Papers on Smartcard Engineering

Ross Anderson
University Computer Laboratory
Pembroke Street, Cambridge CB2 3QG
Email: rjal4@cl.cam.ac.uk

This technical report contains two papers on a smartcard based electronic
wallet system which I helped to design. The first, ‘Making Smartcard Sys-
tems Robust’, appeared in the proceedings of Cardis 94 (now out of print):
the second, ‘UEPS - A Second Generation Electronic Wallet’, appeared in the
proceedings of ESORICS 92 (Springer LNCS v 648 pp 411-418). This system
has been fielded in a number of countries, including South Africa, Namibia and
Russia.

Its research interest stems a number of factors. Firstly, it was the first (and
as far as I am aware is still the only) banking system whose design was ver-
ified using formal techniques; secondly, the chaining mechanisms used in the
underlying transaction protocol prefigured much of the current work on cryp-
tographic protocol robustness; and thirdly, it shows that even using symmetric
cipher technology, it is possible to build a system with a strong degree of ac-
countability, and which can give users a high degree of confidence that they will
not be the victim of frauds by bank insiders.

Making Smartcard Systems Robust

Ross Anderson
University Computer Laboratory
Pembroke Street, Cambridge CB2 3QG
Email: rjal4@cl.cam.ac.uk

Abstract

Smartcards are often sold as the solution to almost all information
security problems. However, placing too much faith in any technology can
lead to credibility problems; recent ATM disputes in Norway - and the
problems experienced by the pay-TV industry - have shown that some
smartcard systems do fail. We discuss their failure modes, and show how
a prudent designer can minimise the risk of failure by making his system
robust. We explore the nature of robust security: it affects all levels of a
system, from security goals through the functionality and protocol levels
to the cryptographic algorithms and their interactions. Finally, we discuss
a fielded payment system, UEPS, which may provide a paradigm case of
how to build a robust smartcard application.

1 Introduction

One of the smartcard vendors’ most powerful arguments is the ease with which
magnetic strip cards can be forged. Forgery has not only caused direct losses
to card issuers and customers, but has led in some countries to serious embar-
rassment: highly publicised disputes between banks and their customers erode
confidence and cast doubt on the integrity of the whole payments system.

For example, phantom withdrawals from automatic teller machines (ATMs)
have been the main source of complaints to the UK financial sector ombuds-
men in recent years. Yet despite a report from a parliamentary commission of
enquiry into banking law which concluded that the system of personal identifi-
cation numbers was insecure [J], the ombudsmen have followed the banks’ line
that their systems are infallible and refused to award compensation [Al].

Some of the resulting court cases have been very controversial. In one
recent trial, a policeman who had complained about six phantom withdrawals
from his account was accused of attempting to obtain money by deception
and convicted. The resulting press outcry [E] unnerved the banking industry,
and the institution responsible publicly denied that it asked for a prosecution
(contrary to the evidence given by their fraud manager in court).

Bad publicity is the banker’s nightmare, and preventing it striking at pay-
ment systems is a goal of all central banks. However, there is nothing magic
about smartcards which prevents application designers making blunders which
break their systems’ security. This has happened with with satellite TV de-
coder systems and with prepayment electricity meters [AB]; it now appears to
have struck the financial sector too, with disputes in Norway which may be a
harbinger of problems to come.

2 Credibility Problems in Norway

In Norway, as in a number of other countries, the banks invested millions in
issuing their customers with smartcards, and are now quite adamant (at least
in public) that no debit can possibly be made to a customer account without
the actual card and PIN issued to the customer. Yet a number of thefts at the
University of Trondheim have cast serious doubt on their position.

In these cases, smartcards were stolen from offices on campus and used in
ATMs and shops in the town; the victims, who include highly credible witnesses
such as senior academic staff and overseas visitors, are quite certain that their
PINs could not have been compromised. In any case, the nearest ATM is several
kilometres away, so if the victims were observed while using their cards, then
the thief must have followed them a considerable distance.

The Norwegian banking ombudsman (Bankklagenemnda), when faced with
a complaint from one of the victims, asked the banks for technical details on
the system in use. The banking association (Bankforeningen) refused, claiming
that ‘an important part of the security in the card systems is that the routines
are not documented and publicly known. Such an independent investigation will
therefore reduce the level of security. Bankforeningen is therefore against letting
for instance a consultancy company acquire knowledge of the routines in order
to investigate them’ [BN].

The ombudsman then went to Norges Bank, the country’s central bank,
and asked it to investigate the system. Norges Bank agreed, but even it was
not provided with any technical information; Bankforeningen simply gave it
‘managerial’ assurances that the system was sound, which were passed on to the
ombudsman. He then used these assurances an an excuse to deny compensation
to the victim.

By now, the reader may be starting to wince, and will wince more when
told that the disputed transactions violated the card cycle limits: although only
NOK&5000 should have been available from ATMs and NOK6000 from eftpos,
the thief managed somehow to withdraw NOK18000. The extra NOK7000 was

refunded without any explanation.

3 The Nature of Civilian and Military Threats

Our studies of security failure in magnetic strip payment systems [Al] [A2]
showed that the vast majority of security failures which led to actual losses
occurred at the level of implementation or operation. The following diagram
may give a useful conceptual model: the five columns show the amount of
confidence available in cryptographic algorithms, protocols, operating systems,
applications and operational controls respectively, while the two horizontal lines
show the ‘military’ and ‘civilian’ threat levels - a capable motivated opponent
and an opportunistic opponent respectively.

military threat

civilian threat

nETH—ZOQH >
lalelelel le)-riye
nwEmHwn<wn 9o
Z20—=3>=Q— oo
rdelolo kg rloivie)

Algorithms We have a number of encryption algorithms which are thought
to be good (DES, IDEA, ...), but since certain government agencies knew
about differential cryptanalysis twenty years ago [C], there remains the
fear that one of these agencies might find a shortcut attack on our al-
gorithm. But while this may be a serious concern for military system
builders, it need not concern most commercial designers overmuch.

Protocols Thanks to formal methods such as the BAN logic [BAN], and to
robustness properties which will be described shortly, the protocol security
problem can be considered solved. This does not of course mean that
there are no weak protocols around; on the contrary, as the successes of
the BAN authors [AN] and the recent controversy over ISO 11166 [R]
[A3] showed, and recent attacks on satellite TV scrambling systems have
confirmed, there are plenty fielded systems which are insecure. However, a
diligent designer can now avoid such attacks completely by using publicly
available techniques.

Operating systems: Operating systems have also been extensively studied,
and (thanks to TCSEC and ITSEC) there are a number of products on the
market, ranging from commercial discretionary access control products
to military multilevel systems. Of course, military products are usually
too expensive and out of date to be used in commerce and industry;
and weaknesses are still found in military products from time to time.
However, experience shows that if one disregards viruses and worms, the
features of the operating system are almost never the main cause of real
attacks on commercial systems.

Applications: Here at last we come into the world of real commercial threats.
A large number of attacks on electronic payment systems have been due
to application programming blunders [A2], and it seems highly likely that
some such error is also responsible for the Norwegian problem. In military
systems, too, there may be attacks on cryptographic algorithms, but there
are many more attacks which result from application blunders [M1].

Operations: Operational blunders also cause many security failures; no mat-
ter how good the security technology, sloppy management can render it
useless. For example, in August 1993, my wife went into a branch of
a major English bank, and told them that she had forgotten her PIN;
they helpfully printed a replacement PIN mailer from a PC behind the
counter. This was not the branch at which our account is kept; no-one
knew her, and the only ‘identification’ she produced was her bank card
and our cheque book. By that time, banks in Britain had endured some
eighteen months of bad publicity about poor ATM security (with which
my name had been associated), and this particular bank had been a press
target since April of that year. With management this dreadful, it makes
no difference whether the card itself is magnetic or silicon based.

The moral is that if a customer is to get anything like full value from an
investment in smartcard technology - which will usually cost many millions -
then the application will have to be designed, implemented and managed in
a much more robust way than has often been the case in the past. Now that
VISA and MasterCard have agreed to move their enormous customer base from
magnetic strip cards to chip cards over the next six years, we are about to see
an investment whose sheer size may freeze certain aspects of the technology for
many years at the level achieved by about 1996. If the robustness aspects are
not got right, and the architectures adopted by banking networks are fragile,
then the industry’s credibility could be imperilled. Robustness should therefore
be an urgent concern of smartcard vendors.

4 The Nature of Robustness

The big question is therefore: how do we build robust applications using smart-
cards? Without this, the product adds little value. However, there has until
now been no generally accepted idea of what robust security consists of.

In the rest of engineering, the exact nature of robustness varies from one
discipline to another. Bridge builders know that most possible faults, such
as poor steel, contaminated concrete, or uneven weathering, just reduce the
structure’s breaking strain slightly; so the usual rule is to design a bridge so
that its theoretical breaking strain with optimal materials is six times what is
required, and to proof test samples of the actual construction materials to half
that, or three times the needed strength [P].

In aircraft engineering, on the other hand, many accidents are caused by
the failure of critical components, and so designers make extensive use of re-
dundancy. With very critical functions, this may extend to design diversity:
for example, a typical modern airliner will determine its flight attitude using
two electronic flight instrumentation systems, which use gyros driven by the
main power circuits; but if these both fail for some reason, there is a 1950’s
technology artificial horizon with pneumatic gyros, and a 1920’s vintage turn
and slip indicator driven by a battery.

But neither overdesign nor redundancy is enough for the secure systems
designer. Just using a number of weak encryption algorithms one after an-
other will not necessarily have the same effect as using a strong algorithm; and
the unthinking use of redundancy in computer systems can be dangerous, as
resilience can mask faults which would otherwise by found and fixed.

However, the fact that blunders are responsible for most real security failures
in both civilian and military computer systems shows that robustness is just
as much a problem as it is for people building bridges or aircraft. We might
expect it to be even harder to pin down to a general principle, since we have to
consider what it means at a number of levels. We will look at the algorithm,
protocol, application and management levels in turn.

4.1 Robustness of Algorithms and their Interactions

As we noted above, cryptographic algorithms are not the most pressing concern
of the commercial secure systems designer. We visit this topic briefly because
our work on algorithm interaction gave the insight that algorithm robustness is
about explicitness.

Various authors had looked at the problem of how we are to prevent un-
wanted interaction between cryptographic algorithms, such as between a hash
function and a digital signature algorithm. Since the Diffie Hellman paper in
1976 [DH], it had been recognised that hash functions should be one-way, in
that it is easy to work out A(M) from M but hard to find a suitable M given
only h(M). This was difficult to formalise, because of the implicit temporal
ordering, so a second property was proposed, of collision freedom: that it is
hard to find two different inputs M and M’ such that h(M) = h(M') [D].

For a number of years, cryptographers were content to stipulate that hash
function primitives should be one-way and collision free. Then in 1992, Okamoto
proposed a third primitive, correlation freedom: a function A is correlation free

if it is hard to find two different inputs M and M’ such that h(M) and h(M')
differ in only a few bits. He conjectured that correlation freedom was a strictly
stronger property than collision freedom.

Last year, we showed that this conjecture was true. In fact, we showed that
there are many properties which we might want a hash function to have, such as
multiplication freedom (we can’t find X, Y and Z such that h(X)h(Y) = h(Z))
and addition freedom (ditto h(X) + h(Y) = h(Z)), and we showed that these
properties were independent of each other by constructing functions which had
some freedom properties but not others [A4]. This gave us the insight that, at
the application level at least, we have to be explicit about the properties which
our application requires from any cryptographic primitives we use.

4.2 Robustness of Protocols and Operating Systems

Robustness in cryptographic protocols made its formal début in the academic
literature in May 1993: three papers appeared in which it was proposed as a
solution to the problem of designing authentication schemes.

1. At the 1993 Cambridge Workshop, Li Gong argued that most protocol
errors occur when people try to be smart, and called for a protocol equiv-
alent of structured programming. For example, by putting in the name
of the sender and the recipient of each message in a protocol, and by
insisting on freshness, most of the cut-and-paste attacks in the literature
could be prevented [G].

2. A month later, at Eurocrypt 93, Boyd and Mao suggested that a protocol
should be called robust if authenticating any message depends only on
information contained in the message itself or already in the possession
of the recipient, and that the purpose of a message in a robust protocol
should be capable of being deduced without knowledge of the context
[BM].

3. The following day, at Oakland 93, Woo and Lam proposed that protocols
be made robust by chaining successive steps, and developed a formal se-
mantics for protocols which are immune to cut-and-paste attacks (in their
terminology, such protocols possess the ‘correspondence’ property). They
argued that these are absolutely fundamental to proving other security
properties [WL1].

Each of these proposals, which appeared logically simultaneously, tackles
part of the problem. However, none of them is adequate on its own; protocol
failures are known which result from the lack of name, freshness and context
information within the security envelope. The interested reader is referred to
[AN] for examples.

Our approach to the problem is that explicitness is the proper organising
principle for security robustness. This is put forward in [A2], and draws on two

sources - firstly, the work on algorithm interaction mentioned in the previous
section, and secondly, the experience of a system which used robust protocols
and which we implemented in 1991 [A5]. We will discuss this system, UEPS,
in section 5 below.

Explicitness subsumes the above three proposals - lack of name, lack of
freshness and lack of context are all failures of explicitness. In each case, some
information - which both parties know implicitly - is not explicitly expressed
within the security envelope, and can thus be manipulated by an opponent.

Explicit protocols have been criticised as expensive [S]; and Woo and Lam
have recently experimented with starting from an explicit protocol and looking
to see what information can be safely taken out [WL2]. However, the philosoph-
ical point here is that optimisation is a process of replacing something which
works with something which almost works, but is cheaper; and if the ‘opti-
mised’ version is not cheaper at all, then the process is undesirable. In fact, the
implicit information in a cryptographic protocol (such as ‘this is message 3 in
a run of Kerberos version 6 subprotocol 17’) is already known to both parties,
so there is no added communication cost; and as most real protocols either use
fast symmetric ciphers, or use fast hash functions to reduce messages prior to
calculating a digital signature, it is quite unclear that there is ever a significant
computational cost either.

In fact, the protocols used in UEPS [A5] are efficient as well as robust.
When designing them, we bundled in everything for two reasons - firstly, to
save on code space and to avoid expanding the communications protocol (we
had limited ROM and very slow offline devices for inter-card transactions), and
secondly, to facilitate the formal verification of the protocol.

4.3 Application Program Robustness

Much of the robustness needed in application programs will be a matter for
software engineering. However, even here explicitness plays a significant role,
with many common methodologies emphasising the need to elicit requirements
in the most explicit possible form, to validate these by test cases or prototyping,
and to ensure that they are coded and tested properly. However, there are some
aspects of the application layer which deserve special attention.

Many older banking systems have the problem that application program-
mers have discretion over what security features to implement. Consider for
example the security modules used in networks of ATMs to encrypt personal
identification numbers [VSM]. These devices return a whole series of response
codes which may be significant to the security manager: for example, if a pro-
grammer starts making unauthorised experiments with live keys, he will prob-
ably give rise to a key parity error message.

It would thus clearly be prudent to monitor these response codes, and the
obvious solution is to write a device driver which intercepts all abnormal re-
sponse codes from the security module and brings them to the attention of the

audit or security staff. However, no institution we have seen implements proper
monitoring; as the system will ‘work’ without it, and as device drivers are tricky
to write, the job never gets done.

One of advantage of a trusted computing base (TCB), whether built from
smartcards or from security modules, is that we can design the TCB’s trans-
action set in such a way as that application programmers have to do all the
necessary checks. This was done in UEPS by chaining each message to the
next; thus a programmer who tries to cut corners by discarding some message
information will find that he cannot make the system work at all.

Of course, this strategy can be more productive with a distributed TCB,
such as we can implement with smartcards, as the checking can be made much
more pervasive. We can manage security state information, such as response
codes and certain aspects of transaction history, more intelligently where there
is a component of the TCB in every logical node of the network, rather than
just having one security processor attached to a mainframe which runs per-
haps a hundred security critical processes such as branch accounting, interbank
reconciliation and audit.

Suppose for example that we allow bank branch staff to initialise cards for
customers. In countries where poor telecommunications force us to work largely
offline we will typically have no choice but to do this; UEPS, for example,
uses a teller card to load some crypto keys and other initialisation data to the
customer card. Suppose we also expect that about 1% of our branch staff will
try to embezzle money in an average year [Al]; we might then decide to put
the issuing teller’s identity, not just on each card, but in every transaction as
well. In this way, we can provide a distributed audit system, and open new
possibilities for fraud detection.

The key point is that smartcards are objects which can retain security state;
and this state need not be limited to the customer’s account balance. A well
designed system will use it to provide much higher assurance of application
functionality than was previously available, and to ensure that partial, insecure
implementations do not work at all.

4.4 Robustness at the Management Level: Making Goals Ex-
plicit

As noted above, the major management mistake made by banks in the UK
and elsewhere was that they did not make their security goals explicit, and in
particular they did not recognise the need for a fair arbitration procedure. To
quote Tom Watson’s 1977 Oxford address:

‘One of the most important problems we face today, as techniques
and systems become more and more pervasive, is the risk of missing
that fine, human point that may well make the difference between
success and failure, fair and unfair, right and wrong ... no IBM
computer has an education in the humanities’ [W]

Quite simply, failures are inevitable, and if there is no mechanism to deal
with them, then the bank will have to choose between paying all claims and
paying none of them. The courts have forced US banks to take the former
course [JC], which leaves them reliant on ATM cameras to prevent malicious
claims; while banks in the UK and Norway opted for the latter - at the cost of
bad publicity, litigation and loss of public confidence.

Furthermore, when banks claim (as the Norwegians did) that their security
systems cannot withstand public scrutiny, this also shows that their security
goals were not properly thought through. Disclosure of evidence is one of the
most ingrained features of the legal systems in free societies - an accused per-
son has the right to see and to challenge every link in the chain of evidence
against him, and in most countries the requirements for discovery in civil cases
are hardly less strict. Every cryptographic system whose main purpose is to
establish liability must be built on the assumption that it will have to withstand
scrutiny by hostile expert witnesses in court [A6].

The danger of missing the fine human points seems to be especially acute
when designing smartcard based systems, as the technology seems impressive,
and the temptation to hubris is correspondingly strong.

4.5 Tying it All Together: Relating Goals to Mechanisms

Finally, we need to be very careful when following a line of reasoning from
goals - however well researched, human friendly, legal and thoroughly agreed
- to mechanisms. This part of the security design process is well known to be
fraught with danger.

Morris reports an interesting explicitness requirement imposed by the NSA
in its own internal evaluations [M2]. Each product must have not just an
operations manual describing its normal use, but also an attack manual which
describes every combination of technical attacks, blunders, and subversion of
personnel which could succeed in defeating it. The attack manual may be highly
classified and available only to a small number of evaluators, but it must exist,
and it must be comprehensive; if the evaluators can find any other significant
attacks, the product will be rejected.

This innovation may be valuable in the commercial world as well, and in
general, the explicitness principle can be propagated down through the design
in a structured way, using techniques developed by the safety critical systems
community [A1].

However, where the principal function of a cryptographic system is estab-
lishing liability, then the real test must be whether it can stand up in court
against hostile expert witnesses. Here, one needs standards of best industry
practice, as courts will use these to determine which party to a dispute has
been more negligent [A6]. For this reason, we will now discuss some of the
robustness features of UEPS.

5 Robust Payment Systems: Best Industry Practice

UEPS, the Universal Electronic Payment System, was designed during 1991
by systems house Net One for its client the Permanent Building Society in
Johannesburg, and implemented later that year; its purpose was to extend
modern banking services at low cost to South Africa’s black population.

The Permanent Building Society, which merged with Nedbank to become
NedPerm, had more black customers than any other financial institution in
South Africa; but most of these customers only had savings book accounts,
and the charges traditionally made for cheque clearance (up to R12 or about
$4) were so high relative to black incomes as to prevent the spread of cheque
accounts to this sector of the market.

It was felt that a new product delivery system was needed, which should
cater for point-of-sale transactions and keep costs as low as possible. However,
the country’s poor telecommunications meant that many transactions would
have to be carried out offline, and even if the telephone lines had been available,
online processing imposes fairly high costs on point-of-sale systems as very high
availability is required. Thus offline processing was chosen, and this prevented
the use of traditional magnetic stripe cards, as the forgery risk would have been
unacceptable. Finally, high levels of illiteracy suggested the use of PINs rather
than signatures to authorise transactions.

These requirements drove the design of UEPS, which has been a commercial
success. After a trial from 1991 - 1993 under NedPerm’s brand name ‘Megalink’,
during which there was no single case of fraud detected, it was adopted by all
four major South African banking groups with only minor changes. It is now
projected that there will be 2 million cards in issue by early 1995.

The system has been sold to other customers too. It is being introduced
by banks in the neighbouring country of Namibia, and a version of it is used
by South African Breweries to manage accounts with tavern and liquor store
owners. Most recently, after a year’s trial, it has been adopted by Sperbank, a
large savings bank in Russia, which plans to deploy it during February /March
1995 at 35 branches in 14 regions of the former Soviet Union.

The system relies on value transfer between smartcards. A customer loads
her card with money from a card held by a bank teller or installed in an ATM;
she then makes purchases by transferring value to a merchant card; and the
merchant in turn uploads his takings to his bank via an ATM or terminal.

5.1 Algorithm robustness

We chose DES as the encryption algorithm as the client was comfortable with
it and as public key smartcards were not available in 1991. Because keysearch
was already considered a threat by the banking community [GO], the only
robustness feature incorporated at the algorithm level was double encryption
(this is admittedly one feature which is more overdesign than explicitness!).

5.2 Protocol robustness

The payment protocols used in UEPS have the robustness property that all
the mutual information between the two parties is made explicit, by being
incorporated into the message keys. A run of a protocol between cards A and
B, using key pair K1 and K2, and message blocks Al, B1, A2, ... looks like
this:

A — B: K1(K2(A, B, A1)
B — A: K1(K3(B, A, B1)) where K3 = K2(A, B, Al)
A —» B: K1(K4(A, B, A2)) where K4 = K3(B, A, B1)

The primary design objectives here were to implement both message chain-
ing and double encryption using the minimum possible amount of code space,
and to make formal verification of the protocols easier (for details of the verifi-
cation see [A5]).

Since the Megalink prototype, key diversification has been introduced. The
original system had the same keypair K1 and K2 present in every card (albeit
one was loaded at the factory and the other at initialisation); in the new sys-
tem, only the cards embedded in bank and merchant terminals possess a set
of universal secrets, and the customer cards have keys derived from their serial
numbers using these master keys.

5.3 Goal and Application Robustness - Resolution of Disputes

We did not repeat the ATM designers’ mistake of forgetting to provide a means
of arbitrating disputed transactions. In fact, a number of features were built
into UEPS explicitly for dispute resolution.

Firstly, there are two signatures on each digital payment: one generated
with a key known only to the issuing bank and the customer card, and one
generated with a key controlled by the clearing house and loaded by them to
the card before it is supplied to the bank. The latter signature is checked
before funds are credited to the retailer presenting the cheque, while the former
would only be checked in the event of a dispute. Having separate signatures
was considered important given that the primary legal liability is from the card
issuing bank to its customer, and that an unknown number of banks of varying
levels of technical sophistication were expected to join the scheme.

A further feature, not mentioned in [A5], was writing encrypted audit trails
on the transaction receipt using two separate keys, one known to the customer
and his card issuing bank but not the merchant or the clearing house, and the
other known to the merchant and the clearing house but not the customer or
his bank. In the event of a dispute getting as far as trial, courts are likely to
accept transaction logs as evidence, and especially logs which are not written
on magnetic media but on paper - and of which copies are kept by both the
customer and the retailer. This solves most of the problems with computer
evidence discussed in [A6].

Incidentally, although the key used by the customer’s card to encrypt a re-
ceipt record can be recreated by his bank’s security module, and the merchant’s
key by the central clearing house, this need not have been the case; the keys
could exist nowhere else except in the card which uses them. In that case,
one would require any customer (or merchant) who disputes a transaction to
produce his card to an arbitrator in order to decrypt the record, This shows
that, even where we are using a symmetric algorithm, cryptographic keys do
not have to be shared to provide a valuable service. This is counter to the gen-
eral intuition, and relies ultimately on the assumption that the card is tamper
evident.

Another benefit of having a number of independent mechanisms is that
in the (hopefully rare) event of a technical attack, it is unlikely that all the
mechanisms will be broken. After all, some of the mechanisms (such as the
encrypted audit records) do not have to be circumvented in order to obtain
value from the system, and in fact could not be circumvented unless the attacker
had access to the victim’s card (or to the bank’s security module).

It follows that, with a high degree of probability, the existence of an attack
would become evident. This avoids the risk of placing an unmeetable burden of
proof on the complainant, which was what decided the US courts against the
banking industry in magnetic strip card disputes [JC].

Finally, there is a rule that all merchant transactions must be banked within
14 days. This means that, unlike the similar Mondex system now proposed in
the UK [MA], UEPS can refund lost customer cards after a short delay. In any
case, settlement functions are a central part of traditional banking systems;
abandoning them, as seems implicit in many electronic cash designs, could give
rise to unpredictable risks.

6 Conclusion

In the real world, most things break sooner or later. Traditional engineers
usually tackle this problem by making systems robust, and this may involve
some combination of overdesign and redundancy; however, we have shown that
robust computer security depends on explicitness as much as anything else.

This must be used in a structured way, and the starting point is to make
the business goals explicit. Next we need to establish an accurate threat model
and work though to the functional properties which the system needs. Security
is not after all a simple Boolean attribute, but a set of properties which enable
a system to fulfil its purpose (of processing banking transactions, helping to
win wars, or whatever).

Once we have an explicit set of security properties which our system must
have, we can look for ways in which we can use our trusted computing base to
enforce them. We can also use application layer features to enforce good op-
erational practice, and thus ensure that all our functional properties interlock

strongly. The explicitness principle is also a useful guide to designing the tech-
nical features, such as cryptographic protocols, on which the whole structure is

built.

Finally, robustness as explicitness is not new; we built it into the design of
UEPS, a commercially successful banking system, back in 1991. That exercise
showed that there are no significant computational or communications costs
associated with robust protocols. The only real investment involved in building
a robust security system is some extra effort at the design stage; but doing
things right the first time is always cheaper in the long run.

References

[A1] RJ Anderson, “Why Cryptosystems Fail”, in Proceedings of the 1993 ACM
Conference on Computer and Communications Security pp 215 - 227

[A2] RJ Anderson, “Why Cryptosystems Fail”, to appear in Communications of
the ACM, November 199/

[A3] RJ Anderson, “A Note on ISO 11166”, presented at the Crypto 94 rump
session

[A4] RJ Anderson, “The Classification of Hash Functions”, in Proceedings of the
4th IMA Conference in Cryptography and Coding (1993) (proceedings to be
published by OUP)

[A5] RJ Anderson, “UEPS - A Second Generation Electronic Wallet” , in Computer
Security - ESORICS 92, Springer LNCS v 648 pp 411 - 418

[A6] RJ Anderson, “Liability and Computer Security - Nine Principles”, in Com-
puter Security - ESORICS 94, Springer LNCS (to appear)

[AB] RJ Anderson, SJ Bezuidenhout, “On the Security of Prepayment Metering
Systems”, to appear

[AN] M Abadi, RM Needham, ‘Prudent Engineering Practice for Cryptographic
Protocols’, in Proceedings of the 1994 IEEE Symposium on Security and pri-
vacy (to appear)

[BAN] M Burrows, M Abadi and RM Needham, ‘A logic of Authentication’, Report
39, Digital Systems Research Center, Palo Alto, Ca.

[BM] C Boyd, WB Mao, ‘Limitations of Logical Analysis of Cryptographic Proto-
cols’, in Pre-Proceedings of Eurocrypt 93 pp T88 - T96

[BN] Behne v Den Norske Bank, Bankklagenemnda, Sak nr: 92457/93111

[C] D Coppersmith, ‘The Data Encryption Standard (DES) and its strength
against attacks’, IBM Thomas J Watson Research Center technical report
RC 18613 (81421), 22 December 1992

[D] IB Damgard, “Collision free hash functions and public key signature
schemes”, in Advances in Cryptology - EUROCRYPT 87, Springer LNCS
v 304, pp 203 - 216

[DH] W Diffie and ME Hellman, “New Directions in Cryptography”, in IEEE

Transactions on Information Theory, v IT-22 no 6 (November 1976) p 650

[ECMA]

B Ellis, ‘Prosecuted for complaint over cash machine’, in The Sunday Times,
27th March 1994, section 5 page 1

European Computer Manufacturers’ Association, “Secure Information Pro-
cessing versus the Concept of Product Evaluation”, technical report 64 (De-
cember 1993)

L Gong, ‘Thoughts on Cryptographic Protocols’, in Proceedings of the 1993
Cambridge Protocols Workshop, Springer LNCS (to appear)

G Garon and R Outerbridge, ‘DES Watch: An Examination of the Sufficiency
of the Data Encryption Standard for Financial Institution Information Secu-
rity in the 1990’s’, in Cryptologia XV no 8 (July 1991) pp 177-193

RB Jack (chairman), “Banking services: law and practice report by the Review
Committee”, HMSO, London, 1989

Dorothy Judd v Citibank, 435 NYS, 2d series, pp 210 - 212, 107 Misc.2d
526

R Morris, in Proceedings of the 1993 Cambridge Protocols Workshop, Springer
LNCS (to appear)

R Morris, in Proceedings of the 1994 Cambridge Protocols Workshop, Springer
LNCS (to appear)

H McKenzie, D Austin, ‘Banks ready to do business with smart cards’, in
Banking Technology v 11 no 1 (Feb 94) p 4

T Okamoto, “Provably Secure and Practical Identification Schemes and Cor-
responding Signature Schemes”, in Abstracts of Crypto 92, pp 1-15 to 1-25
bibitem[R]R RA Rueppel, “Criticism of the ISO CD 11166 banking-key man-

agement by means of asymmetric algorithms”, in Proc. 8rd Sym. on State
and Progress of Research in Cryptography pp 191 - 198

PF Syverson, ‘Adding Time to a Logic of Authentication’, in Proceedings of
the 1998 ACM Conference on Computer and Communications Security pp 97
- 101

“How £200 can buy account details”, in Sunday Times 29 November 1992 p
landp 3

“VISA Security Module Operations Manual”, VISA 1986

‘Former IBM Chief TJ Watson Jr dies’, in IEEE Computer v 27 no 2 (Feb
94) p 84

TYC Woo, SS Lam, ‘A Semantic Model for Authentication Protocols’, in
Proceedings of the 1993 IEEE Computer Society Symposium on Research in
Security and Privacy pp 178 - 194

TYC Woo, SS Lam, “A Lesson on Authentication Protocol Design”, in Op-
erating Systems Review v 28 no 3 (July 94) pp 24 - 37

UEPS - A Second Generation Electronic Wallet

Ross J. Anderson

University of Cambridge Computer Laboratory,
Pembroke Street, Cambridge CB2 3QG, UK
rjal4@cl.cam.ac.uk

UEPS, the Universal Electronic Payment System, is an electronic funds transfer
product which is well suited to developing country environments, where poor telecom-
munications make offline operation necessary. It is designed around smartcard based
electronic wallet and chequebook functions: money is loaded from the bank, via bank
cards, to customer cards, to merchant cards, and finally back to the bank through a
clearing system. This architecture is uniquely demanding from the point of view of
security.

As far as we are aware, UEPS is the first live financial system whose authentication
protocol was designed and verified using formal analysis techniques. This was achieved
using an extension of the Burrows-Abadi-Needham [BAN] logic, and raises some in-
teresting questions: firstly, such formal logics had been thought limited in scope to
verifying mutual authentication or key sharing [GKSG]; secondly, our work has found
hidden assumptions in BAN, and a problem with the postulates of the Gong-Needham-
Yahalom logic [GNY], both concerning freshness; thirdly, we highlight the need for a
formalism to deal with cryptographic chaining; and fourthly, this type of formal anal-
ysis turns out to be so useful that we believe it should be routine for financial and
security critical systems.

1 Introduction

The OECD countries have many sophisticated networks which cater for autoteller ma-
chines, the use of credit and debit cards at the point of sale, interbank payments, and
various other kinds of transaction. As the telecommunications infrastructure becomes
ever faster and more reliable, these systems are increasingly online and centralised, and
their existence can weaken the motive for introducing new crypto technologies such as
smartcards.

Recent political developments have opened up the formerly centrally planned economies
of Eastern Europe, India, Latin America and Africa to modern financial institutions
and their associated payment systems. However, telecommunications are often a se-
rious problem: decades of statism and neglect have left many of these countries with
abysmal telephone networks, and villages are often without any connection at all. The
lines that do exist are often not good enough to support fast modem communications or
even the most basic autodial facilities. Transactions must often be carried out offline,
and the risk of fraud with forged cards is such that the standard ISO magnetic stripe
card with its associated PIN management techniques cannot be used.

This creates a one-off opportunity for these countries to leapfrog two generations
in electronic payment technology, and go straight from manual ledger systems to dis-
tributed processing based on smartcard electronic wallets. Such systems can not only
integrate retail banking and shopping functions but also provide the payment side of
utility and government networks. The potential exists to slash transaction costs by
more than an order of magnitude, and at the same time eliminate a major bottleneck
in national economic development.

2 The Design Requirement

Our client, the Net 1 group, had secured a contract from the Permanent Building
Society in South Africa to design and build a national eftpos system. This institution
has the largest card base in the country with some 22% of the market, and most of its
accounts were simple savings accounts. After building societies in SA were deregulated,
plans were made to provide a full range of banking services.

However, poor telecommunications outside the major urban centres made it vital
to carry out transactions offline. It was also necessary to be able to transact with
utilities such as electricity distributors. Finally, as most customers have low incomes
and had not previously used banking payment services, it was felt crucial to keep the
transaction costs down, as charges similar to those made on traditional cheque accounts
would have been significant compared with the customers’ typical income and would
have put them off using the system.

These requirements led inevitably to an electronic wallet approach, in which money
is transferred between bank cards, customer cards and merchant cards using offline
terminals, which can be made portable if necessary.

3 Previous Systems

First generation smartcard systems suffer from a number of drawbacks. One problem
is that while the customer cards can be authenticated by a terminal, whether using
challenge-response procedures or a public key algorithm, many vendors provide no such
mechanism for the customer card to authenticate the terminal in turn. As a result,
it may be possible to attack the card using a false terminal. One could, for example,
try to record the card’s data area at a time when it holds a large credit balance and
then rewrite it later. Minimising the exposure to such frauds involves a number of host
checks and other ad-hoc measures which are costly in processing terms and generally
cumbersome and unsatisfactory.

Another problem is that banks prefer to use the familiar DES algorithm whose
vulnerability to keysearch is well known [GO] and increasingly problematic. Several
smartcards offer single DES encryption only, while we felt that double key encryption
should be mandatory for payment systems.

The third problem is that existing regimes may result in a user carrying multiple
cards, such as one for banking/eftpos, one for public telephones and one for the elec-
tricity meter. For both cost and strategic reasons we wanted a universal card which
could be programmed to cater for multiple accounts on different systems, plus a secure
means of transferring money between these accounts.

The final problem is integrity of design. Many existing financial systems have a long
history of design evolution, and many frauds result from unforeseen loopholes which
appear after seemingly unrelated changes. We felt it crucial to use formal methods
to verify the correctness of the crypto protocol which forms the security kernel of the
system.

4 Design Philosophy

The security of UEPS is based on two levels of authentication. The core is an electronic
cheque which is generated by the client card, passed to the retailer card and then
through a central clearing system to the customer’s bank. The cheque carries two
digital signatures: one generated with a key known only to the issuing bank’s security
module and the customer card, and one generated with a key which is controlled by
the clearing house and loaded by them to the card before it is supplied to the bank.
The latter signature is checked before funds are credited to the retailer presenting the
cheque, while the former would only be checked in the event of a dispute. Both these
signatures are standard message authentication codes, calculated on amount, payee
and date.

Had public key technology been available, it would have been possible for a trans-
action recipient to check a signature. This was not an option at the time, and so we
had to design a transaction protocol to prevent any bad cheques getting into the sys-
tem in the first place. This uses challenge-reponse processes by which both cards in
any transaction verify each other and carry on a secure session; it is similar to (but
was developed independently of) the ‘embedded observer’ proposed by Chaum for elec-
tronic privacy applications [C]. In both cases, a trusted application in the smartcard
vouchsafes for the authenticity of statements which the recipient cannot check directly.

The use of two independent security mechansims not only gives a high level of
confidence, but also helps us meet audit and resilience requirements: to keep track of
all the cash in the system on a day-by-day basis, and to guarantee that the compromise
of any one key will not expose the whole system to fraud.

5 The Transaction Protocol

The transaction protocol is used to ensure the integrity of each step of the cash path,
from bank to customer to merchant to clearer to bank. At each step, each transaction
is made unique by random challenges, sequence numbers or both.

At the time UEPS was designed (1990-91), the only available programmable smart-
card was the GemPlus product. This implements DES rather than a public key al-
gorithm and we therefore had to base the cryptography on a transaction set between
secure objects, a concept which is described in [DQ] and is already familiar in the
banking industry.

Our first task, in view of our requirement for double encryption, was to implement
a way of doing this which was within the technical constraints of the card. This was
done by key chaining. Given a run of a protocol between two cards A and B, using a
key pair, K1 and K2, and a series of message blocks A1, B1, A2, B2, ... we proceed as
follows:

A —s B: K1(K2(Al))
B — A: K1(K3(B1)) where K3 = K2(A1)
A —» B: K1(K4(A2)) where K4 = K3(B1)

In effect, the intermediate product of each double encryption is used as the second
key in the following encryption. In this way each block doubles as an authenticator
of all the previous messages in the protocol and information can be exchanged with
maximum efficiency.

This is because one normally includes redundancy within each message, in the form
of a fixed pattern or an already known variable, in order to check that the encryption
has been performed with the right key. As we had a security parameter which dictated
four bytes of redundancy, and a communications protocol which exchanged eight byte
ciphertext blocks, a naive design would have resulted in half of each message being
redundant. However, by key chaining we need only have one redundant data block,
namely in the last message (which is the one which causes value to be credited in the
recipient card).

During the crypto development process we had been using the Burrows-Abadi-
Needham (BAN) logic to check the correctness of the authentication structure, and
indeed it proved its value by highlighting several subtle errors and redundant fields
in the first draft of our protocol specification. We found, however, that while the
BAN logic supports conventional block chaining operations, it cannot deal with key
chaining, although this seems to be just as good as data block chaining as a means of
accumulating information in a cryptographic variable.

We will illustrate this by the exchange which takes place between a customer card
C and a retailer card R when goods are purchased. The other transactions, whether
bank - customer or retailer - bank, are essentially similar, but each transaction type
uses different keys to ensure that no splicing attack can succeed with more than the
probability of a random transaction.

Let C be the customer’s name, N¢ a nonce generated by him (a random number),
R the retailer’s name, N a nonce generated by him (the transaction sequence number),
and X the electronic cheque. Then we can idealise the purchase transaction as:

1.C — R:{C,Nc}x (=1L)
2. R—)C:{R,NR}L (= M)
3.0 — R:{X}u

In this protocol, the client card debits itself after step 2, while the retailer card
only credits itself after step 4. The system is therefore failsafe from the bank’s point
of view: if anyone tampers with the protocol the only result they are likely to achieve
is to increase the bank’s float, by debiting the customer card without crediting any
retailer.

In order to see how such a protocol can be validated, let us first consider a simplified
protocol where the infomation is accumulated without chaining.

1*. C — R:{C,N¢}k
2*. R— C :{R,Ng,C,N¢, }k
3*. C —R: {C,NC;RaNR7X}K

This can be analysed in a straightforward way using BAN. The trick is to start
from the desired result and work backwards; in this case, we wish to prove that the
retailer should trust the cheque, ie R |= X. This will follow under the jurisdiction
rule from R |= C |= X (R believes C has jurisdiction over X) and R |=C |= X (R
believes C' believes X).

The former condition follows from the hardware constraint, that no-one except C
could have uttered a text of the form {C,...} k. In effect, we have self-authenticating
hardware.

The latter, that R |= C' |= X, must be deduced using the nonce verification rule
from $X (X is fresh) and R |= C |~ X (R believes C uttered X).

Now #X follows from its occurrence in {C, N¢, R, Nr, X}k which contains the
sequence number Ng, while R |= C |~ X follows from the hardware constraint.

The BAN logic turns out to be easy to use because of the sparsity of its inference
rules. When working back from a goal statement, it is rare for there to be more than
one possible way to proceed. However, it provides no mechanism for dealing with the
key chaining used in the actual protocol. In effect, we have to find a way of unravelling
{X}{R:NR}{C,NC}K to {07 NC: R; NR: X}K

During the design of UEPS, we solved this problem by adding a further postulate
to the BAN schema. The existing message meaning rule says that if P believes that
the key K is shared with @ and sees a message X encrypted under K (P |= Q +%
P,P «{X}K), then he will believe that @ once said X (P |= Q@ |~ X).

To this we added a symmetrical rule to the effect that if P tries a key K to decrypt
a block, and recognises the result as coming from @ (P |= Q <% P,P<{X}k), then
he will believe that @ in fact used K (P |=Q |~ K).

This however conflates recognition of messages with that of keys, and it has since
been suggested that we might rather use the existing extension of the BAN logic by
Gong, Needham and Yahalom [GNY] and Gong [G], which formalises the concept of
recognisability. It turns out that axioms F2 and F7 in GNY (F4 and F14 in the
later work by Gong) together imply a strange result: that someone who possesses a
recognisable text X and a fresh key K may conclude that X is fresh by deducing first
that { X} is fresh, and then that X is.

The original BAN logic left the issue of freshness rules rather vague. On page
eight it is stated that if (X,Y") is fresh, then X is; in other words, A can ‘freshen’ a
statement X by concatenating it with a nonce just received from B, encrypting it with
a key shared with B, and sending it to him.

Two questions follow: firstly, could we not analyse UEPS more easily by adding
an extra freshness rule, which allows A to freshen X by encrypting it with a function
of a nonce and a key? Secondly, is the word ‘fresh’ not misleading, in that we should
rather concentrate on the action of uttering a statement?

GNY tries to make explicit many things that are left to ‘common sense’ in BAN,
such as spotting redundancy in a decrypted message. It would seem that this refine-
ment, if desirable, has not been thorough enough, and it may have to be extended
further to distinguish the utterances of different parties. After all, the utility of ‘fresh-
ness’ is the knowledge it gives us of others’ recent utterances.

However, there are good reasons to prefer a small set of rules. We found it more
tedious to work with GNY than with BAN, as there are many more rules which have
to be considered at each stage; logics which reason about belief and implication in
the same calculus may fall foul of the transitivity paradoxes [H]; and finally, as noted
above, a complex logic can have unforeseen consequences of a more mundane kind.

Another extension of BAN has been proposed by Kailar and Gligor [KG], who look
at a sequence of messages M; in the context of analysing a multiparty protocol.

This points to another possible approach: linked lists. It is likely that many proto-
cols will prevent splicing attacks by some kind of chaining, so that message M; contains
a hash of message M;_ ;. Authentication logics should be able to cope with this; a rule
that in the linked list {A; B; C; D} the freshness of utterance B would imply that of D
(but not of A) would seem be right, and this should be a rule for both block and key
chaining.

Our work suggests that there are two practical problems for future research in this
field. Firstly, what granularity is desirable in our formal calculus; how much should be
proved, and what should be left to common sense? Secondly, for a given granularity,
what is the minimal effective set of postulates?

To return now to UEPS, we find that the validation, however it is performed, shows
that the customer does not receive any confirmation of the transaction, but merely the
knowledge that a valid retailer card is present. The value of this knowledge is to rule
out a denial-of-service attack by a false terminal; but if the client bank is prepared to
tolerate such attacks, then the first message of the protocol could be omitted.

One could also add a confirmation message from the retailer’s card, but this would
not solve the problem of an interruption after step 2, at which time the customer card
has already committed to the transaction and debited itself, while the retailer has still
not got the cheque.

As we have seen, no financial benefit can be gained by doing this, and accidents
are sufficiently unlikely that they can be dealt with manually. The procedure is to
refund to the customer any missing amount which remains unbanked after 21 days;
but if the money were to be banked, the dispute would be resolved by comparing the
two card records, or inspecting the paper tally roll printed by the merchant terminal
(which shows the transaction plus a MAC). No dispute has been reported to date.

6 Practical Aspects

The average float of about ten days has turned out to be sufficient to cover the capital
costs, so UEPS has funded itself out of cash flow. It offers the bank the same level
of information and control as on a cheque account, as the clearing system tracks the
daily balance of every participant. It gives value when the cheque is presented by the
merchant, which is often one day after the purchase, and thus about two days faster
than with a paper cheque; this does not lead to public complaints as the charges are
an order of magnitude less than with the paper cheque system.

No losses were recorded during the first year of operation. The client institution
considers it to be a success and the rate of both customer and merchant enrolment is
being rapidly increased. From the customers’ point of view, it makes fast, secure and
low cost payment services available everywhere.

7 Conclusions

The BAN family of logics are not restricted to verifying mutual authentication and key
exchange, but are a practical and helpful tool in the design of working crypto protocols,
even (and especially) for substantial and complex systems. Although more elaborate
systems (like GNY) exist, a first validation should be carried out with BAN, as it is
easy to do, and failure to establish a desired result will indicate either a bug in the
protocol, or something which BAN cannot express. It will normally be obvious what
to do next.

We believe that formal verification should be routine in the design of financial
and other security critical systems. It may well not be practical to verify all of a
large banking software suite, and some aspects of system security (such as the disaster
recovery plan) may remain forever beyond the reach of a formal calculus, but great
benefit can be achieved for a small amount of effort by performing a formal analysis of
the kernel of the system.

Even within the context of that kernel, we found the BAN logic to be useful as a
design discipline. It did much more than help us tighten up the protocol security: it
pointed out redundant fields in the messages, allowing the protocol to be made more
efficient; it made clear the security dependencies; it provided intellectual stimulation
at meetings with designers and programmers who were forced to examine and defend
their assumptions; and finally, it greatly strengthened the client’s confidence in the
system.

8 Acknowledgements

The author is grateful to Roger Needham of the Computer Laboratory, to Serge Bela-
mant of Net1 International, Argeles sur Mer, France, and to André Mansvelt and Gavin
Shenker of Netl Products, Johannesburg, for many stimulating discussions concerning
this project.

References

[BAN] M. Burrows, M. Abadi and R. Needham, “A logic of Authentication”, Report
39, Digital Systems Research Center, Palo Alto, Ca.

[C] D. Chaum, “Achieving Electronic Privacy”, in Scientific American, 267 no
2, August 1992, pp 76 - 81

[DQ] Y. Desmedt and J.-J. Quisquater, “Public-key Systems Based on the Difficulty
of Tampering’, in Advances in Cryptology - CRYPTO 86, Springer Lecture
Notes in Computer Science 263 pp 111 - 117

[G] L. Gong, Cryptographic Protocols for Distributed Systems (PhD Thesis), Uni-
versity of Cambridge 1990.

[GKSG] V. D. Gligor, R. Kailar, S. Stubblebine and L. Gong, “Logics for Cryp-
tographic Protocols - Virtues and Limitations”, in Proceedings, Computer
Security Foundations Workshop IV, IEEE 1991, pp 219 - 226

[GNY] L. Gong, R. M. Needham and R. Yahalom, “Reasoning about Belief in Cryp-
tographic Protocols”, in Proceedings of the 1990 IEEE Computer Security
Symposium on Research in Security and Privacy, pp 234 - 248

[GO] G. Garon and R. Outerbridge, “DES Watch: An Examination of the Suffi-
ciency of the Data Encryption Standard for Financial Institution Information
Security in the 1990’s’, in Cryptologia XV no 3, July 1991, pp 177-193

[H] M. Hesse, Structure of Scientific Inference, Macmillan 1974, pp 142 - 146

[KG] R. Kailar and V. D. Gligor, “On Belief Evolution in Authentication Proto-
cols”, in Proceedings, Computer Security Foundations Workshop IV, IEEE
1991, pp 103 - 116

