogue of a covering is called
an edge covering. An edge covering of G is a subset L of E such that each
vertex of G is an end of some edge in L. Note that edge coverings do not
always exist; a graph G has an edge covering if and only if 6 >0. We denote
the number of edges in a maximum matching of G by a'(G), and the
number of edges in a minimum edge covering of G by B'(G); the numbers
a'(G) and B'(G) are the edge independence number and edge covering
number of G, respectively.

Matchings and edge coverings are not related to one another as simply as
are independent sets and coverings; the complement of a matching need not
be an edge covering, nor is the complement of an edge covering necessarily
a matching. However, it so happens that the parameters a' and B’ are
related in precisely the same manner as are a and 3.

Theorem 7.2 (Gallai, 1959) If 6§ >0, then o'+ 8= .

Proof Let M be a maximum matching in G and let U be the set of
M-unsaturated vertices. Since 8 >0 and M is maximum, there exists a set E’
of |U| edges, one incident with each vertex in U. Clearly, MU E’ is an edge
covering of G, and so
B'=MUE'|=a'+(v—2a)=v—-a'
or '

a'+B'=v (7.3)

Now let L be a minimum edge covering of G, set H=G[L] and let M be
a maximum matching in H. Denote the set of M-unsaturated vertices in H
by U. Since M is maximum, H[U] has no links and therefore

IL|=|M|=|L\M|=|U|=v-2|M]|
Because H is a subgraph of.G, M is a matching in G and so
. o' +B'=|M|+|L|= a4
Combining (7.3) and (7.4), we have a'+B'=v 0O

We can now prove a theorem that bears a striking formal resemblance to
Konig’s theorem (5.3).




Independent Sets and Cliques 103

Theorem 7.3 In a bipartite graph G with 8 >0, the number of vertices in a
maximum independent set is equal to the number of edges in a minimum
edge covering. |

Proof Let G be a bipartite graph with §>0. By corollary 7.1 and
theorem 7.2, we have

at+B=ao+p

and, since G is bipartite, it follows from theorem 5.3 that a'=pB. Thus
a=p" 0

Even though' the concept of an independent set is analogous to that of a
matching, there exists no theory of independent sets comparable to the
theory of matchings presented in chapter 5; for example, no good algorithm
for finding a maximum independent set in a graph is known. However, there
are two interesting theorems that relate the number of vertices in a max-
imum independent set of a graph to various other parameters of the graph.
These theorems will be discussed in sections 7.2 and 7.3.

Exercises

7.1.1 (a) Show that G is blpartlte if and on]y if a(H)=1v(H) for every
subgraph H of G.
(b) Show that G is bipartite if and only if «(H)=B'(H) for every
subgraph H of G such that 8§(H)>0.
7.1.2 A graph is a-critical if a(G—e)>a(G) for all ec E. Show that
a connected a-critical graph has no cut vertices.
7.1.3 A graph G is B-critical if B(G —e)<B(G) for all e E. Show that

(a) & connected B-critical graph has no cut vertices;
(b)* if G is connected, then B=%e +1).

7.2 RAMSEY'S THEOREM

In this section we deal only with simple graphs. A clique of a simple graph G
is a subset S of V such that G[S] is complete. Clearly, S is a clique of G if
and only if S is an independent set of G°, and so the two concepts are
complementary.

If G has no large cliques, then one might expect G to have a large
independent set. That this is indeed the case was first proved by Ramsey
(1930). He showed that, given any positive integers k and I, there exists a
smallest integer r(k,l) such that every graph on r(k,[) vertices contains
either a clique of k vertices or an independent set of | vertlces For example,
it is easy to see that

r(l, )=rk,1)=1 (7.5)
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and , _
r2, D=1  rk,2)=k ' (7.6)

The numbers r(k,l) are known as the Ramsey numbers. The following
theorem on Ramsey numbers is due to Erdos and Szekeres (1935) and
Greenwood and Gleason (1955).

Theorem 7.4 For any two integers k =2 and [ =2
rk, D)=r(k,l-1)+r(k—1,1) (7.7)

Furthermore, if r(k, | —1) and r(k — 1, l) are both even, then strict inequality
holds in (7.7).

Proof Let G be a graph on r(k,l—1)+r(k—1,1) vertices, and let ve V.
We distinguish two cases:

(i) v is nonadjacent to a set S of at least r(k,l—1) vertices, or
(ii) v is adjacent to a set T of at least r(k —1, ) vertices.

Note that either case (i) or case (ii) must hold because the number of
vertices to which v is nonadjacent plus the number of vertices to which v is
adjacent is equal to r(k,l—1)+r(k—1,1)—1. -
In case (i), G[S] contains either a clique of k vertices or an independent
set of I —1 vertices, and therefore G[S U{v}] contains either a clique of k -
vertices or an independent set of | vertices. Similarly, in case (ii), G[T U{v}]
contains either a clique of k vertices or an independent set of | vertices.
Since one of case (i) and case (ii) must hold, it follows that G contains either
a clique of k vertices or an independent set of I vertices. This proves (7.7).
Now suppose that r(k,l—1) and r(k — 1, I) are both evén, and let G be a
graph on r(k,1—1)+r(k—1,1)—1 vertices. Since G has an odd number of
vertices, it follows from corollary 1.1 that some vertex v is of even degree;
in particular, v cannot be adjacent to precisely r(k—1,1)—1 vertices.
Consequently, either case (i) or case (ii) above holds, and therefore G

‘contains either a chque of k vertices or an independent set of | vertices.
Thus

| rik, )<r(k,l1-1)+r(k—-1,1)—1
as stated O

The determination of the Ramsey numbers in general is a very difficult
unsolved problem. Lower bounds can be obtained by the construction of
suitable graphs. Consider, for example, the four graphs in figure 7.2.

- The 5-cycle (figure 7.2a) contains no clique of three vertices and no
‘independent set of three vertices. It shows, therefore, that

r(3,3)=6 (7.8)
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(a) (b)

(c) (d)
Figure 7.2. (a) A (3,3)-Ramsey graph; (b) a (3,4)-Ramsey graph; (c) a (3,5)-Ramsey
' graph; (d) a (4,4)-Ramsey graph

The graph of figure 7.2b contains no clique of three vertices and no
independent set of four vertices. Hence

r(3,4)=9 (7.9)
Similarly, the graph of figure 7.2¢ shows that
| r(3,5)=14 (7.10)
" and the graph of figure 7.2d yields
| r(4,4)=18 (7.11)

With the aid of theorem 7.4 and equations (7.6) we can now show that

equality in fact holds in (7.8), (7.9), (7.10) and (7.11). Firstly, by (7.7) and
(7.6)

r(3,3)=r(3,2)+1r(2,3)=6
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and therefore, using (7.8), we have r(3, 3) = 6. Noting that r(3, 3) and r(2, 4)
are both even, we apply theorem 7.4 and (7.6) to obtain

r(3,4)=<r(3,3)+r(2,4)—-1=9
With (7.9) this gives (3, 4) = 9. Now we again apply (7.7) and (7.6) to obtain
r(3,5)=r(3,4)+r(2,5 =14

and
r(4,4)=<r(4,3)+r(3,4)=18

which, together with (7.10) and (7.11), respectively, yield r(3, 5)=14 and
r(4,4)=18. ,
The following table shows all Ramsey numbers r(k, I) known to date.

11234567

k.

11 11 1 1 1 1
211 2 3 4 5 6 7
311 3 6 9 14 18 23
411 4 9 18 :

A (k,l)-Ramsey graph is a graph on r(k,1)—1 vertices that contains
neither a clique of k vertices nor an independent set of | vertices. By
definition of r(k, l) such graphs exist for all k =2 and [ =2. Ramsey graphs
often seem to possess interesting structures. All of the graphs in figure 7.2
are Ramsey graphs; the last two can be obtained from finite fields in the
following way. We get the (3, 5)-Ramsey graph by regarding the thirteen
vertices as elements of the field of integers modulo 13, and joining two
vertices by an edge if their difference is a cubic residue of 13 (either 1, 5, 8
or 12); the (4, 4)-Ramsey graph is obtained by regarding the vertices as
elements of the field of integers modulo 17, and joining two vertices if their
difference is a quadratic residue of 17 (either 1, 2, 4, 8, 9, 13, 15 or 16). It
has 'been conjectured that the (k, k)-Ramsey graphs are always self-
complementary (that is, isomorphic to their complements) this is true for
k=2, 3 and 4.

In general, theorem 7.4 yields the following upper bound for r(k, I).
’{‘heorem 7.5 rk )= (k;i 1 2)

Proof By ‘induction on k+1 Using (7.5) and (7.6) we see that the
theorem holds when k +1=<5. Let m and n be positive integers, and assume
that the theorem is valid for all positive integers k and ! such that
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5=k+1<m+n. Then, by theorem 7.4 and the induction hypothesis
rim,n)<r(m,n—1)+r(m—1, n)
s(m+f—3)+(m+f-3)= (m+f-2)
m-—1 m-—2 m-—1
Thus the theorem holds for all values of k and | [

A lower bound for r(k, k) is given in the next theorem. It is obtained by
means of a powerful technique known as the probabilistic method (see Erdos
and Spencer, 1974). The probabilistic method is essentially a crude counting
argument. Although nonconstructive, it can often be applied to assert the
existence of a graph with certain specified properties.

Theorem 7.6 (Erdos, 1947) r(k, k) = 2+
Proof. Since r(1,1)=1 and r(2,2)=2, we may assume that k =3. De-

note by 4. the set of simple graphs with vertex set {v;, vs, . . ., v}, and by
%, the set of those graphs in %, that have a clique of k vertices. Clearly
|G| =22 (7.12)

since each subset of the (g) possible edges viv; determines a graph in %..
Similarly, the number of graphs in %. having a particular set of k vertices as

a clique is 20~(), Since there are (;:) distinct k-element subsets of
{vi, v2, . . ., v}, we have

@=(F)a0-0 (7.13)
By (7.12) and (7.13)
et o n2-®
rg—js(z)z-(zk" 2 (7.14)

Suppose, now, that n <2?, From (7.14) it follows that

|<9:| ‘ 2k2/22—(§) B /2
N D T

Therefore, fewer than half of the graphs in %, contain a clique of k vertices.
Also, because 4,={G|G°€%.}, fewer than half of the graphs in %,
contain an independent set of k vertices. Hence some graph in %, contains
neither a clique of k vertices nor an independent set of k vertices. Because
this holds for any n <2*?, we have r(k, k)=2> [

N

<

From theorem 7.6 we can immediately deduce a lower bound for r(k, ).
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Corollary 7.6 1f m =min{k, I}, then r(k, |) = 2™

All known lower bounds for r(k,!) obtained by constructive arguments
are much weaker than that given in corollary 7.6; the best is due to Abbott
(1972), who shows that r(2"+1, 2" +1)=5"+1 (exercise 7.2.4).

The Ramsey numbers r(k, I) are sometimes defined in a slightly different
way from that given at the beginning of this section. One easily sees that
r(k, ) can be thought of as the smallest integer n such that every 2-edge
colouring (E;, E) of K, contains either a complete subgraph on k vertices,
all of whose edges are in colour 1, or a complete subgraph on [ vertices, all
of whose edges are in colour 2. Expressed in this form, the Ramsey numbers
have a natural generalisation. We define r(ky, ko, . . ., km) to be the smallest
integer n such that every m-edge colouring (E;, Ez, ..., Em) of K, contains,
for some i, a complete subgraph on k; vertices, all of whose edges are in
colour i.

The following theorem and corollary generalise (7.7) and theorem 7.5,
and can be proved in a similar manner. They are left as an exercise (7.2.2).

Theorem 7.7 r(ki, ka ..., ke)=<r(ki—1, ks, ..., ka)+
Pk, ka—1,... , kn)+...+r(ky, kzy, ..., km—1)—m+2

(ki +ko+.. +km)!

Corollary 7.7 r(ki+1,ka+1,..., km +1)—- KUk k!
. 1 2. me

Exercises

7.2.1 Show that, for all k and [, r(k, 1) =r(l, k).
7.2.2 Prove theorem 7.7 and corollary 7.7.
7.2.3 Let r, denote the Ramsey number r(k, ks, . . ., ko) with k;=3 for all
i. aE
(a) Show that ro,=n(r...—1)+2.
(b) Noting that r,= 6, use (a) to show that r.<[n!e]+1.
(c) Deduce that r;=17.
(Greenwood and Gleason, 1955 have shown that r;= 17.)
7.2.4 The composition of simple graphs G and H is the simple graph G[H]
: with vertex set V(G)X V(H), in which (u, v) is adjacent to (u', v') if
and only if either uu'e E(G) or u=u' and wvv'e E(H).

(a) Show that a(G[H])= a(G)a(H).
(b) Using (a), show that

Pkl +1, kI +1)— 1= (r(k+1,k + 1) = )X (r(1+1, 1 +1)—1)

(c) Deduce that r(2"+1,2"+1)=5"+1 for all n=0. |
| : ' | - (H.L. Abbott)
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7.2.5 Show that the join of a 3-cycle and a 5-cycle contains no K, but that
every 2-edge colouring yields a monochromatic triangle.

(R. L. Graham)

(Folkman, 1970 has constructed a graph containing no K, in which

every 2-edge colouring yields a monochromatic triangle—this graph
has a very large number of vertices.)

7.2.6 Let G1,G,,...,Gn be s1mple graphs. The generalised Ramsey
number r(G,, Gz, ..., Gm) is the smallest integer n such that every
m-edge colouring (El, E,,...,Es) of K, contains, for some i, a
subgraph isomorphic to G; in colour i. Show that

(a) if G is a path of length three and H is a 4-cycle, then
r(G,G)=5, r(G,H)=5 and r(H, H) = 6;
(b)* if T is any tree on m vertices and if m —1 divides n—1, then
NT,Kis)=m+n—-1;
(c)* if T is any tree on m vertices, then r(T, K.)=(m -1)(n—1)+1.
(V. Chvatal)

7.3 TURAN'S THEOREM

In this section, we shall prove a well-known theorem due to Turdn (1941).
It determines the maximum number of edges that a simple graph on v
vertices can have without containing a clique of size m + 1. Turdn’s theorem
has become the basis of a significant branch of graph theory known as
extremal graph theory (see Erdds, 1967). We shall derive it from the
following result of Erdos (1970). |

Theorem 7.8 1If a simple graph G contains no Kp+:, then G is degree-
majorised by some complete m-partite graph H. Moreover, if G has the
same degree sequence as H, then G=H.

Proof By induction on m. The theorem is trivial for m = 1. Assume that
it holds for all m <n, and let G be a simple graph which contains no K,.,.
Choose a vertex u of degree A in G, and set G,= G[N(u)]. Since G
contains no K.,.;, G; contains no K, and therefore, by the induction
hypothesis, is degree-majorised by some complete (n — 1)-partite graph H,.

Next, set V,=N(u) and V,= V\V;, and denote by G, the graph whose
vertex set is V> and whose edge set is empty Consider the join G,v G; of
G; and G.. Smce

NG(v) € Ng,vc,(v) for veV, (7.15)

and since each vertex of V, has degree A in G,v G., G is degree-majorised
by G.v G.. Therefore G is also degree-majorised by the complete n-partite
graph H = H;v G,. (See figure 7.3 for illustration.)
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u

Another diagram of G
with G,=G[N(u)] indicated

NN

H, G, v G, (55,5,5,5,5,5,5) H=H,v G,(5,5,5,5, 5,5,6,6)
Figure 7.3

Suppose, now, that G has the same degree sequence as H. Then G has
the same degree sequence as G, v G, and hence equality must hold in (7.15).
Thus, in G, every vertex of V, must be joined to every vertex of V. It
follows that G = G,V G.. Since G = G,V G; has the same degree sequence
as H = H,v G,, the graphs G, and H, must have the same degree sequence

and therefore, by the induction hypothesis, be isomorphic. We conclude that
G=H 0

It is interesting to note that the above theorem bears a striking similarity
to theorem 4.6.

Let T.. denote the complete m-partite graph on n vertices in which all -
parts are as equal in size as possible; the graph H of figure 7.3 is Tsgs.

Theorem 7.9 If G is simple and contains no K., then e(G)=e(Tm.).
Moreover, €(G) = &(Tn,.) only if G=Tha..
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Proof Let G be a simple graph that contains no K... By theorem 7.8, G
is degree-majorised by some complete m-partite graph H. It follows from
theorem 1.1 that

e(G)=e(H) (7.16)
But (exercise 1.2.9)

e(H)=<&(Tm,) (7.17)
Therefore, from (7.16) and (7.17) |

£(G)=€(Tumy) (7.18)

proving the first assertion.

Suppose, now, that equality holds in (7.18). Then equality must hold in
both (7.16) and (7.17). Since e(G)=¢(H) and G is degree-majorised by H,
G must have the same degree sequence as H. Therefore, by theorem 7.8,
G =H. Also, since ¢(H) = &(Ta,), it follows (exercise 1.2.9) that H = T,,..
We conclude that G=T,, 0

Exercises

7.3.1 In a group of nine people, one person knows two of the others, two
people each know four others, four each know five others, and the
remaining two each know six others. Show that there are three
people who all know one another.

7.3.2 A certain bridge club has a special rule to the effect that four
members may play together only if no two of them have previously
partnered one another. At one meeting fourteen members, each of
whom has previously partnered five others, turn up. Three games are
played, and then proceedings come to a halt because of the club rule.
Just as the members are preparing to leave, a new member, unknown
to any of them, arrives. Show that at least one more game can now

be played.
- 7.3.3 (a) Show that if G is snmple and 8>v2/4 then G contains a
- triangle.

(b) Find a simple graph G with ¢ =[v?/4] that contains no triangle.

(c)* Show that if G is simple and not bipartite with £>
((v—1)’/4)+ 1, then G contains a triangle.

(d) Find a simple non- bipartite graph G with & =[(v—1)*/4]+1
that contains no triangle. | (P. Erdos)

7.3.4 (a)* Show that if G is snmple andZ( (v)) (m —1)(v), then G
contains K, m(m>2) vev
(m—1)hy?

) | Z, then G

(b) Deduce that if G is simple and &>
contains K, ..(m=2). _
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(c) Show that, given a set of n points in the plane, the number of
pairs of points at distance exactly 1 is at most niy2+n/4.

1/m 2-1/m
(m = 1)2 +(m 21)v then G

7.3.5 Show that if G is simple and &>

contains K m.

APPLICATIONS

7.4 SCHUR'S THEOREM

Consider the partition ({1, 4, 10, 13}, {2,3,11,12}, {5,6,7,8,9}) of the set
of integers {1, 2, ..., 13}. We observe that in no subset of the partition are
there integers x, y and z (not necessarily distinct) which satisfy the equation

x+y=1z (7.19)

Yet, no matter how we partition {1, 2,...,14} into three subsets, there
always exists a subset of the partition which contains a solution to (7.19).
Schur (1916) proved that, in general, given any positive integer n, there
‘exists an integer f, such that, in any partition of {1, 2, ..., f.} into n subsets,
there is a subset which contains a solution to (7.19). We shall show how
Schur’s theorem follows from the existence of the Ramsey numbers r,
(defined in exercise 7.2. 3).

Theorem 7.10 Let (S, S,,...,S.) be any partition of the set of integers
{1,2,...,r}. Then, for some i, S; contains three integers x, y and z
satisfying the equation x+y = z.

Proof Consider the complete graph whose vertex set is {1,2,...,r.}.
Colour the edges of this graph in colours 1,2,...,n by the rule that the
edge uv is assigned colour j if and only if |u —v|€ S;. By Ramsey’s theorem
(7.7) there exists a monochromatic triangle; that is, there are three vertices
a, b and ¢ such that ab, bc and ca have the same colour, say i. Assume,
without loss of generality that a>b>c¢ and write x=a—-b, y=b—c and
z=a-c. Then x,y,zeS;and x+y=2 [

Let s, denote the least integer such that, in any partition of {1,2, ..., s,}
into n subsets, there is a subset which contains a solution to (7.19). It can be
easily seen that s, =2, s, =5 and s; = 14 (exercise 7.4.1). Also, from theorem
7.10 and exercise 7.2.3 we have the upper bound

Sn = r.,<[n' e]+1

Exercise 7.4.2b provides a lower bound for s..
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Exercises

7.4.1 Show that s,=2, s,=35 and s;=14.
7.4.2 (a) Show that s,=3s,.,—1.
(b) Using (a) and the fact that s;= 14, show that s, =3(27(3)">+1).
(A better lower bound has been obtained by Abbott and Moser,
1966.) '

7.5 A GEOMETRY PROBLEM

The diameter of a set S of points in the plane is the maximum distance
“between two points of S. It should be noted that this is a purely geometric
notion and is quite unrelated to the graph-theoretic concepts of diameter
and distance. |

We shall discuss sets of diameter 1. A set of n points determines (;)

distances between pairs of these points. It is intuitively clear that if n is
‘large’, then some of these distances must be ‘small’. Therefore, for any d
between 0 and 1, we can ask how many pairs of points in a set
{x1, X2, ..., xa} of diameter 1 can be at distance greater than d. Here, we
shall present a solution to one special case of this problem, namely when
d=1/V2.

As an illustration, consider the case n = 6. We then have six points x;, x.,
X3, X4, Xs and xs. If we place them at the vertices of a regular hexagon so that
the pairs (x1, x4), (x2, xs) and (xs, x¢) are at distance 1, as shown in figure
7.4a, these six points constitute a set of diameter 1.

It is easily calculated that the pairs (x1, x2), (X2, X3), (X3, X4), (X4, Xs), (Xs, Xs)
and (xs, x,) are at distance 1/2, and the pairs (x,, x3), (X2, X4), (X3, Xs), (X4, Xs),
(xs, x1) and (xs, x;) are at distance v3/2. Since v3/2>+/2/2 = 1/v/2, there are
nine pairs of points at distance greater than 1/v/2 in this set of diameter 1.

X X2

(a)
Figure 7.4
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However, nine is not the best that we can do with six points. By placing the
points in the configuration shown in figure 7.4b, all pairs of points except
(x1, X2), (x3, x4) and (xs, Xe) are at distance greater than 1/+v/2. Thus we have
twelve pairs at distance greater than 1/v/2; this is, in fact, the best we can do.
The solution to the problem in general is given by the following theorem.

Theorem 7.11 If {xi, X2,..., xa} is a set of diameter 1 in the plane, the
maximum possible number of pairs of points at distance greater than 1/v2 is
[n?/3]. Moreover, for each n, there is a set {xi, xs, . . ., X} of diameter 1 with
exactly [n?*/3] pairs of points at distance greater than 1/v2.

Proof Let G be the graph defined by

V(G)={x1, X2, ..., Xa}
and
E(G)={xux;| d(x:, x;)>1/¥2}

where d(x;, x;) here denotes the euclidean distance between x; and x;. We
shall show that G cannot contain a K,. .

First, note that any four points in the plane must determine an angle of at
least 90°. For the convex hull of the points is either (a) a line, (b) a triangle,
or (c) a quadrilateral (see figure 7.5). Clearly, in each case there is an angle
xiX;x. of at least 90°. 4

Now look at the three points x;, x;, xx which determine this angle. Not all
the distances d(x;, x;), d(x;, x«) and d(x;, x,) can be greater than 1/v2 and
less than or equal to 1. For, if d(x;,x;)>1/v2 and d(x;, x,)>1/v/2, then
d(x;, xx)>1. Since the set {x1, X3, ..., X.} is assumed to have diameter 1, it
follows that, of any four points in G, at least one pair cannot be joined by an
~edge, and hence that G cannot contain a K,. By Turan’s theorem (7.9)

e(G)=e(Ts.)=[n?/3]

One can construct a set {xi, Xz, . .. , X.} of diameter 1 in which exactly

Xy

(a) ~(b) (c)

Figure 7.5
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+  Figure 7.6

[n?/3] pairs of points are at distance greater than 1/v2 as follows. Choose r
such that 0<r<(1-— l/\/2)/4, and draw three circles of radius r whose
centres are at a distance of 1—2r from one another (figure 7.6). Place
X1, . . ., X[n3] in ONeE circle, X(w3+1, . . ., X203 in another, and X{an3p+1, . .., Xa in
the third, in such a way that d(x,, x,) = 1. This set clearly has diameter 1.
Also, d(xi, x;)>1/v2 if and only if x; and x; are in different circles, and so
there are exactly [n?/3] pairs (x;, x;) for which d(x;, x;)>1/v/2 o

Exercises
7.5.1* Let {xi, X2, ..., X.} be a set of diameter 1 in the plane.

(a) Show that the maximum possible number of pairs of points at
distance 1 is n. '

(b) Construct a set {x1, x2,...,x.} of diameter 1 in the plane in
which exactly n pairs of points are at distance 1. (E. Pannwitz)

7.5.2 A flat circular city of radius six miles is patrolled by eighteen police
cars, which communicate with one another by radio. If the range of a
radio is nine miles, show that, at any time, there are always at least
two cars each of which can communicate with at least five other cars.
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