
Security Engineering: A Guide to Building Dependable Distributed Systems

13

CHAPTER

2

Protocols

It is impossible to foresee the consequences of being clever.
—CHRISTOPHER STRACHEY

If security engineering has a unifying theme, it is the study of security protocols.
Rather than starting off with a formal definition of a security protocol, I will give a
rough indication, then refine it using a number of examples. As this is an engineering
book, I will also give several examples of how protocols fail.

A typical security system consists of a number of principals such as people, compa-
nies, computers, and magnetic card readers, which communicate using a variety of
channels including phones, email, radio, infrared, and by carrying data on physical de-
vices such as bank cards and transport tickets. The security protocols are the rules that
govern these communications. They are typically designed so that the system will sur-
vive malicious acts such as people telling lies on the phone, hostile governments jam-
ming radio, or forgers altering the data on train tickets. Protection against all possible
attacks is often too expensive, so protocols are typically designed under certain as-
sumptions about the threats. Evaluating a protocol thus involves answering two ques-
tions. First, is the threat model realistic? Second, does the protocol deal with it?

Protocols may be extremely simple, such as swiping a badge through a reader in or-
der to enter a building; or they may be very complex. The world’s networks of cash
machines have dozens of protocols specifying how a cash machine interacts with cus-
tomers, how it talks to the bank that operates it, how the bank communicates with the
network operator, how money gets settled between banks, how encryption keys are set
up between the various principals, and what sort of alarm messages may be transmitted
(such as instructions to capture a card). All these protocols have to work together in a
large and complex system.

Often, a seemingly innocuous design feature opens up a serious flaw. For example,
in the past, a number of banks encrypted the customer’s PIN using a key known only to
their central computers and cash machines, and wrote it to the card magnetic strip. The
idea was to let the cash machine verify PINs locally, which saved on communications

Chapter 2: Protocols

14

and even allowed a limited service to be provided when the cash machine was offline.
After this system had been used for many years without incident, a programmer (who
was playing around with a card reader used in a building access control system) dis-
covered that he could alter the magnetic strip of his own bank card by substituting his
wife’s bank account number for his own. He could then take money out of her account
using the modified card and his own PIN. He realized that this also enabled him to loot
any other customer’s account, and he went on to steal hundreds of thousands over a
period of years. The affected banks had to spend millions on changing their systems.

So we need to look systematically at security protocols and how they fail. As they
are widely deployed and often very badly designed, I’ll give a number of examples
from different applications.

2.1 Password Eavesdropping Risks

Passwords are still the foundation on which much of computer security rests, as they
are the main mechanism used to authenticate human users to computer systems. In the
form of PINs, they are also used in many embedded systems, from cash machines
through mobile phones to burglar alarms. They raise many problems, such as the diffi-
culty people have in choosing passwords that are difficult to guess, or remembering
passwords generated randomly by the system.

We discuss the “human interface” problems of passwords in the next chapter. For
now, let us consider the limitations of embedded systems that use passwords. The typi-
cal application is the remote control used to open your garage or to unlock the doors of
cars manufactured up to the mid-1990s. These primitive remote controls just broadcast
their 16-bit serial number, which also acts as the password.

An attack that became common was to use a “grabber,” a device that would record a
code and replay it later. These devices, seemingly from Taiwan, arrived on the market
in about 1995; they enabled thieves lurking in parking lots to record the signal used to
lock a car door and then replay it to unlock the car once the owner had left.

One countermeasure was to use separate codes for lock and unlock. But this is still
not ideal. First, the thief can lurk outside your house and record the unlock code before
you drive away in the morning; he can then come back at night and help himself. Sec-
ond, 16-bit passwords are too short. In the mid-1990s, devices appeared that could try
all possible codes one after the other. A code would be found on average after about
215 tries, which at 10 per second would take less than an hour. A thief operating in a
parking lot with a hundred vehicles within range could be rewarded in less than a min-
ute with a car helpfully flashing its lights.

Another countermeasure was to double the length of the password from 16 to 32
bits. The manufacturers proudly advertised “over 4 billion codes.” But this only
showed they hadn’t really understood the problem. There was still only one code (or
two codes) for each car, and although guessing was now impractical, grabbers still
worked fine.

Using a serial number as a password has a further vulnerability in that there may be
many people who have access to it. In the case of a car, this might mean all the dealer
staff and, perhaps, the state motor vehicle registration agency. Some burglar alarms

Security Engineering: A Guide to Building Dependable Distributed Systems

15

have also used serial numbers as master passwords; this is even worse, as the serial
number may appear on the order, the delivery note, the invoice, and all the other stan-
dard paperwork.

Simple passwords are sometimes the appropriate technology, even when they double
as serial numbers. For example, my monthly season ticket for the swimming pool sim-
ply has a barcode. I’m sure I could make a passable forgery with our photocopier and
laminating machine, but the turnstile is attended and the attendants get to know the
“regulars,” so there is no need for anything more expensive. My cardkey for getting
into the laboratory where I work is slightly harder to forge, as it uses an infrared bar-
code. Again, this is probably quite adequate—our more expensive equipment is in
rooms with additional door locks. We’ll discuss passwords in more detail in Chapter 3.
But for things that lots of people want to steal, like cars, a better technology is needed.
This brings us to cryptographic authentication protocols.

2.2 Who Goes There? Simple Authentication

A simple example of an authentication device is an infrared token used in some multi-
storey parking garages to enable subscribers to raise the barrier. This first transmits its
serial number and then transmits an authentication block that consists of the same se-
rial number, followed by a random number, all encrypted using a key that is unique to
the device.

I will postpone discussion of how to encrypt data and what properties the cipher
should have; here, I will simply use the notation {X}K for the message X encrypted un-
der the key K. Then the protocol between the access token in the car and the parking
garage can be written as:

T Æ G : T, {T, N}KT

This is the standard protocol engineering notation, and can be a bit confusing at first,
so we’ll take it slowly.

The in-car token sends its name, T, followed by the encrypted value of T concate-
nated with N, where N stands for “number used once,” or nonce. The purpose of nonce
is to assure the recipient that the message is fresh, that is, it is not a replay of an old
message that an attacker observed. Verification is simple: the parking garage server
reads T, gets the corresponding key, KT, deciphers the rest of the message, checks that
the plaintext contains T, and, finally, that the nonce N has not been seen before.

One reason many people get confused is that to the left of the colon, T identifies one
of the principals (the token that represents the subscriber), whereas to the right it
means the name (that is, the serial number) of the token. Another cause of confusion is
that once we start discussing attacks on protocols, we can suddenly start finding that
the token T’s message intended for the parking garage G was actually intercepted by
the freeloader F and played back at some later time. So the notation is unfortunate, but
it’s too thoroughly entrenched now to change easily. Professionals often think of the T
Æ G to the left of the colon as simply a hint of what the protocol designer had in mind.

The term nonce can mean anything that guarantees the freshness of a message. A
nonce may, according to the context, be a random number, a serial number, or a ran-
dom challenge received from a third party. There are subtle differences between the

Chapter 2: Protocols

16

three approaches, such as in the level of resistance they offer to various kinds of replay
attack. (We’ll discuss these later.) But in very low-cost systems, the first two predomi-
nate, as it tends to be cheaper to have a communication channel in one direction only.

Key management in such devices can be simple. A typical garage token’s key KT is
simply its serial number encrypted under a global master key, KM, known to the cen-
tral server:

KT = {T}KM

This is known as key diversification. It gives a very simple way of implementing ac-
cess tokens, and is very widely used in smartcard-based systems as well. But there is
still plenty of room for error.

At least two manufacturers have made the mistake of only checking that the nonce is
different from last time, so that, given two valid codes A and B, the series ABABAB. . .
was interpreted as a series of independently valid codes. In one car lock, the thief could
open the door by replaying the last-but-one code. Another example comes from the
world of prepayment utility meters. Over a million households in the United Kingdom,
plus many millions in developing countries, have an electricity or gas meter designed
so that they can purchase encrypted tokens to take home and insert into the meter,
which then dispenses the purchased quantity of electricity or gas. One electricity meter
widely used in South Africa checked only that the nonce in the decrypted command
was different from last time. So the customer could charge the meter up to the limit by
buying two low-value power tickets and then repeatedly feeding them in one after the
other [39].

The question of whether to use a random number or a counter is not as easy as it
might seem [195]. With random numbers, the lock has to remember a reasonable num-
ber of past codes. There’s also the valet attack; someone who has temporary access to
the token—such as a valet parking attendant—can record a number of access codes and
replay them later to steal your car.

The problem with counters is maintaining synchronization. A key may be used for
more than one lock, and may also be activated by jostling against something in your
pocket (I once took an experimental token home where it was gnawed by my dogs). So
there has to be a way to recover after the counter has been incremented hundreds or
possibly even thousands of times. This can be turned to advantage by allowing the lock
to “learn,” or synchronize on, a key under certain conditions; but the details are not
always designed thoughtfully. One common product uses a 16-bit counter, and allows
access when the counter value that is deciphered is the last valid code incremented by
no more than 16. To cope with cases where the token has been used more than 16 times
elsewhere (or chewed by a family pet), the lock will open on a second press, provided
that the counter value has been incremented between 17 and 32,767 times since a valid
code was entered (the counter rolls over so that 0 is the successor of 65,535). This
opens it to a replay attack, because someone only needs six access codes—say for val-
ues 0, 1, 20,000, 20,001, 40,000 and 40,001 to break the system completely.

So designing even a simple token authentication mechanism is not straightforward.
There are many attacks that do not involve “breaking” the encryption. Such attacks are
likely to become more common as cryptographic authentication mechanisms prolifer-
ate.

Security Engineering: A Guide to Building Dependable Distributed Systems

17

An example that may become contentious is accessory control. It is common for the
makers of games consoles to build in challenge-response protocols to prevent software
cartridges or other accessories being used with their product unless a license fee is
paid. This practice is spreading. According to one vendor of authentication chips, some
printer companies have begun to embed authentication in printers to ensure that genu-
ine toner cartridges are used. If a competitor’s product is loaded instead, the printer
will quietly downgrade from 1200 dpi to 300 dpi. In mobile phones, much of the profit
is made on batteries, and authentication protocols can be used to spot competitors’
products so they can be drained more quickly. (I wonder how long it will be before the
research that toner cartridge and battery manufactures will do to defeat these systems
will hit the street in the form of better car theft tools?)

2.2.1 Challenge and Response

The most modern car door locks use a more sophisticated two-pass protocol, often
called challenge-response. As the car key is inserted into the steering lock, the engine
management unit sends a challenge, consisting of a random n-bit number to the key
using a short-range radio signal. The car key computes a response by encrypting the
challenge. In this way, writing E for the engine controller, T for the transponder in the
car key, K for the cryptographic key shared between the transponder and the engine
controller, and N for the random challenge, the protocol may look something like:

E Æ T : N
T Æ E : {T, N}K

This is still not bulletproof. In one system, the random numbers generated by the en-
gine management unit turned out to be rather predictable, so it was possible for a thief
to interrogate the key in the car owner’s pocket, as he passed, with the anticipated next
challenge.

In fact, most of the widely used software products that incorporate encryp-
tion—including Kerberos, Netscape, and PGP—have been broken at some time or an-
other because their random-number generators weren’t random enough [340, 256]. The
fix used varies from one application to another. It’s possible to build hardware random-
number generators using radioactive decay, but this isn’t common because of environ-
mental concerns. There are various sources of randomness that can be used in large
systems such as PCs; for example, it’s possible to use the small variations in the rota-
tional velocity of the hard disk caused by air turbulence [225]. Practical systems for
PCs often mix the randomness available from a number of environmental sources, such
as network traffic and keystroke timing, and from internal system sources [363]; the
way these sources are combined is often critical [447]. But in a typical embedded sys-
tem such as a car lock, the random challenge is generated by encrypting a counter us-
ing a special key that is kept inside the device, and not used for any other purpose.

Locks are not the only application of challenge-response protocols. Many organiza-
tions—including most U.S. banks, many phone companies, and a number of defense
agencies—issue their staff password generators that enable them to log on to corporate
computer systems [808]. These may look like calculators (and even function as calcu-
lators) but their main function is as follows: When you want to log in to a machine on
the network, you call up a logon screen and are presented with a random challenge of

Chapter 2: Protocols

18

maybe seven digits. You key this into your password generator, together with a PIN of
maybe four digits. The device encrypts these 11 digits using a secret key shared with
the corporate security server, and displays the first seven digits of the result. You enter
these seven digits as your password. (See Figure 2.1.) If you have a password generator
with the right secret key, and you enter the PIN right, and you type in the result cor-
rectly, then the corporate computer system lets you in. But if you do not have a genu-
ine password generator for which you know the PIN, your chance of logging on is
small.

Figure 2.1 Password generator use.

Formally, with S for the server, P for the password generator, PIN for the user’s per-
sonal identification number that bootstraps the password generator, U for the user, and
N for the random nonce:

S Æ U : N
U Æ P : N, PIN
P Æ U : {N, PIN}K

U Æ S : {N, PIN}K

(For a more detailed description of one of the more popular challenge-response
products, see [15, p. 211 ff].)

The encryption in challenge-response protocols does not always need to be inverti-
ble, and so in general it can be accomplished using a “one-way function” or “crypto-
graphic hash function,” which has the property that it’s less subject to export
restrictions than are encryption algorithms. (For its technical properties, see Chapter 5,
“Cryptology.”)

Security Engineering: A Guide to Building Dependable Distributed Systems

19

2.2.2 The MIG-in-the-Middle Attack

There is an interesting attack on challenge-response systems that appears to have
played a role in bringing peace to Southern Africa.

The ever increasing speeds of warplanes in the 1930s and 1940s, together with the
invention of the jet engine, radar and rocketry, made it ever more difficult for air de-
fence forces to tell their own craft apart from the enemy’s. This led to a serious risk of
“fratricide”—people shooting down their colleagues by mistake—and drove the devel-
opment of identify-friend-or-foe (IFF) systems. These were first fielded in World War
II, and in their early form enabled an airplane illuminated by radar to broadcast an
identifying number to signal friendly intent. In 1952, this system was adopted to iden-
tify civil aircraft to air traffic controllers and, worried about the loss of security once it
became widely used, the U.S. Air Force started a research programme to incorporate
cryptographic protection in the system. Nowadays, the typical air defense system sends
random challenges with its radar signals, and friendly aircraft have equipment and keys
that enable them to identify themselves with correct responses.

U.S. aircraft use an IFF system called ‘Mode XII,’ and systems are under develop-
ment for ground troops too. But the South African Air Force (SAAF) had been cut off
from Western arms supplies by sanctions and had to design its own system.

In the late 1980s, South African troops were fighting a war in northern Namibia and
southern Angola. The goals were to keep Namibia under white rule and to impose a
client government (UNITA) on Angola. Because the South African Defense Force con-
sisted largely of conscripts from a small, white population, it was essential to limit
casualties. So, most South African troops remained in Namibia on policing duties
while the fighting to the north was done by UNITA troops. The role of the SAAF was
twofold: to provide tactical support to UNITA by bombing targets in Angola, and to
ensure that the Angolans and their Cuban allies did not return the compliment in Na-
mibia.

Suddenly, Cuban aircraft broke through the South African air defenses and bombed
a South African camp in northern Namibia, killing a number of white conscripts. This
proof that its air supremacy had been lost helped the Pretoria government decide to
hand over Namibia to the insurgents—itself a huge step on the road to majority rule in
South Africa several years later. The raid may have been the last successful military
operation ever carried out by Soviet bloc forces.

Some years afterward, a former SAAF officer told me how the Cubans had pulled it
off. Several MIGs had loitered in southern Angola, just north of the South African air
defense belt, until a flight of SAAF Impala bombers raided a target in Angola. Then
the MIGs turned sharply and flew openly through the SAAF’s air defenses, which sent
IFF challenges. The MIGs relayed them to the Angolan air defense batteries, which
transmitted them at a SAAF bomber; the responses were relayed back in real time to
the MIGs, which retransmitted them and were allowed through (see Figure 2.2). Ac-
cording to my informant, this had a significant effect on the general staff in Pretoria.
Being not only outfought by black opponents, but actually outsmarted, was not con-
sistent with the world view they had held until then.

I have no independent confirmation on this story from the Angolan or Cuban side.
But the basic technique is at least as old as World War II, and illustrates the basic idea
behind an attack known to the cryptographic community as the man-in-the-middle or

Chapter 2: Protocols

20

(more recently) the middleperson attack. We will come across it again and again in
applications ranging from pay-TV to Internet security protocols. It even applies in on-
line gaming. As the mathematician John Conway once remarked, it’s easy to beat a
grandmaster at postal chess: just play two grandmasters at once, one as white and the
other as black, and relay the moves between them!

Figure 2.2 The MIG-in-the middle attack.

In many cases, middleperson attacks are possible but not economic. In the case of
car keys, it should certainly be possible to steal a car by having an accomplice follow
the driver, and electronically relay the radio challenge to you as you work the lock. But
it would be a lot simpler to just pick the driver’s pocket or mug him.

2.2.3 Reflection Attacks

Other interesting problems arise with mutual authentication, that is, when two princi-
pals have to identify each other. Suppose, that a simple challenge-response IFF system
designed to prevent anti-aircraft gunners attacking friendly aircraft also had to be de-

Security Engineering: A Guide to Building Dependable Distributed Systems

21

ployed in a fighter-bomber. Now suppose that the air force simply installed one of its
air gunners’ challenge units in each aircraft and connected it to the fire-control radar.
But now an enemy bomber might reflect a challenge back at our fighter, get a correct
response, and then reflect that back as its own response:

F Æ B : N
B Æ F : N
F Æ B : {N}K

B Æ F : {N}K

So we will want to integrate the challenge system with the response generator. It is
still not enough for the two units to be connected and share a list of outstanding chal-
lenges, as an enemy attacked by two of our aircraft might reflect a challenge from one
of them to be answered by the other. Likewise, it might not be acceptable to switch
manually from “attack” to “defense” mode during air combat.

There are a number of ways of stopping this reflection attack. In many cases, it is
sufficient to include the names of the two parties in the authentication exchange. In the
previous example, we might require a friendly bomber to reply to the challenge:

F Æ B : N
with a response such as:

B Æ F : {B, N}K

Thus, a reflected response {F, N} (or even {F¢, N} from the fighter pilot’s wingman)
could be detected.

This is a much simplified account of IFF but it serves to illustrate the different trust
assumptions that underlie an authentication protocol. If you send out a challenge N and
receive, within 20 milliseconds, a response {N}K, then, because light can travel a bit
under 3,730 miles in 20 ms, you know that there is someone with the key K within
2,000 miles. But that’s all you know. If you can be sure that the response was not com-
puted using your own equipment, you now know that there is someone else with the
key K within 2,000 miles. If you make the further assumption that all copies of the key
K are securely held in equipment that may be trusted to operate properly, and you see
{B, N}K, you might be justified in deducing that the aircraft with callsign B is within
2,000 miles. A clear understanding of trust assumptions and their consequences is at
the heart of security protocol design.

By now you might think that the protocol design aspects of IFF have been exhaus-
tively discussed. But we’ve omitted one of the most important problems—and one
which the designers of early IFF systems did not anticipate. As radar returns are weak,
the signal from the IFF transmitter on board an aircraft will often be audible at a much
greater range than the return. The Allies learned this the hard way; in January 1944,
decrypts of Enigma messages revealed that the Germans were plotting British and
American bombers at twice the normal radar range by interrogating their IFF. So many
modern systems authenticate the challenge as well as the response. The NATO mode
XII, for example, has a 32 bit encrypted challenge, and a different valid challenge is
generated for every interrogation signal, of which there are typically 250 per second.
Theoretically there is no need to switch off over enemy territory, but in practice an en-
emy who can record valid challenges can replay them as part of an attack.

There are many other aspects of IFF which are less protocol related, such as the dif-
ficulties posed by neutrals, error rates in dense operational environments, how to deal

Chapter 2: Protocols

22

with equipment failure, how to manage keys, and how to cope with multinational coa-
litions such as that put together for Operation Desert Storm. We’ll return to IFF in
Chapter 16. For now, the spurious challenge problem serves to reinforce an important
point: that the correctness of a security protocol depends on the assumptions made
about the requirements. A protocol that can protect against one kind of attack (being
shot down by your own side) but which increases the exposure to an even more likely
attack (being shot down by the other side) does more harm than good. In fact, the spu-
rious challenge problem became so serious in World War II that some experts advo-
cated abandoning IFF altogether, rather than taking the risk that one bomber pilot in a
formation of hundreds would ignore orders and leave his IFF switched on.

2.3 Manipulating the Message

One kind of middleperson attack is often treated as a separate category of attack. This
is where the attacker does not just reflect identification information, but manipulates
the message content in some way. We saw an example at the beginning of this chapter:
ATM cards designed for offline operation could be manipulated in order to steal
money. In effect, the magnetic card acted as a store-and-forward communication chan-
nel between the bank’s mainframe computer and its cash machines whenever the phone
lines (or the mainframe) were down.

Another example is when dishonest cabbies insert pulse generators in the cable that
connects their taximeter to a sensor in their taxi’s gearbox. The sensor sends pulses as
the prop shaft turns, which let the meter work out how far the taxi has gone. A pirate
device, which inserts extra pulses, makes the taxi appear to have gone further. We’ll
discuss such attacks at much greater length in Chapter 10, “Monitoring Systems.” Sec-
tion 10.4.

However, many application-level message manipulation attacks are really just vari-
ants on the replay attack, which we saw previously. They aren’t limited to low-grade
systems, such as remote door locks that can be defeated by recording and replaying a
fixed password. The Intelsat satellites used for international telephone and data traffic
have robust mechanisms to prevent a command being accepted twice—otherwise, an
attacker could repeatedly order the same maneuver to be carried out until the satellite
ran out of fuel [617].

Another example is a key log attack, which defeats many pay-TV systems (it’s also
known as delayed data transfer, or DDT). Typical pay-TV equipment has a decoder
which deciphers the video signal and a customer smartcard which generates the deci-
phering keys. These keys are recomputed several times a second using a one-way en-
cryption function applied to various “entitlement control messages” that appear in the
signal. Such systems can be very elaborate (and we’ll discuss some more complex at-
tacks on them later), but there is a very simple attack that works against a lot of them.
If the messages that pass between the smartcard and the decoder are the same for all
decoders (which is usually the case), then subscribers can record logs of all the keys
sent by their cards to their decoders, and post them to the Net. Someone without a sub-
scription, but who has video-recorded the enciphered program, can then download the
key log and use it to decipher the tape.

Security Engineering: A Guide to Building Dependable Distributed Systems

23

Changing pay-TV protocols to prevent DDT attacks can be difficult. The base of in-
stalled equipment is huge, and many of the obvious countermeasures have an adverse
effect on legitimate customers (such as by preventing them from videotaping movies).
Pay-TV companies generally ignore this attack, since connecting a PC to a satellite TV
decoder through a special hardware adaptor is something only hobbyists do; it is too
inconvenient to be a real threat to their revenue stream.

2.4 Changing the Environment

A very common cause of protocol failure is that the environment changes, so that as-
sumptions that were originally true no longer hold, and the security protocols cannot
cope with the new threats.

One nice example comes from the ticketing systems used by London Transport. In
the early 1980s, passengers devised a number of scams to cut the cost of commuting.
For example, a passenger who commuted a long distance from a suburban station to
downtown might buy two cheaper, short-distance season tickets—one between their
suburban station and a nearby one, and the other between their destination and another
downtown station. These would let them get through the barriers; on the rare occasions
they were challenged by an inspector in between, they would claim that they’d boarded
at a rural station that had a broken ticket machine.

A large investment later, the system had all the features necessary to stop such
scams: all barriers were automatic, tickets could retain state, and the laws had been
changed so that people caught without tickets got fined on the spot.

But then the whole environment changed, as parts of the system were privatized to
create dozens of rail and bus companies. Some of the new operating companies started
cheating each other, and there was nothing the system could do about it! For example,
when a one-day travel pass was sold, the revenue was distributed between the various
bus, train, and subway operators using a formula that depended on where it was sold.
Suddenly, the train companies had a motive to book all their ticket sales through the
outlet that let them keep the largest percentage. Chaos and litigation ensued.

The transport system’s problem was not new; it had been observed in the Italian ski
resort of Val di Fassa in the mid-1970s. There, one could buy a monthly pass for all the
ski lifts in the valley. An attendant at one of the lifts was observed with a deck of
cards, one of which he swiped through the reader between each of the guests. It turned
out that the revenue was divided up between the various lift operators according to the
number of people who had passed their turnstiles. So each operator sought to inflate its
own figures as much as it could [730].

Another relevant example comes from the world of cash machine fraud. In 1993 and
1994, Holland suffered an epidemic of phantom withdrawals; there was much contro-
versy in the press, with the banks claiming that their systems were secure, while many
people wrote to the papers claiming to have been cheated. Eventually, the banks were
shamed into actively investigating the claims, and noticed that many of the victims had
used their bank cards at a certain filling station near Utrecht. This was staked out and
one of the staff was arrested. It turned out that he had tapped the line from the card

Chapter 2: Protocols

24

reader to the PC that controlled it; his tap recorded the magnetic stripe details from
their cards while he used his eyeballs to capture their PINs [19].

Why had the system been designed so badly? Well, when the standards for managing
magnetic stripe cards and PINs were developed in the early 1980s, by organizations
such as IBM and VISA, the engineers had made two assumptions. The first was that
the contents of the magnetic strip—the card number, version number, and expiration
date—was not secret, while the PIN was [548]. (The analogy used was that the mag-
netic strip was the holder’s name and the PIN their password. We will have more to
say on the subtleties of naming later.) The second assumption was that bank card
equipment would only be operated in trustworthy environments, such as in a physically
robust automatic teller machine, or by a bank clerk at a teller station. So it was
“clearly” only necessary to encrypt the PIN on its way from the PIN pad to the server;
the magnetic strip data could be sent in clear from the card reader.

Both of these assumptions had changed by 1993. An epidemic of card forgery,
mostly in the Far East in the late 1980s, drove banks to introduce authentication codes
on the magnetic strips. Also, the commercial success of the bank card industry led
banks in many countries to extend the use of debit cards from ATMs to terminals in all
manner of shops. The combination of these two environmental changes undermined the
original system design: instead of putting a card whose magnetic strip contained no
security data into a trusted machine, people were putting a card that did rely on secu-
rity data in the strip into an untrusted machine. These changes had come about so
gradually, and over such a long period, that the industry didn’t see the problem com-
ing.

2.5 Chosen Protocol Attacks

Some people are trying to sell the idea of a “multifunction smartcard,” an authentica-
tion device that could be used in a wide range of transactions to save users having to
carry around dozens of different cards and keys.

This introduces some interesting new risks. Suppose that you use your card to sign
bank transactions; a common way of doing this would be to have the card compute a
digital signature on the transaction data. In fact, to save on computation, the signature
is usually computed on a random-looking 20-byte digest of the transaction. (We’ll dis-
cuss in Chapter 5 how to compute such digests.) Now suppose that this card can be
used by any other application that anyone cares to design. How might the Mafia design
a protocol to attack it?

Here’s one example. At present people visiting a Web porn site are often asked for
“proof of age,” which usually involves giving a credit card number, whether to the site
itself or to an age-checking service. If credit cards become able to do digital signatures,
it would be natural for the porn site to ask the customer to sign a random challenge as
proof of age. A porn site could then mount a “Mafia-in-the-middle“ attack, as shown in
Figure 2.3. The perpetrators wait until an unsuspecting customer visits their site, then
order something resellable (such as gold coins) from a dealer, playing the role of the
coin dealer’s customer. When the coin dealer sends them the transaction digest for sig-
nature, they relay it through their porn site to the waiting customer in the form of a

Security Engineering: A Guide to Building Dependable Distributed Systems

25

random challenge. The customer signs it, the Mafia gets the gold coins, and when
thousands of people suddenly complain about the huge charges to their cards at the end
of the month, the porn site has vanished—along with the gold [446].

Figure 2.3 The Mafia-in-the-middle attack.

This is a more extreme variant on the Utrecht scam. There are several lessons: using
crypto keys (or other authentication mechanisms) in more than one application can be
dangerous; and letting other people bootstrap their own application security off yours
can be downright foolish.

2.6 Managing Encryption Keys

The examples of security protocols that we have discussed so far are mostly about
authenticating a principal’s name, or application data such as the impulses driving a
taximeter. There is one further class of authentication protocols that is very important:
the protocols used to manage cryptographic keys. Until recently, such protocols were
largely used in the background to support other operations; much of the technology
was developed to manage the keys used by cash machines and banks to communicate
with each other. But now, systems such as pay-TV use key management to control ac-
cess to the system directly.

Authentication protocols are now also used in distributed computer systems for gen-
eral key management purposes, and, therefore are going to be very important. Kerberos
was the first such system to come into widespread use, and a variant of it is used in
Windows 2000. I’ll now lay the foundations for an understanding of Kerberos.

2.6.1 Basic Key Management

The basic idea behind key distribution protocols is that where two principals want to
communicate, they may use a trusted third party to effect an introduction.

I remarked that in the literature on authentication protocols, it is conventional to
give the principals human names to avoid getting lost in too much algebraic notation.
So I will call the two communicating principals Alice and Bob, and the trusted third
party Sam. But please don’t assume that we are talking about human principals. Alice
and Bob are likely to be programs, while Sam is a server; Alice might be a program in
a taximeter, Bob the program in a gearbox sensor, and Sam the computer at the taxi
inspection station.

Chapter 2: Protocols

26

Anyway, a simple authentication protocol could run as follows:

1. Alice first calls Sam and asks for a key for communicating with Bob.

2. Sam responds by sending Alice a pair of certificates. Each contains a copy of
a key, the first encrypted so only Alice can read it, and the second encrypted
so only Bob can read it.

3. Alice then calls Bob and presents the second certificate as her introduction.
Each of them decrypts the appropriate certificate under the key they share
with Sam, and thereby gets access to the new key. Alice can now use the key
to send encrypted messages to Bob, and to receive messages from him in re-
turn.

I mentioned that replay attacks are a known problem with authentication protocols,
so in order that both Bob and Alice can check that the certificates are fresh, Sam may
include a timestamp in each of them. If certificates never expire, there could well be
serious problems dealing with users whose privileges have been revoked.

Using our protocol notation, we could describe this as:
A Æ S : A, B
S Æ A : {A, B, KAB, T}KAS ’ {A, B, KAB, T}KBS

A Æ B : {A, B, KAB, T}KBS ’ {M}KAB

Expanding the notation, Alice calls Sam and says she’d like to talk to Bob. Sam
makes up a session key message consisting of Alice’s name, Bob’s name, a key for
them to use, and a timestamp. Sam encrypts this under the key he shares with Alice,
and with the key he shares with Bob. He gives both ciphertexts to Alice. Alice re-
trieves the key from the ciphertext that was encrypted to her, and passes on to Bob the
ciphertext encrypted for him. She now sends him whatever message she wanted to
send, encrypted using this key.

2.6.2 The Needham-Schroeder Protocol

Many things can go wrong. We will see plenty of examples later; for now, a famous
historical example will suffice. Many existing key distribution protocols are derived
from a protocol invented by Roger Needham and Mike Schroeder in 1978 [589]. It is
somewhat similar to the one we’ve just discussed, but uses nonces rather than time-
stamps. It runs as follows:

Message 1 A Æ S : A, B, NA

Message 2 S Æ A : {NA, B, KAB, {KAB, A}KBS} KAS

Message 3 A Æ B : {KAB, A}KBS

Message 4 B Æ A : {NB}KAB

Message 5 A Æ B : {NB–1}KAB

Security Engineering: A Guide to Building Dependable Distributed Systems

27

Here, Alice takes the initiative, and tells Sam: “I’m Alice; I want to talk to Bob, and
my random nonce is NA.” Sam provides her with a session key, encrypted using the key
she shares with him. This ciphertext also contains her nonce so she can confirm it’s not
a replay. He also gives her a certificate to convey this key to Bob. She passes the cer-
tificate to Bob, who then does a challenge-response to check that she is present and
alert.

There is a subtle problem with this protocol: Bob has to assume that the key KAB he
receives from Sam (via Alice) is fresh. This is not necessarily so: Alice could have
waited a year between steps 2 and 3. In many applications this may not be important; it
might even help Alice to cache keys against possible server failures. But if an oppo-
nent—say Charlie—ever got hold of Alice’s key KAS he could use it to set up session
keys with many other principals.

Suppose, for example, that Alice had also asked for and received a key to communi-
cate with Dorothy, and after Charlie stole her key he sent messages to Sam pretending
to be Alice, and got keys for Freddie and Ginger. He might also have observed mes-
sage 2 in her protocol exchanges with Dorothy, that is, when Sam sent her a key for
communicating with Dorothy, encrypted under the key KAS which is now compro-
mised. So now Charlie could impersonate Alice to Dorothy, and also to Freddie and
Ginger. So when Alice finds out that her key has been stolen, perhaps by comparing
message logs with Dorothy, she’d have to get Sam contact everyone for whom she’d
ever been issued a key, and tell them that her old key was no longer valid. She could
not do this herself as she doesn’t know anything about Freddie and Ginger. In other
words, revocation is a problem: Sam will probably have to keep complete logs of eve-
rything he has ever done, and these logs would grow in size forever unless the princi-
pals’ names expired at some fixed time in the future.

Over 20 years later, this example still generates controversy in the security protocols
community. The simplistic view is that Needham and Schroeder just got it wrong; the
view argued by Susan Pancho and Dieter Gollmann (for which I have much sympathy)
is that this is one more example of a protocol failure brought on by shifting assump-
tions [345, 600]. 1978 was a kinder, gentler world; computer security then concerned
itself with keeping the bad guys out, while nowadays we expect the bad guys to be us-
ers of the system. The Needham-Schroeder paper explicitly assumes that all principals
behave themselves, and that attacks come only from outsiders [589]. Under these as-
sumptions, the protocol remains sound.

2.6.3 Kerberos

An important practical derivative of the Needham-Schroeder protocol may be found in
Kerberos, a distributed access control system that originated at MIT and is now the
default authentication option in Windows 2000 [735]. Instead of a single trusted third
party, Kerberos has two kinds: an authentication server to which users log on, and a
ticket-granting server that gives them tickets allowing access to various resources such
as files. This enables more scalable access management. In a university, for example,
one might manage students through their halls of residence, but manage file servers by
departments; in a company, the personnel people might register users to the payroll

Chapter 2: Protocols

28

system, while departmental administrators manage resources such as servers and print-
ers.

First, Alice logs on to the authentication server using a password. The client soft-
ware in her PC fetches a ticket from this server, which is encrypted under her password
and which contains a session key KAS. Assuming she gets the password right, she now
controls KAS; to get access to a resource B, controlled by the ticket-granting server S,
the following protocol takes place. Its outcome is a key, KAB, with timestamp TS and
lifetime L, which will be used to authenticate Alice’s subsequent traffic with that re-
source:

A Æ S : A, B
S Æ A : {TS, L, KAB, B, {TS, L, KAB, A}KBS} KAS

A Æ B : {TS, L, KAB, A}KBS ’ {A, TA} KAB

B Æ A : {TA+1}KAB

Translating this into English: Alice asks the ticket-granting server for access to B. If
this is permissible, the ticket {TS, L, KAB, A}KBS is created containing a suitable key KAB

and given to Alice to use. She also gets a copy of the key in a form readable by her,
namely encrypted under KAS. She now verifies the ticket by sending a timestamp, TA, to
the resource, which confirms its aliveness by sending back the timestamp incremented
by one (this is a convention to indicate that the resource was able to decrypt the ticket
correctly and extract the key KAB).

The vulnerability of Needham-Schroeder has been fixed by introducing timestamps
rather than random nonces. But, as in most of life, we get little in security for free.
There is now a new vulnerability, namely that the clocks on our various clients and
servers might get out of synch; they might even be desynchronized deliberately as part
of a more complex attack.

2.7 Getting Formal

Subtle difficulties of the kind we have seen with the protocols just discussed, and the
many ways in which protection properties depend on quite narrow (and often unobvi-
ous) starting assumptions, have led researchers to apply formal methods to key distri-
bution protocols. The goal of this exercise was originally to decide whether a protocol
was right or wrong. Either it should be proved correct or an attack should be exhibited.
More recently, this has expanded to clarifying the assumptions that underlie a given
protocol.

There are a number of different approaches to verifying the correctness of protocols.
The best known is a logic of belief, the BAN logic, named after its inventors Mike Bur-
rows, Martín Abadi, and Roger Needham [148]. It reasons about what is reasonable for
a principal to believe, given sight of certain messages, timestamps, and so on. A sec-
ond is the random oracle model, which I touch on in Chapter 5, and which is favored
by many mathematicians working at the theoretical end of the subject; this appears to
be less expressive than logies of belief, but can tie protocol properties down to the
properties of the underlying encryption algorithms. Finally, a number of researchers
have applied mainstream formal methods such as CSP and Lotos.

Security Engineering: A Guide to Building Dependable Distributed Systems

29

Some history exists of flaws being found in protocols that had been proved correct
using formal methods; the following subsection offers a typical example.

2.7.1 A Typical Smartcard Banking Protocol

This system, currently called COPAC, is an electronic purse system used by VISA in
countries with poor telecommunications [35]. It was the first live financial system
whose underlying protocol suite was designed and verified using such formal tech-
niques, and in particular a variant of the BAN logic. A very similar protocol is now
also used in the “Geldkarte,” an electronic purse issued by banks in Germany to their
clients.

Transactions take place from a customer smartcard to a merchant smartcard. The
customer gives the merchant an electronic check with two authentication codes on it,
one that can be checked by the network and one that can be checked by the customer’s
bank. A simplified version of the protocol is as follows:

C Æ R : {C, NC}K

R Æ C : {R, NR, C, NC}K

C Æ R : {C, NC, R, NR, X}K

In English: the customer and the retailer share a key, K. Using this key, the customer
card encrypts a message containing its account number, C, and a customer transaction
serial number, NC. The retailer confirms its name, R, and its transaction serial number,
NR, as well as the information it has just received from the customer. The customer
now sends the electronic check, X, along with all the data exchanged so far in the pro-
tocol. One can think of the electronic check as being stapled to a payment advice with
the customer’s and retailer’s names, and their respective reference numbers. (The rea-
son for repeating all previous data in each message is to prevent message manipulation
attacks using cut-and-paste.)

2.7.2 The BAN Logic

The BAN logic provides a formal method for reasoning about the beliefs of principals
in cryptographic protocols. Its underlying idea is that we will believe that a message is
authentic if it is encrypted with a relevant key and it is also fresh (that is, generated
during the current run of the protocol). Further assumptions include that principals will
only assert statements they believe in, and that some principals are authorities for cer-
tain kinds of statement. This is formalized using a notation that includes:

• A |≡ X: A believes X, or, more accurately, that A is entitled to believe X.

• A |~ X: A once said X (without implying that this utterance was recent or not).

• A |fi X: A has jurisdiction over X; in other words, A is the authority on X, and
is to be trusted on it.

• A <| X: A sees X; that is, someone sent a message to A containing X in such a
way that A can read and repeat it.

Chapter 2: Protocols

30

• #X: X is fresh; that is, X contains a current timestamp or some information
showing that it was uttered by the relevant principal during the current run of
the protocol.

• {X}K: X encrypted under the key K, as in the rest of this chapter.

• A ´K B: A and B share the key K; in other words, it is an appropriate key for
them to use to communicate.

Other symbols deal, for example, with public key operations and with passwords,
but they do not concern us here.

These symbols are manipulated using a set of postulates, which include:

The message-meaning rule. States that if A sees a message encrypted under K, and K is
a good key for communicating with B, then A will believe that the message was once
said by B. (We assume that each principal can recognize and ignore his or her own
messages.) Formally:

A |≡ A ´K B, A <| {X}K

A |≡ B |~ X
The nonce-verification rule. States that if a principal once said a message, and the mes-

sage is fresh, then that principal still believes it. Formally:

A |≡ #X, A |≡ B |~ X

A |≡ B |≡ X

The jurisdiction rule. States that if a principal believes something, and is an authority
on the matter, then he or she should be believed. Formally, we write that:

A |≡ B |fi X, A |≡ B |≡ X

A |≡ X

In this notation, the statements on the top are the conditions; the one on the bottom
is the result. A number of further rules cover the more mechanical aspects of manipu-
lation; for example, a principal who sees a statement sees its components provided he
or she knows the necessary keys; and if part of a formula is known to be fresh, then the
whole formula must be.

2.7.3 Verifying the Payment Protocol

Assuming that the key, K, is available only to principals who can be trusted to execute
the protocol faithfully, formal verification is now straightforward. The trick is to start
from the desired result and work backward. In this case, we wish to prove that the re-
tailer should trust the check; that is, R |≡ X (the syntax of checks and cryptographic
keys is similar for our purposes here; a check is good if and only if it is genuine and
fresh).

Now R |≡ X will follow under the jurisdiction rule from R |≡ C |fi X (R believes C
has jurisdiction over X) and R |≡ C |≡ X (R believes C believes X).

The former condition follows from the hardware constraint, that no one except C
could have uttered a text of the form {C, ...}K.

The latter, that R |≡ C |≡ X, must be deduced using the nonce verification rule from
#X (X is fresh) and R |≡ C |~ X (R believes C uttered X).

Security Engineering: A Guide to Building Dependable Distributed Systems

31

#X follows from its occurrence in {C, NC, R, NR, X}K which contains the sequence
number NR, while R |≡ C |~ X follows from the hardware constraint.

This summary of the proof is, of necessity, telegraphic. If you want to understand
logics of authentication in detail, you should consult the original papers, and refer to
the recommendations for further reading at the end of this chapter.

2.7.4 Limitations of Formal Verification

Formal methods can be an excellent way of finding bugs in security protocol designs,
as they force the designer to make everything explicit and thus confront difficult de-
sign choices that might otherwise be fudged. However, they have their limitations, too.

One problem is in the external assumptions we make. For example, we assumed that
the key wasn’t available to anyone who might use it in an unauthorized manner. In
practice, this is not always true. Although the COPAC purse protocol is executed in
tamper-resistant smartcards, their software can have bugs; and in any case the tamper-
resistance they offer is never complete. (I explain this in Chapter 14, “Physical Tamper
Resistance.”) So the system has various fallback mechanisms for detecting and reacting
to card forgery, such as “shadow accounts,” which track the amount of money that
should be on each card and which are updated as transactions are cleared. It also has
lists of hot cards that are distributed to terminals; these are needed anyway for stolen
cards, and can be used for forged cards too.

Second, there are often problems with the idealization of the protocol. A well-known
example comes from the application of the BAN logic to protocols using public key
cryptography; a version of the message meaning rule which only applies to digital sig-
nature was erroneously thought to apply to decryption as well, leading to a positive
verification of a flawed protocol. Another example is given by a flaw found in an early
version of the COPAC system. There the key, K, actually consisted of two keys; the
encryption was done first with a “transaction key,” which was diversified (that is, each
card had its own variant), then again with a “bank key,” which was not diversified. The
former was done by the network operator and the latter by the bank that issued the
card. The reasons for this included dual control and to ensure that an attacker who
managed to drill the keys out of a single card would only be able to forge that card, not
make forgeries that would pass as other cards (and thus defeat the hot card mecha-
nism). But since the bank key was not diversified, it would be known to any attacker
who has broken a card. This means that the attacker could undo the outer wrapping of
encryption; and in some circumstances, message replay was possible. (The bank key
was diversified in later versions before any villains discovered and exploited the flaw.)

In this case there was no failure of the formal method, as no attempt was ever made
to verify the diversification mechanism. But it does illustrate a common problem in
security engineering, that vulnerabilities arise at the boundary between two protection
technologies. In this case, there were three technologies: the hardware tamper resis-
tance, the authentication protocol, and the shadow account/hot card list mechanisms.
Different protection technologies are often the domain of different experts who don’t
completely understand the assumptions made by the others. (That’s one reason security
engineers need a book such as this one: to help subject specialists understand each oth-
ers’ tools and to communicate with each other more effectively.)

Chapter 2: Protocols

32

For these reasons, people have explored alternative ways of assuring the design of
authentication protocols, including the idea of protocol robustness. Just as structured
programming techniques aim to ensure that software is designed methodically and that
nothing of importance is left out, so robust protocol design is largely about explicit-
ness. Robustness principles include that the interpretation of a protocol should depend
only on its content, not its context; thus, everything of importance (such as principals’
names) should be stated explicitly in the messages. There are other issues concerning
the freshness provided by serial numbers, timestamps, and random challenges, and on
the way encryption is used. If the protocol uses public key cryptography or digital sig-
nature mechanisms, there are further more technical robustness issues.

2.8 Summary

Passwords are not always an adequate means of protection, especially if they have to
be used more than once over an open communications channel. Simple authentication
protocols, whether one-pass (e.g., using random nonces) or two-pass (challenge-
response) are appropriate in many cases, and are fielded in all sorts of systems from
remote car-door locks through military IFF systems to authentication in distributed
computer systems.

It is difficult to design effective security protocols. They suffer from a number of
potential problems, including middleperson attacks, modification attacks, reflection
attacks, and replay attacks. These threats can interact with implementation vulnerabili-
ties such as poor random number generators. Using mathematical techniques to verify
the correctness of protocols can help, but it won’t catch all the bugs. Some of the most
pernicious failures are caused by creeping changes in the environment for which a
protocol was designed, so that the protection it gives is no longer adequate.

Research Problems

During the past few years, some people have thought that protocols had been “done,”
and that we should turn to new research topics. These people have been repeatedly
proved wrong by the emergence of new protocol applications, with a new crop of er-
rors and attacks to be explored. Key management protocols were a focus of research in
the early 1990s; during the mid-1990s, the flood of proposals for electronic commerce
mechanisms kept us busy; and in the later 1990s, a whole series of mechanisms pro-
posed for protecting copyright on the Internet provided us with targets.

Will we continue to develop faulty protocols that other people attack, or will we
manage to develop a methodology for designing them right first time? What are the
exact uses and limitations of formal methods (and other mathematical approaches, such
as the random oracle model)?

At the system level, how do we manage the tension between the principle that robust
protocols are generally those in which everything is completely specified and checked
(principals’ names, roles, security policy statement, protocol version, time, date, se-
quence number, security context, maker of grandmother’s kitchen sink) and the system

Security Engineering: A Guide to Building Dependable Distributed Systems

33

engineering principle that a good specification should not overconstrain the imple-
menter?

Further Reading

Research papers on security protocols are scattered fairly widely throughout the lit-
erature. The main introductory papers to read are probably the original Needham-
Schroeder paper [589]; the Burrows-Abadi-Needham authentication logic [148]; papers
by Martín Abadi and Roger Needham, and by Roger Needham and myself on protocol
robustness [2, 47]. There is also a survey paper which Roger and I wrote, and which
introduced the phrase ‘programming Satan’s computer’ (discussed by Bruce Schneier
in the foreword) as a metaphor for security protocol design [48]. In [449] there is an
analysis of a defective security protocol, carried out using three different formal meth-
ods. Beyond that, the proceedings of the security protocols workshops [183, 184] pro-
vide leads to current research; and many papers appear in a wide range of conferences.

