8 Vertex Colourings

8.1 CHROMATIC NUMBER

In chapter 6 we studied edge colourings of graphs. We now turn our
attention to the analogous concept of vertex colouring.

A k-vertex colouring of G is an assignment of k colours, 1,2,...,k, to

the vertices of G; the colouring is proper if no two distinct adjacent vertices
have the same colour. Thus a proper k-vertex colouring of a loopless graph
G is a partition (Vy, Va, ..., V) of V into k (possibly empty) independent
sets. G is k-vertex-colourable if G has a proper k-vertex colouring. It will
be convenient to refer to a ‘proper vertex colouring’ as, simply, a colouring
and to a ‘proper k-vertex colouring’ as a k-colouring; we shall similarly
abbreviate ‘k-vertex-colourable’ to k-colourable. Clearly, a graph is k-
colourable if and only if its underlying simple graph is k-colourable.
Therefore, in discussing colourings, we shall restrict ourselves to simple
~graphs; a simple graph is 1-colourable if and only if it is empty, and
2-colourable if and only if it is bipartite. The chromatic number, x(G), of G
is the minimum k for which G is k-colourable; if x(G)=k, G is said to be
k-chromatic. A 3-chromatic graph is shown in figure 8.1. It has the indicated
‘3-colouring, and is not 2-colourable since it is not bipartite.

It is helpful, when dealing with colourings, to study the properties of a
special class of graphs called critical graphs. We say that a graph G is critical
if x(H)<x(G) for every proper subgraph H of G. Such graphs were first
investigated by Dirac (1952). A k-critical graph is one that is k-chromatic
and critical; every k-chromatic graph has a k-critical subgraph. A 4-critical
graph, due to Grétzsch (1958), is shown in figure 8.2. |

An easy consequence of the definition is that every critical graph is
connected. The following theorems establish some of the basic properties of
critical graphs.

Theorem 8.1 If G is k-critical, then § =k —1.

Proof By contradiction. If possible, let G be a k-critical graph with
8 <k -1, and let v be a vertex of degree 8 in G. Since G is k-critical, G — v
is (k —1)-colourable. Let (V,, V,,..., Vi._;)-be a (k — 1)-colouring of G —v.
By definition, v is adjacent in G to 8§ <k —1 vertices, and therefore v must
be nonad;acent in G to every vertex of some V;. But then (V,, V,,..., V;U
{v},..., Vic))isa (k 1)-colouring of G, a contradiction. Thus § =k — 10
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Figure 8.1. A 3-chromatic gfaph

Corollary 8.1.1 Every k-chromatic graph has at least k vertices of degree
at least k —1.

Proof Let G be a k-chromatic graph, and let H be a k -critical subgraph
of G. By theorem 8.1, each vertex of H has degree at least k—1 in H, and
hence also in G. The corollary now follows since H, being k-chromatic,
clearly has at least k vertices U |

Corollary 8.1.2 - For any graph G,
x=A+1

Proof This is an immediate consequence of corollary 8.1.1 [

Figure 8.2. The Grotzsch graph—a 4-critical graph
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Let S be a vertex cut of a connected graph G, and let the components of
G — S have vertex sets V,, V,, ..., V.. Then the subgraphs Gi= G[V US]
are called the S-components of G (see figure 8.3). We say that colourings of
Gi, Ga, ..., G, agree on S if, for every v eSS, vertex v is assigned the same
colour in each of the colourings.

Theorem 8.2 In a critical graph, no vertex cut is a clique.

Proof By contradiction. Let G be a k-critical graph, and suppose that G
has a vertex cut S that is a clique. Denote the S-components of G b
G, G, ..., G.. Since G is k-critical, each Gi; is (k — 1)-colourable. Furth: .
more, because S is a clique, the vertices in S must receive distinct colours in
any (k —1)-colouring of G;. It follows that there are (k —1)-colourings of
Gi, Gz, ..., G, which agree on S. But these colourings together yield a
(k —1)-colouring of G, a contradiction U .

Corollary 8.2 Every critical graph is a block.

Proof If v is a cut vertex, then {v} is a vertex cut which is also, trivially, a
clique. It follows from theorem 8.2 that no critical graph has a cut vertex;
equivalently, every critical graph is a block 0

Another consequence of theorem 8.2 is that if a k-critical graph G has a
2-vertex cut {u, v}, then u and v cannot be adjacent. We shall say that a
{u, v}-component G; of G is of type 1 if every (k — 1)-colouring of G; assigns
the same colour to u and v, and of type 2 if every (k —1)-colouring of G;
assigns different colours to u and v (see figure 8.4). |

Theorem 8.3 (Dirac, 1953) Let G be a k-critical graph with a 2-vertex cut
{u, v}. Then :

(i) G=G1UG:, where Gi is a {u, v}-component of type i (i=1,2), and

. UWJ
v A v v
(b) |

(a)

Figure 8.3. (a) G; (b) the {u, v}-components of G
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Type 1 Type 2

Figure 8.4

(i) both G,+uv and G, - uv are k-critical (where G- - uv denotes the graph
obtained from G, by identifying u and v).,

Proof (i) Since G is critical, each {u, v}-component of G is (k —1)-
colourable. Now there cannot exist (k —1)-colourings of these {u, v}-
components all of which agree on {u, v}, since such colourings would
together yield a (k —1)-colouring of G. Therefore there are two {u, v}-
components G, and G such that no (k - 1)-colouring of G, agrees with any
(k — 1)-colouring of G.. Clearly one, say G,, must be of type 1 and the
other, G, of type 2. Since G and G are of different types, the subgraph
G,UG:; of G is not (k —1)-colourable. Therefore, because G is critical, we
must have G = G1U Ga. '

(ii) Set H,= G,+ uv. Since G, is of type 1, Hi is k -chromatic. We shall
prove that H, is critical by showing that, for every edge e of Hi, Hi—e is
(k — 1)-colourable. This is clearly so if e = uv, since then Hi—e=Gi. Let e
be some other edge of H,. In any (k —1)-colouring of G —e, the vertices u
and v must receive different colours, since G is a subgraph of G —e. The
restriction of such a colouring to the vertices of G is a (k —1)-colouring of
H,—e. Thus G,+ uv is k-critical. An analogous argument shows that G, uv
is k-critical [ -

Corollary 8.3 Let G be a k-critical graph with a 2-vertex cut {u, v}. Then

d(u)+d(w)=3k-5 (8.1)

Proof Let G: be the {u, v}-component of type 1 and G: the {u, v}-
component of type 2. Set-Hi=G:i+uv and H:= G, uv. By theorems 8.3
and 8.1

dy,(u) + du, (V) =2k -2
and
de(W)Z k-1

where w is the new vertex obtained by identifying u and v.
It follows that

'dGn(u) + dGl(v) = 2k —4
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and

do,(u)+dg,(v)=k-1

These two inequalities yield (8.1) 0

Exercises

8.1.1
8.1.2

8.1.3

8.1.4

8.1.5

8.1.6*

8.1.7

8.1.8

8.1.9

8.1.10

8.1.11

8.1.12
8.1.13

Show that if G is simple, then y =v?/(v?—2¢).

Show that if any two odd cycles of G have a vertex in common,
then x <5.

Show that if G has degree sequence (d,, ds, . .., d,) with d,=d,=
...=d,, then x =max min {d,+1, i}.

(D. J. A. Welsh and M. B. Powell)
Using exercise 8.1.3, show that

(a) x={Qe)};
(b) x(G)+x(G)=v+1. (E. A. Nordhaus and J. W. Gaddum)
Show that x(G)=1+max 8(H), where the maximum is taken over
all induced subgraphs H of G. (G. Szekeres and H. S. Wilf)
If a k-chromatic graph G has a colouring in which each colour is
assigned to at least two vertices, show that G has a k-colouring of
this type. : (T. Gallai)
Show that the only 1-critical graph is K;, the only 2-critical graph is
K3, and the only 3-critical graphs are the odd k-cycles with k = 3.
A graph G is uniquely k-colourable if any two k-colourings of G
induce the same partition of V. Show that no vertex cut of a
k-critical graph induces a uniquely (k — 1)-colourable subgraph.
(a) Show that if u and v are two vertices of a critical graph G, then
N(u)Z N(v).
(b) Deduce that no k-critical graph has exactly k +1 vertices.
Show that

(a) x(GivG2)=x(G))+x(G2); ,
(b) Giv G, is critical if and only if both G, and G, are critical.

Let G, and G; be two k-critical graphs with exactly one vertex v in

common, and let vv, and vv, be edges of G, and G,. Show that the

graph (G, —vv,) U (G, —vv,)+v,0; is k-critical. (G. Hajés)

For n =4 and all n=6, construct a 4-critical graph on n vertices.

(a)* Let (X, Y) be a partition of V such that G[X] and GlY] are

both n-colourable. Show that, if the edge cut [X, Y] has at
most n—1 edges, then G is also n-colourable.

(P. C. Kainen)

(b) Deduce that every k-critical graph is (k — 1)-edge-connected.

' (G. A. Dirac)
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8.2 BROOKS’ THEOREM

The upper bound on chromatic number given in corollary 8.1.2 is sometimes
very much greater than the actual value. For example, bipartite graphs are
2-chromatic, but can have arbitrarily large maximum degree. In this sense
corollary 8.1.2 is a considerably weaker result than Vizing’s theorem (6.2).
There is another sense in which Vizing’s result is stronger. Many graphs G
satisfy x' =A+1 (see exercises 6.2.2 and 6.2.3). However, as is shown in the
following theorem due to Brooks (1941), there are only two types of graph
G for which x =A+1. The proof of Brooks’ theorem given here is by
Lovasz (1973).

Theorem 8.4 If G is a connected simple graph and is neither an odd cycle
nor a complete graph, then x =A.

Proof Let G be a k-chromatic graph which satisfies the hypothesis of the
theorem. Without loss of generality, we may assume that G is k-critical. By
corollary 8.2, G is a block. Also, since 1-critical and 2-critical graphs are
complete and 3-critical graphs are odd cycles (exercise 8.1.7), we have k = 4.

If G has a 2-vertex cut {u, v}, corollary 8.3 gives

2A=d(u)+d(w)=3k-5=2k—-1

This implies that x = k <4, since 2A is even.

Assume, then, that G is 3-connected. Since G is not complete, there are
three vertices u, v and w in G such that uv, vwe E and uwé E (exercise
1.6.14). Set u=v, and w =, and let v3, s, ..., 0, =V be any ordering of
the vertices of G —{u, w} such that each v; is adjacent to some v; with j>i.
(This can be achieved by arranging the vertices of G —{u, w} in nonincreas-
ing order of their distance from v.) We can now describe a A-colouring of
G: assign colour 1 to v;=u and v:=w; then successively colour
s, U4 - . . , Uy, €ach with the first available colour in the list 1,2,...,A. By
the construction of the sequence v, vz, . . ., V., €ach vertex v, 1=isv-1,is
adjacent to some vertex v; with j>1i, and therefore to at most A—1 vertices
v; with j<i. It follows that, when its turn comes to be coloured, v; is
adjacent to at most A—1 colours, and thus that one of the colours
1, 2, . .., A will be available. Finally, since v, is adjacent to two vertices of
colour 1 (namely v, and v.), it is adjacent to at most A -2 other colours and
can be assigned one of the colours 2,3,...,4 a

Exercises

82.1 Show that Brooks’ theorem is equivalent to the following statement:
if G is k-critical (k =4) and not complete, then 2e=v(k—1)+1.




Vertex Colourings 123

8.2.2 Use Brooks’ theorem to show that if G is loopless with A=3, then
x'=4. . '

8.3 HAJOS' CONJECTURE

A subdivision of a graph G is a graph that can be obtained from G by a
sequence of edge subdivisions. A subdivision of K, is shown in figure 8.5.
Although no necessary and sufficient condition for a graph to be k-
chromatic is known when k=3, a plausible necessary condition has been
proposed by Hajos (1961): if G is k-chromatic, then G contains a subdivi-
sion of K.. This is known as Hajds’ conjecture. It should be noted that the
condition is not sufficient; for example, a 4-cycle is a subdivision of K3, but
is not 3-chromatic.

For k =1 and k =2, the validity of Hajos’ conjecture is obvious. It is also
easily verified for k = 3, because a 3-chromatic graph necessarily contains an
odd cycle, and every odd cycle is a subdivision of K;. Dirac (1952) settled
the case k =4. |

Theorem 8.5 1If G is 4-chromatic, then G contains a subdivision of K.

Proof Let G be a 4-chromatic graph. Note that if some subgraph of G
contains a subdivision of K, then so, too, does G. Without loss of general-
ity, therefore, we may assume that G is critical, and hence that G is a block
with 8=3. If v=4, then G is K, and the theorem holds trivially. We
proceed by induction on v. Assume the theorem true for all 4-chromatic
graphs with fewer than n vertices, and let v(G)=n>4.

Suppose, first, that G has a 2-vertex cut {u, v}. By theorem 8.3, G has two
{u, v}-components G, and G., where G, + uv is 4-critical. Since »(G,+uv)<
v(G), we can apply the induction hypothesis and deduce that G,+ uv

Figure 8.5. A subdivision of K,
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contains a subdivision of K. It follows that, if P is a (u, v)-path in G-, then
G1 U P contains a subdivision of K4. Hence so, too, does G, since GiUP = G.

Now suppose that G is 3-connected. Since 8 =3, G has a cycle C of
length at least four. Let u and v be nonconsecutive vertices on C. Since
G —{u, v} is connected, there is a path P in G —{u, v} connecting the two
components of C —{u, v}; we may assume that the origin x and the terminus
y are the only vertices of P on C. Similarly, there is a path Q in G —{x, y}
(see figure 8.6).

If P and Q have no vertex in common, then CUPUQ is a subdivision of
K. (figure 8.6a). Otherwise, let w be the first vertex of P on Q, and let P’
denote the (x, w)-section of P. Then CUP'UQ is a subdivision of K, (figure
8.6b). Hence, in both cases, G contains a subdivision of K, 0

Hajos’ conjecture has not yet been settled in general, and its resolution is
known to be a very difficult problem. There is a related conjecture due to
Hadwiger (1943): if G is k-chromatic, then G is ‘contractible’ to a graph
which contains K.. Wagner (1964) has shown that the case k=5 of
Hadwiger’s conjecture is equivalent to the famous four-colour conjecture, to
be discussed in chapter 9.

Exercises

8.3.1* Show that if G is simple and has at most one vertex of degree less
than three, then G contains a subdivision of K.
8.3.2 (a)* Show that if G is simple with v=4 and e=2v—2, then G
contains a subdivision of K,.
(b) For v=4, find a simple graph G with & =2v—3 that contains
no subdivision of K.

Figure 8.6
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8.4 CHROMATIC POLYNOMIALS

In the study of colourings, some insight can be gained by considering not
only the existence of colourings but the number of such colourings; this
approach was developed by Birkhoff (1912) as a possible means of attacking
the four-colour conjecture.

We shall denote the number of distinct k-colourings of G by m(G); thus
m(G)>0 if and only if G is k-colourable. Two colourings are to be
regarded as distinct if some vertex is assigned different colours in the two
colourings; in other words, if (V,, V,..., V) and (V}, V3. .. , Vi) are two
colourings, then (Vy, V,, ..., V,)=(Vi, V4, ..., V]) if and only if V= V]
for 1 =i=k. For example, a triangle has the six distinct 3-colourings shown
in figure 8.7. Note that even though there is exactly one vertex of each
colour in each colouring, we still regard these six colourings as distinct.

If G is empty, then each vertex can be independently assigned any one of
the k available colours. Therefore m.(G)=k". On the other hand, if G is
complete, then there are k choices of colour for the first vertex, k—1
choices for the second, k —2 for the third, and so on. Thus, in this case,
m(G)=k(k—1)...(k—v+1). In general, there is a simple recursion for-
mula for m(G). It bears a close resemblance to the recursion formula for
7(G) (the number of spanning trees of G), given in theorem 2.8.

INININ NN N

Figure 8.7

Theorem 8.6 If G is simple, then'm(G) =m(G —e)—m(G - e) for any edge
e of G. '

Proof Let u and v be the ends of e. To each k-colouring of G —e that
assigns the same colour to u and v, there corresponds a k-colouring of G - e
in which the vertex of G-e formed by identifying u and v is assigned the
common colour of u and v. This correspondence is clearly a bijection (see
figure 8.8). Therefore m(G -e) is precisely the number of ‘k-colourings of
G —e in which u and v are assigned the same colour. '

Also, since each k-colouring of G —e that assigns different colours to u
and v is a k-colouring of G, and conversely, m(G) is the number of
k-colourings of G—e in which u and v are assigned different colours. It
follows that 7.(G —e) = m(G)+ m(G-e) O
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Figure 8.8

Corollary 8.6 For any graph G, m(G) is a polynomial in k of degree v,
with integer coefficients, leading term k* and constant term zero. Further-
more, the coefficients of m.(G) alternate in sign.

Proof By induction on &. We may assume, without loss of generality,
that G is simple. If € =0 then, as has already been noted, m(G) = k", which
trivially satisfies the conditions of the corollary. Suppose, now, that the
corollary holds for all graphs with fewer than m edges, and let G be a graph
with m edges, where m =1. Let e be any edge of G. Then both G —e and
G-e have m—1 edges, and it follows from the induction hypothesis that
there are non-negative integers ai, dz, . . ., &v-1 and by, b,, . .., b,—2 such that

v—1
m(G—e)=), (-1)""aik'+k”
i=1 i
and
v—2
m(G-e)=Y (1) bk + kT
. il

By theorem 8.6
m(G) = m(G —e)—m(G - €)

v—2

= Z (—l)v_i(ai+bi)ki—(a‘,_l+ 1)k""1+ k*

i=1

Thus G, too, satisfies the conditions of the corollary. The result follows by
the principle of induction O

By virtue of corollary 8.6, we can now refer to the function m(G) as the
chromatic polynomial of G. Theorem 8.6 provides a means of calculating the
chromatic polynomial of a graph recursively. It can be used in either of two
ways: '

(i) by repeatedly applying the recursion m(G) = m(G —e)—m(G -e), and
thereby expressing m(G) as a linear combination of chromatic polyno-
mials of empty graphs, or B . -

(i) by repeatedly applying the recursion m(G —e) = m(G)+ m(G - e), and




(i)
1rk(G) =

(i)
‘rrk(G) =

N - (KA AN-0)

2 + = k(k=1)(k=2)(k-3) +2k(k=1)(k=2) + k(k=1) = k(k=1)(k?~ 3k +3)

Figure 8.9. Recursive calculation of m.(G)
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thereby expressing m(G) as a linear combination of chromatic polyno-
mials of complete graphs.

Method (i) is more suited to graphs with few edges, whereas (ii) can be
applied more efficiently to graphs with many edges. These two methods are
illustrated in figure 8.9 (where the chromatic polynomial of a graph is
represented symbolically by the graph itself).

The calculation of chromatic polynomials can sometimes be facilitated by
the use of a number of formulae relating the chromatic polynomial of G to
the chromatic polynomials of various subgraphs of G (see exercises 8.4.5a,
8.4.6 and 8.4.7). However, no good algorithm is known for finding the
chromatic polynomial of a graph. (Such an algorithm would clearly provide
an efficient way to determine the chromatic number.)

Although many properties of chromatic polynomials are known, no one
has yet discovered which polynomials are chromatic. It has been conjectured
by Read (1968) that the sequence of coefficients of any chromatic polyno-
mial must first rise in absolute value and then fall—in other words, that no
coefficient may be flanked by two coefficients having greater absolute value.
However, even if true, this condition, together with the conditions of
corollary 8.6, would not be enough. The polynomial k*—3k>+3k? for
example, satisfies all these conditions, but still is not the chromatic polyno-
mial of any graph (exercise 8.4.2b).

‘Chromatic polynomials have been used with some success in the study of
planar graphs, where their roots exhibit an unexpected regularity (see Tutte,
1970). Further results on chromatic polynomials can be found in the lucid
survey article by Read (1968).

Exerczses
8.4.1 Calculate the chromatic polynomials of the following two graphs

8.4.2 (a) Show, by means of theorem 8.6, that if G is simple, then the
coefficient of k*™' in m(G) is —e.
(b) Deduce that no graph has chromatic polynomial k“—-3k’+3k2
843 (a) Show that if G is a tree, then m(G)=k(k—1)""".
(b) Deduce that if G is connected, then m(G)=k(k— 1)” !
show that equality holds only when G is a tree.
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8.4.4 Show that if G is a cycle of length n, then m(G)=
(k=1D"+(=D"(k—1).

8.4.5 (a) Show that "n'k(GVKl): kﬂ'k—x(G). )
(b) Using (a) and exercise 8.4.4, show that if G is a wheel with n

spokes, then m(G)=k(k —2)"+(—1)"k(k —2).

8.4.6 Show that if G,, G, ..., G, are the components of G, then m.(G)=
m(G1)m(Gs) . .. m(G.).

8.4.7 Show that if GNH is complete, then m(GUH)m(GNH)=
m(G)m(H).

8.4.8* Show that no real root of m.(G) is greater than v. (L. Lovész)

8.5 GIRTH AND CHROMATIC NUMBER

In any colouring of a graph, the vertices in a clique must all be assigned
different colours. Thus a graph with a large clique necessarily has a high
chromatic number. What is perhaps surprising is that there exist triangle-
free graphs with arbitrarily high chromatic number. A recursive construction
for such graphs was first described by Blanches Descartes (1954). (Her
method, in fact, yields graphs that possess no cycles of length less than six.)
We describe here an ‘easier construction due to Mycielski (1955).

Theorem 8.7 For any positive integer k, there exists a k-chromatic graph
containing no triangle.

Proof For k=1 and k =2, the graphs K, and K. have the required
property. We proceed by induction on k. Suppose that we have already
constructed a triangle-free graph Gy with chromatic number k =2. Let the
vertices of G, be vy, va, . .., v.. Form a new graph Gi.: from G as follows:
add n + 1 new vertices u;, Uy, ..., U, v, and then, for 1 =i <n, join u; to the
neighbours of v; and to v. For example, if G, is K, then G; is the 5-cycle and
G. the Grotzsch graph (see figure 8.10). :

The graph G, clearly has no triangles. For, since {ul, Uz, ..., Un} IS aN
independent set in Gi.1, no triangles can contain more than one w;; and if
uv;uli; were a triangle in Gy, then vivjuct; would be a triangle in Gy,
contrary to assumption.
~ We now show that G,., is (k+1)- chromatlc Note first, that Gy is
certainly (k + 1)-colourable, since any k-colouring of G can be extended to
a (k +1)-colouring of Gy.: by colouring u; the same as v;, 1 =i =n, and then
assigning a new colour to v. Therefore it remains to show that Gi.; is not
k-colourable. If possible, consider a k-colouring of Gy+; in which, without
loss of generality, v is assigned colour k. Clearly, no u; can also have colour
k. Now recolour each vertex v; of colour k with the colour assigned to ;.




130 , Graph Theory with Applications

Vi

Figure 8.10. Mycielski’s construction

This results in a (k — 1)-colouring of the k-chromatic graph G,. Therefore
G+ is indeed (k +1)-chromatic. The theorem follows from the principle of
induction 0 | | |

By starting with the 2-chromatic graph K,, the above construction yields,
for all k =2, a triangle-free k-chromatic graph on 3.2>—1 vertices.

We have already noted that there are graphs with girth six and arbitrary
chromatic number. Using the probabilistic method, Erdés (1961) has, in
fact, shown that, given any two integers k =2 and =2, there is a graph
with girth k and chromatic number l. Unfortunately, this application of the
probabilistic method is not quite as straightforward as the one given in
section 7.2, and we therefore choose to omit it. A constructive proof of
Erdos’ result has been given by Lovasz (1968). |

Exercises

8.5.1 Let G, G, ... be the graphs obtained from G,=K,, using
‘Mycielski’s construction. Show that each G is k-critical.
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8.5.2 (a)* Let G be a k-chromatic graph of girth at least six (k =2). Form
a new graph H as follows: Take (';V) disjoint copies of G and a

set S of kv new vertices, and set up a one-one correspondence
between the copies of G and the v-element subsets of S. For
each copy of G, join its vertices to the members of the corre-
sponding v-element subset of S by a matching. Show that H has
chromatic number at least k + 1 and girth at least six.

(b) Deduce that, for any k =2, there exists a k-chromatic graph of
girth six. (B. Descartes)

APPLICATIONS

8.6 A STORAGE PROBLEM

A company manufactures n chemicals C,, Cs, . .., C,. Certain pairs of these
chemicals are incompatible and would cause explosions if brought into
contact with each other. As a precautionary measure the company wishes to
partition its warehouse into compartments, and store incompatible chemicals
in different compartments. What is the least number of compartments into
which the warehouse should be partitioned?

We obtain a graph G on the vertex set {v,, vs,..., v} by joining two
vertices v; and v; if and only if the chemicals C; and C;j are incompatible. It is
easy to see that the least number of compartments into which the warehouse
should be partitioned is equal to the chromatic number of G.

The solution of many problems of practical interest (of which the storage
problem is one instance) involves finding the chromatic number of a graph.
Unfortunately, no good algorithm is known for determining the chromatic
number. Here we describe a systematic procedure which is basically
‘enumerative’ in nature. It is not very efficient for large graphs.

Since the chromatic number of a graph is the least number of independent
sets into which its vertex set can be partitioned, we begin by describing a
method for listing all the independent sets in a graph. Because every
independent set is a subset of a maximal independent set, it suffices to
determine all the maximal independent sets. In fact, our procedure first
determines complements of maximal independent sets, that is, minimal
coverings.

- Observe that a subset K of V is a minimal covering of G if and only if, for
each vertex v, either v belongs to K or all the neighbours of v belong to K
(but not both). This provides us with a procedure for finding minimal
coverings:

FOR EACH VERTEX v, CHOOSE EITHER 0, OR ALL THE NEIGHBOURS OF v

(8.2)
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To implement this procedure effectively, we make use of an algebraic
device. First, we denote the instruction ‘choose vertex v’ simply by the
symbol v. Then, given two instructions X and Y, the instructions ‘cither X
or Y’ and ‘both X and Y’ are denoted by X+ Y (the logical sum) and XY
(the logical product), respectively. For example, the instruction ‘choose
either u and v or v and w’ is written uv + vw. Formally, the logical sum and
logical product behave like U and N for sets, and the algebraic laws that
hold with respect to U and N also hold with respect to these two operations

(see exercise 8.6.1). By using these laws, we can often simplify logical
expressions; thus

(uv + vw)(u + vx) = uvu + uvvx + vwu + VWLX
= uv + uvx + vwu + owx

= uv + vwx

Consider, now, the graph G of figure 8.11. Our prescription (8.2) for
finding the minimal coverings in G is

(a+bd)(b+ aceg)(c+ bdef)(d'+ aceg)(e + bedf)(f +~ceg)(g +bdf) (8.3)
It can be checked (exercise 8.6.2) that, on simplification, (8.3) reduces to
aceg + bcdeg + bdef + bedf

In other words, ‘choose a, c, e and g or b, ¢, d, e and g or b, d, e and f or b,
¢, d and f°. Thus {q, c, ¢, g}, {b,c, d, e, g}, {b, d, e, f} and {b, c, d, f} are the
minimal coverings of G. On complementation, we obtain the list of all
maximal independent sets of G: {b, d, f}, {a, f}, {a, ¢, g} and {a, ¢, g}.

f

Figure 8.11




Vertex Colourings 133

Now let us return to the problem of determining the chromatic number of
a graph. A k-colouring (V,, V,, ..., V) of G is said to be canonical if V, is
a maximal independent set of G, V, is a maximal independent set of G — V,
Vs is a maximal independent set of G —(V,U V,), and so on. It is easy to see
(exercise 8.6.3) that if G is k-colourable, then there exists a canonical
k-colouring of G. By repeatedly using the above method for finding maxi-
mal independent sets, one can determine all the canonical colourings of G.
The least number of colours used in such a colouring is then the chromatic
number of G. For the graph G of figure 8.11, x = 3; a corresponding canonical
colouring is ({b, d, f}, {a, e, g}, {c}).

Christofides (1971) gives some improvements on this procedure.

Exercises

8.6.1 Verify the associative, commutative, distributive and absorption laws
for the logical sum and logical product.

8.6.2 Reduce (8.3) to aceg +bcdeg + bdef + bcdyf.

8.6.3 Show that if G is k-vertex-colourable, then G has a canonical
k-vertex colouring.
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