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Chapter 2

Operational Semantics

2.1 A First Look at Operational Semantics

The syntax of a programming language is the set of rules governing the forma-
tion of expressions in the language. The semantics of a programming language
is the meaning of those expressions.

There are several forms of language semantics. Axiomatic semantics is a set
of axiomatic truths in a programming language. Denotational semantics involves
modeling programs as static mathematical objects, namely as set-theoretic func-
tions with specific properties. We, however, will focus on a form of semantics
called operational semantics.

An operational semantics is a mathematical model of programming language
ezecution. It is, in essence, an interpreter defined mathematically. However, an
operational semantics is more precise than an interpreter because it is defined
mathematically, and not based on the meaning of the language in which the
interpreter is written. Formally, we can define operational semantics as follows.

Definition 2.1 (Operational Semantics). An operational semantics for
a programming language is a mathematical definition of its computation relation,
e = v, where e is a program in the language.

e = v is mathematically a 2-place relation between expressions of the lan-
guage, e, and values of the language, v. Integers and booleans are values.
Functions are also values because they don’t compute to anything. e and v
are metavariables, meaning they denote an arbitrary expression or value, and
should not be confused with the (regular) variables that are part of programs.

An operational semantics for a programming language is a means for under-
standing in precise detail the meaning of an expression in the language. It is
the formal specification of the language that is used when writing compiles and
interpreters, and it allows us to rigorously verify things about the language.
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2.2 BNF grammars and Syntax

Backus-Naur Form (BNF) grammars are a standard formalism for defining lan-
guage syntax.. All BNF grammars comprise terminals, nonterminals (aka syn-
tactic categories), and production rules, the general form of which is:

< nonterminal >::=< form 1 >| |< form n >

where each form describes a particular language form— that is, a string of ter-
minals and non-terminals. A term in the language is a string of terminals,
constructed according to these rules.

example The language SHEEP. Let {S} be the set of nonterminals, {a, b} be
the set of terminals, and the grammar definition be:

S = b|Sa
Note that this is a recursive definition. Terms in SHEEP include:
b, ba, baa, baaa, baaaa, . . .

They do not include:
S,SSa, Saa,...

example The language FROG. Let {F, G} be the set of nonterminals, {r,d,b,t}
be the set of terminals, and the grammar definition be:

F == rF|iG
G == bG|bF |t

Note that this is a mutually recursive definition. Note also that each production
rule defines a syntactic category. Terms in FROG include:

ibit, ribbit, ribiribbbit . . .

2.2.1 Operational Semantics for Logic Expressions

In order to get a feel for what an operational semantics is and how it is defined,
we will now examine the operational semantics for a very simple language:
boolean logic with no variables. The syntax of this language is as follows.
An expression e is recursively defined to consist of the values True and False,
and the expressions e And e, e Or e, e Implies e, and Not eE| This syntax is
known as the concrete syntax, because it is the syntax that describes the textual
representation of an expression in the language. We can express it in a BNF
grammar as follows:

v == True|False values
e == v]|(e And e) | (e Or e) | Not e expressions

IThroughout the book we use the convention of capitalizing keywords in our example
languages to avoid potential conflicts with the Caml language.
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Another form of syntax, the abstract syntax, is an representation of an
expression in the form of a syntax tree. These abstract syntax trees are used
internally by interpreters or compilers to process expressions in the language.
These two forms of syntax are discussed thoroughly in Section We can
represent the abstract syntax of our boolean language through the Caml type
below.

type boolexp = True | False

| And of boolexp * boolexp

| Or of boolexp * boolexp

| Implies of boolexp * boolexp
|

Not of boolexp

Let us take a look at a few examples to see how the concrete and the abstract
syntax relate.

Example 2.1.

True

True

Example 2.2.

True And False

And(True, False)

Example 2.3.

(True And False) Implies ((Not True) And False)

Implies(And(True, False), And(Not(True), False))

Again, we will come back to the issue of concrete and abstract syntax shortly.
Here is a full inductive definition of a translation from the concrete to the
abstract syntax:

[True] = True
[False] = False
[e] = Not([e]
[er And e3] = And([e1], [e2])

[e1 Or es] = Or(fei], [e=])
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Now we are ready to define the operational semantics of our boolean language
to be the least relation = satisfying the following rules:

( True Rule) _
True = True

(False Rule) -_—
False = False

e=v
Not Rul
(Not Rule) Not e = the negation of v
(And Rule) 1= oy, €2 = U2

e1 And e; = the logical and of v; and vy

These rules form a proof system in analogy to logical rules. The horizontal
line reads “implies”. Thus rules represent logical truths. It follows that rules
with nothing above the line are axioms since they always hold. A proof of e = v
amounts to constructing a sequence of rule applications for which the final rule
application logically concludes with e = v. We define the operational seman-
tics as the “least relation” satisfying these rules, where “least” means “fewest
pairs related”. Without this requirement, a relation which related anything to
anything would be valid. For example,

Not (Not False) And True = False, because by the And rule
True = True, and
Not (Not False) = False, the latter because
Not False = True, because
False = False.

This computation is a tree because there are two subcomputations for each
binary operator.

Exercise 2.1. Complete the definition of the operational semantics for the
boolean language described above by writing the rules for Or and Implies

An advantage of an operational semantics is that is allows us to prove things
about the execution of programs. For example, we may make the following
claims about the boolean language:

Lemma 2.1. The boolean language is deterministic: if e = v and e = v/,
then v =1'.

Proof. By induction on the height of the proof tree. O

Lemma 2.2. The boolean language is normalizing: For all boolean expressions
e, there is some value v where e = v.

Proof. By induction on the size of e. O
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2.2.2 Operational Semantics and Interpreters

There is a very close relationship between an operational semantics and an
actual interpreter written in Caml. Given an operational semantics defined via
the relation =, there is a corresponding (Caml) evaluator function eval.

Definition 2.2 (Faithful Implementation). A (Caml) interpreter function
eval faithfully implements an operational semantics e = v if the following is
true. e = v if and only if eval(e) returns result v.

The operational semantics rules for the boolean language above induce the
following Caml interpreter eval function.

let rec eval exp =
match exp with
True -> True
| False -> False
| Not(expO) -> (match eval expO with
True -> False
| False -> True)
| And(exp0O,expl) -> (match (eval exp0O, eval expl) with
(True,True) -> True
| (_,False) -> False
| (False,_) -> False)

| Or(expO,expl) -> (match (eval exp0O, eval expl) with
(False,False) -> False
| (_,True) -> True
| (True,_) -> True)

| Implies(expO,expl) -> (match (eval expO, eval expl) with
(False,_) —-> True
| (True,True) -> True
| (True,False) -> False)

The only difference between the operational semantics and the interpreter is
that the interpreter is a function, so we start with the bottom-left expression in
a rule, use the interpreter to recursively produce the value(s) above the line in
the rule, and finally compute and return the value below the line in the rule.

Note that the boolean language interpreter above faithfully implements its
operational semantics: e = v if and only if eval(e) returns v as result. We
will go back and forth between these two forms throughout the book. The
operational semantics form is used because it is independent of any particular
programming language. The interpreter form is useful because it can be tested
on real code.

Exercise 2.2. Why not just use interpreters and forget about the operational
semantics approach?
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Definition 2.3 (Metacircular Interpreter). A metacircular interpreter
is an interpreter for (possibly a subset of) a language x that is written in lan-
guage T.

Metacircular interpreters give you some idea of how a language works, but
suffer from the non-foundational problems implied in Exercise 2.2 A metacir-
cular interpreter for Lisp is a classic programming language theory exercise.

2.3 The D Programming Language

Now that we have seen how to define and understand operational semantics, we
will begin to study our first programming language: D. D is a “Diminutive”
pure functional programming language. It has integers, booleans, and higher-
order anonymous functions. In most ways D is much weaker than Caml: there
are no reals, lists, types, modules, state, or exceptions.

D is untyped, and in this way is it actually more powerful than Caml. It
is possible to write some programs in D that produce no runtime errors, but
which will not typecheck in Caml. For instance, our encoding of recursion in
Section [2.3.5]is not typeable in Caml. Type systems are discussed in Chapter [0}
Because there are no types, runtime errors can occur in D, for example the
application (5 3).

Although it is very simplistic, D is still Turing-complete: every partial
recursive function on numbers can be written in D. In fact, it is even Turing-
complete without numbers or booleans. This language with only functions and
application is known as the pure lambda-calculus, and is discussed briefly in
Section No deterministic programming language can compute more than
the partial recursive functions.

2.3.1 D Syntax

As we said earlier, the syntax of a language is the set of rules governing the
formation of expressions in that language. However, there are different but
equivalent ways to represent the same expressions, and each of these ways is
described by a different syntax.

There are two forms of a syntax that will be used in this book. The concrete
syntax is the textual representation of the program that is usually defined by
a grammar. For example, in the boolean language the expression

True And False

is concrete syntax.

The other form of syntax we will need to use is the abstract syntax. The
abstract syntax is the syntax tree representation of the concrete syntax. In
our interpreters, the abstract syntax is the Caml value of some type expr that
represents the program. For example,
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And(True, False)

is the abstract representation (of type boolexp) of the concrete expression in
the previous paragraph.
Concrete Syntax

Let us begin by defining the concrete syntax of our D language. The expressions,
e, of the D language are inductively defined as the least set including

e variables, ,

e anonymous functions, Function z — e,

e recursive functions, Let Rec fz = e; In eo,
e function application, ¢ e,

e integers, 0, 1, -1, 2, -2, ...,

e numerical operations, +, -, =,

e booleans, True, False,

e boolean operations, And, Or, Not,

e and conditional expressions, If e¢ Then e Else e,

of which the value expressions are the integers, booleans, and regular and re-
cursive functions.

Note, the metavariables we are using include e meaning an arbitrary D
expression, v meaning an arbitrary value expression, and x meaning an arbitrary
variable expression. Be careful about that last point. It does not claim that
all variables are metavariables, but rather = is a metavariable representing an
arbitrary D variable. It is important to make this distinction.

Abstract Syntax

To define the abstract syntax of D for a Caml interpreter, we need to define
a variant type that captures the expressiveness of D. The variant type we will
use is as follows.

type ident = Ident of string

type expr =

Var of ident | Function of ident * expr | Appl of expr * expr |
Letrec of ident * ident * expr * expr |

Plus of expr * expr | Minus of expr * expr | Equal of expr * expr |
And of expr * expr| Or of expr * expr | Not of expr |

If of expr * expr * expr | Int of int | Bool of bool
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One important point here is the existence of the ident type. Notice where
ident is used in the expr type: as variable identifiers, and as function param-
eters for Function and Let Rec. What ident is doing here is enforcing the
constraint that function parameters may only be variables, and not arbitrary
expressions. Thus, Ident "x" represents a variable declaration and Var (Ident
"x") represents a variables usage.

Being able to convert from abstract to concrete syntax and vice versa is
an important skill for one to develop, however it takes some time to become
proficient at this conversion. Let us look as some examples D. In the exam-
ples below, the concrete syntax is given at the top, and the the corresponding
abstract syntax representation is given underneath.

Example 2.4.

Plus(Int 1, Int 2)

Example 2.5.

True or False

Or(Bool true, Bool false)

Example 2.6.

If Not(1 = 2) Then 3 Else 4

If (Not(Equal(Int 1, Int 2)), Int 3, Int 4)
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Example 2.7.

(Function x -> x + 1) 5

Appl (Function(Ident "x", Plus(Var(Ident "x"), Int 1)), Int 5)

Example 2.8.

(Function x -> Function y -> x +y) 4 5

Appl (Appl (Function(Ident "x", Function(Ident "y",
Plus(Var(Ident "x"), Var(Ident "y")))), Int 4), Int 5)

Example 2.9.

Let Rec fib x =
If x =1 0r x = 2 Then 1 Else fib (x - 1) + fib (x - 2)
In fib 6

Letrec(Ident "fib", Var(Ident "x"),
If (Or(Equal(Var(Ident "x"), Int 1),
Equal (Var(Ident "x"), Int 2)),
Int 1,
Plus(Appl(Var(Ident "fib"), Minus(Var(Ident "x"), Int 1)),
Appl(Var(Ident "fib"), Minus(Var(Ident "x"), Int 2)))),
Appl(Var(Ident "fib"), Int 6))

Notice how lengthy even simple expressions can become when represented
in the abstract syntax. Review the above examples carefully, and try some ad-
ditional examples of your own. It is important to be able to comfortably switch
between abstract and concrete syntax when writing compilers and interpreters.

2.3.2 Variable Substitution

The main feature of D is higher-order functions, which also introduces variables.
Recall that programs are computed by rewriting them:
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(Function x -> x + 2)(3 + 2 + 5) = 12 because
3 + 2 + 5= 10, because
3+ 2=5 and
5 + 5= 10; and then,
10 + 2= 12.

Note how in this example, the argument is substituted for the variable in the
body—this gives us a rewriting interpreter. In other words, D functions compute
by substituting the actual argument for the for parameter; for example,

(Function x -> x + 1) 2

will compute by substituting 2 for x in the function’s body z= + 1, i.e. by
computing 2 + 1. We need to be careful about how variable substitution is
defined. For instance,

(Function x -> Function x -> x) 3

should not evaluate to Function x -> 3 since the inner x is bound by the inner
parameter. To correctly formalize this notion, we need to make the following
definitions.

Definition 2.4 (Variable Occurrence). A variable use © occurs in e if x
appears somewhere in e. Note we refer only to variable uses, not definitions.

Definition 2.5 (Bound Occurrence). Any occurrences of variable z in the
expression

Function x -> €

are bound, that is, any free occurrences of x in e are bound occurrences in this
expression. Similarly, in the expression

Let Rec fx =e; In e

occurrences of f and x are bound in e; and occurrences of f are bound in es.
Note that x is not bound in es, but only in ey, the body of the function.

Definition 2.6 (Free Occurrence). A variable x occurs free in e if it has an
occurrence in e which is not a bound occurrence.
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Let’s look at a few examples of bound versus free variable occurrences.

Example 2.10.

Function x -> x + 1

x is bound in the body of this function.

Example 2.11.

Function x -> Function y -> x + y + z

x and y are bound in the body of this function. z is free.

Example 2.12.

Let z = 5 In Function x -> Functiony > x + y + z

%, v, and z are all bound in the body of this function. x and y are bound by
their respective function declarations, and z is bound by the Let statement.
Note that we haven’t defined bound and free in terms of Let, but after re-
viewing the encoding of Let in Section it should be clear that binding
rules work similarly for Functions and Let statements.

Definition 2.7 (Closed Expression). An expression e is closed if it contains
no free variable occurrences. All programs we execute are closed (no link-time
errors).

Of the examples above, Examples and are closed expressions, and
Example is not a closed expression.

Definition 2.8 (Variable Substitution). The variable substitution of x for €’
in e, denoted ele’' /x], is the expression resulting from the operation of replacing
all free occurrences of x in e with €. For now, we assume that €' is a closed
expression.
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Here is an equivalent inductive definition of substitution:

v
x’ x#a
(Function = — e) v/x (Function z — e)

(Function ¢’ — e)[v/x (Function ' — e[v/x])

zlv/z]
z'[v/z]
[v/z]
[v/x]
nlv/z] = nforneZ
[v/z]
[v/z]
[v/z]
[v/z]

True[v/z] = True
False[v/x] = False

exfv/x] + esfv/x]
= e1[v/z] And es]v/x]

(e1 +ea)[v/x
(e1 And e3)[v/x

Consider the following expression.

Let Rec f x =
If x = 1 Then
(Function f -> f (x - 1)) (Function x -> x)
Else
f x-1)
In £ 100

How does this expression evaluate? It is a bit difficult to tell simply by looking
at it because of the tricky bindings. Let’s figure out what variable occurrences
are bound to which function declarations and rewrite the function in a clearer
way. A good way to do this is to choose new, unambiguous names for each
variable, taking care to preserve bindings. We can rewrite the expression above
as follows.

Let Rec x1 x2 =
If x2 = 1 Then
(Function x3 -> x3 (x2 - 1)) (Function x4 -> x4)
Else
x1 x2 - 1)
In £ 100

Now it’s much easier to figure out the result. You may wish to read Section
[2:3:3] which discusses the operational semantics of D, before trying it. At any
rate, notice that the recursive case (the else-clause) simply applies x1 to (x2 -
1), where x2 is the argument to x1. So eventually, £ 100 simply evaluates the
the base case of the recursion. In the base case, the then-clause, an identity
function (Function x4 -> x4) is passed to a function that applies it to x2 -
1, which is always 0 in the base case. Therefore, we know that £ 100 = 0.
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2.3.3 Operational Semantics for D

We are now ready to define the operational semantics for D. As before, the op-
erational semantics of D is defined as the least relation = on closed expressions
in D satisfying the following rules.

(Value Rule)
V=
e1 = v1, ea = vz where v1,v9 € Z
(+ RU]G) 1 1, €2 i 2 1,02
e1 + ey = the integer sum of v; and vs
e1 = v1, ea = vy where vy,vy € Z
(= Rule)

e1 = ey = True if v; and vy are identical, else False

e; = True, es = v
(If True Rule) ! 2 2

If e; Then ey Else e3 = w9

e; = False, e3 = v3

(If False Rule)
If e; Then ey Else ez = v3

e; = Function = -> e, ex = vo, e[va/x] = v

Application Rul
(Application Rule) pp——

ez[Function x -> ej[(Let Rec fxz = e; In f)/f]/fl=v

(Let Rec)
Let Rec fx =€ In ex =

For brevity we have left out a few rules. The - rule is similar to the + rule.
The rules on boolean operators are the same as those given in Section [2.2.1

There are several points of interest in the above rules. First of all, notice
that the function application rule is defined as call-by-value; the argument is
evaluated before the function is applied. Later we discuss other possibilities:
call-by-name and call-by-reference parameter passing. Call-by-reference param-
eter passing is irrelevant for languages, such as D, that contain no mutable store
operations (such languages are discussed in Chapter [3)).

Another thing to note in the rules is that there are two If rules: one for
the case that the condition is true and one for the case that the condition is
false. It may seem that we could combine these two rules into a single one, but
look closely. If the condition is true, only the expression in the Then clause is
evaluated, and if the condition is false, only the expression in the Else clause
is evaluated. To see why we do not want to evaluate both clauses, consider the
following D expression.

If True Then 1 Else (0 1)
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This code should not result in a run-time error, but if we were to evaluate both
clauses a run-time error would certainly occur when (0 1) is evaluated. In
addition, if our language has state (see Chapter [3)), evaluating both clauses may
produce unintended side-effects.

If 3 = 4 Then 5 Else 4 + 2 = 6 because
3 = 4 = False and
4 + 2= 6, because

4 =4 and

2 =2 and 4 plus 2 is 6.
(Function x -> If 3 = x Then 5 Else x + 2) 4 =6, by above derivation

(Function x -> x x)(Function y -> y) = Function y -> y, because
(Function y -> y) (Function y -> y) = Function y -> y

(Function f -> Function x -> f(£(x))) (Function x -> x - 1) 4=2
because letting F abbreviate (Function x -> x - 1)
(Function x —> F(F(x))))) 4 = 2, because
F(F 4) = 2, because
F 4 = 3, because

4 - 1=3. And then,
F(3) = 2, because
3-1=2

(Function x -> Function y -> x + y)
((Function x -> If 3 = x Then 5 Else x + 2) 4)
(Function f -> Function x -> f (f x))
(Function x -> x - 1) (4) = 8 by the above two executions

Finally, the Let Rec rule merits some discussion. This rule is a bit difficult
to grasp at first because of the double substitution. Let’s break it down. The
outermost substitution “unrolls” one level of the recursion by translating it to a
function whose argument is x, the argument of the Let Rec statement. However,
if we stopped there, we would just have a regular function, and f would be
unbound. We need some mechanism that actually gets us the recursion. That’s
where the inner substitution comes into play. The inner substitution replaces
f with the expression Let Rec f x = e; In f. Thus, the Let Rec rule is
inductively defined: the body of the Let Rec expression is replaced with a
value that contains a Let Rec. The inductive definition of the rule is where the
recursion comes from.

To fully understand why this rule is correct, we need to look at an execution.
Consider the following expression.
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Let Rec f x =
If x =1 Then 1 Else x + f (x - 1)
In f 3

The expression is a recursive function that sums the numbers 1 through =z,
therefore the result of £ 3 should be 6. We’ll trace through the evaluation, but
for brevity we will not write out every single step. Let

body=1If x = 1 Then 1 Else x + £ (x - 1).

Then

Let Rec f x = body In £ 3 = 6, because
(Function x -> If x = 1 Then 1 Else x +
(Let Rec £ x = body In f) (x - 1)) 3 = 6, because
3 + (Let Rec f x = body In f) 2 = 6, because
(Let Rec £ x = body In £) 2 = 3, because
(Function x -> If x = 1 Then 1 Else x +
(Let Rec £ x = body In £f) (x - 1)) 2= 3, because
2 + (Let Rec f x = body In f) 1 =3, because
(Let Rec f x = body In f) 1 =1, because
(Function x -> If x = 1 Then 1 Else x +
(Let Rec £ x = body In f) (x - 1)) 1=1

| p Interact with D. Tracing through recursive evaluations is difficult, and
therefore the reader should invest some time in exploring the semantics
of Let Rec. A good way to do this is by using the D interpreter. Try evaluating

the expression we looked at above:

# Let Rec f x =
If x =1 Then 1 Else x + £ (x - 1)
In £ 3;;
==> 6

Another interesting experiment is to evaluate a recursive function without
applying it. Notice that the result is equivalent to a single application of the
Let Rec rule. This is a good way to see how the “unwrapping” actually takes
place:

# Let Rec f x =
If x =1 Then 1 Else x + £ (x - 1)
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In £f;;
==> Function x ->
If x = 1 Then
1
Else
x + (Let Rec f x =
If x = 1 Then

1
Else
x+ () (x -1
In
f) (x - 1)

As we mentioned before, one of the main benefits of defining an operational
semantics for a language is that we can rigorously verify claims about that
language. Now that we have defined the operational semantics for D, we can
prove a few things about it.

Lemma 2.3. D is deterministic.

Proof. By inspection of the rules, at most one rule can apply at any time. [

Lemma 2.4. D is not normalizing.

Proof. To show that a language is not normalizing, we simply show that there
is some e such that there is no v with e = v.

(Function x —> x x) (Function x -> x x)

is not normalizing. This is a very interesting expression that we will look at in
more detail in Section (4 3) is a simpler expression that is not normal-
izing. O

2.3.4 The Expressiveness of D

D doesn’t have many features, but it is possible to do much more than it may
seem. As we said before, D is Turing complete, which means, among other
things, that any Caml operation may be encoded in D. We can informally
represent encodings in our interpreter as macros using Caml let statements. A
macro is equivalent to a statement like “let F' be Function x -> 7
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Logical Combinators First, there are the classic logical combinators, sim-
ple functions for recombining data.

combI = Function -> x
combK = Function
combS = Function

combD = Function

-> Function y -> x
-> Function y -> Function z -> (x z) (y 2z)
-> X X

Tuples Tuples and lists are encodable from just functions, and so they are not
needed as primitives in a language. Of course for an efficient implementation
you would want them to be primitives, thus doing this encoding is simply an
exercise to better understand the nature of functions and tuples. We will define
a 2-tuple (pairing) constructor; From a pair you can get a n-tuple by building
it from pairs. For example, (1, (2, (3,4))) represents the 4-tuple (1,2, 3,4).

First, we need to define a pair constructor, pr. A first approximation of the
constructor is as follows.

pr (I, r) =Function x -> x [r

Then, the operations for left and right projections may be defined.

left (e) = e (Function x -> Function y -> x)
right (e) =e (Function x -> Function y -> y)

Now let’s take a look at what’s happening. pr takes a left expression, [, and a
right expression, 7, and packages them into a function that applies its argument
x to [ and r. Because functions are values, the result won’t be evaluated any
further, and [ and r will be packed away in the body of the function until it is
applied. Thus pr succeeds in “storing” [ and 7.

All we need now is a way to get them out. For that, look at how the
projection operations left and right are defined. They’re both very similar,
so let’s concentrate only on the projection of the left element. left takes one
of our pairs, which is encoded as a function, and applies it to a curried function
that returns its first, or leftmost, element. Recall that the pair itself is just a
function that applies its argument to [ and . So when the curried left function
that was passed in is applied to | and r, the result is [, which is exactly what
we want. right is similar, except that the curried function returns its second,
or rightmost, argument.

Before we go any further, there is a technical problem involving our encoding
of pr. Suppose [ or r contain a free occurrence of x when pr is applied. Because
pr is defined as Function x -> x [ r, any free occurrence x contained in [
or r will become bound by x after pr is applied. This is known as variable
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capture. To deal with capture here, we need to change our definition of pr to
the following.

pr (I, r) = (Function 1 -> Function r -> Function x -> x 1 r) [r

This way, instead of textually substituting for [ and r directly, we pass them in
as functions. This allows the interpreter evaluate [ and r to values before passing
them in, and also ensures that [ and r are closed expressions. This eliminates
the capture problem, because any occurrence of x is either bound by a function
declaration inside [ or r, or was bound outside the entire pr expression, in which
case it must have already been replaced with a value at the time that the pr
subexpression is evaluated. Variable capture is an annoying problem that we
will see again in Section [2.4]

Now that we have polished our definitions, let’s look at an example of how
to use these encodings. First, let’s create create the pair p as (4, 5).

p=pr (4, 5) = Function x -> x 4 5

Now, let’s project the left element of p.

left p = (Function x -> x 4 5) (Function x -> Function y -> x)
This becomes

(Function x -> Function y -> x) 4 5= 4.

This encoding works, and has all the expressiveness of real tuples. There
are, nonetheless, a few problems with it. First of all, note that

left (Function x —-> 0) = 0.

We really want the interpreter to produce a run-time error here, because a
function is not a pair.

Similarly, suppose we wrote the program (pr (3, pr (4, 5))). One would
expect this expression to evaluate to pr (4, 5), but remember that pairs are
not values in our language, but simply encodings, or macros. So in fact, the
result of the computation is Function x -> x 4 5. We can only guess that
this is intended to be a pair. In this respect, the encoding is flawed, and we
will, in Chapter [3] introduce “real” n-tuples into an extension of D to alleviate
these kinds of problems.
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Lists Lists can also be implemented via pairs. The list [1; 2; 3] is rep-
resented by pr (1, pr (2, pr (3, emptylist))) where emptylist is some
agreed-on empty list, O for us. The implementation is as follows.

head = left
tail = right
emptylist =0
cons = pr
length = Let Rec len x =
If x = emptylist Then O Else 1 + len (tail x) In len

In addition to tuples and lists, there are several other concepts from Caml
that we can encode in D. We review a few of these encodings below. For brevity

and readability, we will switch back to the concrete syntax.

Functions with Multiple Arguments Functions with multiple arguments
are done with currying just as in Caml. For example

Function x -> Function y > x + y

The Let Operation Let is quite simple to define in D.
(Let z = ¢ In ¢') = (Function z -> €') e
For example,

(Let x = 3 + 2 In x + x) = (Function x -> x + x) (3 + 2) = 10.

Sequencing Notice that D has no sequencing (;) operation. Because D is
a pure functional language, writing e; €’ is really just equivalent to writing
e’, since e will never get used. Hence, sequencing really only has meaning in
languages with side-effects. Nonetheless, sequencing is definable in the following

manner.
e; € = (Function n -> ¢€') e,

where n is chosen so as not to be free in €’. This will first execute e, throw away
the value, and then execute €', returning its result as the final result of e; ¢€'.
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Freezing and Thawing We can stop and re-start computation at will by
freezing and thawing.

Freeze ¢ = Function n -> ¢
Thaw e=¢0

We need to make sure that n is a fresh variable so that it is not free in e. Note
that the 0 in the application could be any value. Freeze e freezes e, keeping it
from being computed. Thaw e starts up a frozen computation. As an example,

Let x = Freeze (2 + 3) In (Thaw x) + (Thaw x)

This expression has same value as the equivalent expression without the freeze
and thaw, but the 2 + 3 is evaluated twice. Again, in a pure functional lan-
guage the only difference is that freezing and thawing is less efficient. In a
language with side-effects, if the frozen expression causes a side-effect, then the
freeze/thaw version of the function may produce results different from those of
the original function, since the frozen side-effects will be applied as many times
as they are thawed.

2.3.5 Russell’s Paradox and Encoding Recursion

D has a built-in Let Rec operation to aid in writing recursive functions, but
its actually not needed because recursion is definable in D. The encoding is a
non-obvious one, and so before we introduce it, we present some background
information. As we will see, the encoding of recursion is closely related to a
famous set-theoretical paradox due to Russell.

Let us begin by posing the following question. How can programs compute
forever in D without recursion? The answer to this question comes in the form
of a seemingly simple expression:

(Function x —> x x) (Function x -> x x)

Recall from Lemma [2.2] that a corollary to the existence of this expression
is that D is not normalizing. This computation is odd in some sense. (x x) is
a function being applied to itself. There is a logical paradox at the heart of this
non-normalizing computation, namely Russell’s Paradox.

Russell’s Paradox

In Frege’s set theory (circa 1900), sets were written as predicates P(z), which we
can view as functions. In the functional view, set membership is via application:
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e€ Siff S (e) = True

For example, (Function x -> x < 2) is the set of all numbers less than 2. The
integer 1 is in this “set”, since (Function x -> x < 2) 1 = True.

Russell discovered a paradox in Frege’s set theory, and it can be expressed
in the following way.

Definition 2.9 (Russell’s Paradox). Let P be the set of all sets that do not
contain themselves as members. Is P a member of P?

Asking whether or not a set is a member of itself seems like strange question,
but in fact there are many sets that are members of themselves. The infinitely
receding set {{{{...}}}} has itself as a member. The set of things that are not
apples is also a member of itself (clearly, a set of non-apples is not an apple).
These kinds of sets arise only in “non-well-founded” set theory.

To explore the nature of Russell’s Paradox, let us try to answer the question
it poses: Does P contain itself as a member? Suppose the answer is yes, and P
does contain itself as a member. If that were the case then P should not be in P,
which is the set of all sets that do not contain themselves as members. Suppose,
then, that the answer is no, and that P does not contain itself as a member.
Then P should have been included in P, since it doesn’t contain itself. In other
words, P is a member of P if and only if it isn’t. Hence Russell’s Paradox is
indeed a paradox. Let us now rephrase the paradox using D functions instead
of predicates.

Definition 2.10 (Computational Russell’s Paradox). Let
P = Function z -> Not(z z).
What is the result of P P? Namely, what is
(Function = -> Not(z z)) (Function = -> Not(z z))?
If this D program were evaluated, it would run forever. To see this, it suffices

to compute one step of the evaluation, and notice that the inner expression has
not been reduced.

Not (((Function x -> Not(x x)) (Function x -> Not(x x)))

Again, this statement tells us that P P = True if and only if P P =
False. This is not how Russell viewed his paradox, but it has the same core
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structure, only it is rephrased in terms of computation, and not set theory. The
computational realization of the paradox is that the predicate doesn’t compute
to true or false, so its not a sensible logical statement. Russell’s discovery of
this paradox in Frege’s set theory shook the foundations of mathematics. To
solve this problem, Russell developed his ramified theory of types, which is the
ancestor of types in programming languages. The program

(function x —> not(x x)) (function x —-> not(x x))

is not typeable in Caml for the same reason the corresponding predicate is not
typeable in Russell’s ramified theory of types. Try typing the above code into
the Caml top-level and see what happens.

More information on Russell’s Paradox may be found in [?].

Encoding Recursion by Passing Self

In the logical view, passing a function to itself as argument is a bad thing. From
a programming view, however, it can be an extremely powerful tool. Passing a
function to itself allows recursive functions to be defined, without Let Rec.

The idea is as follows. In a recursive function, two identical copies of the
function are maintained: one to use, and one to copy again. When a recursive
call is made, one copy of the function is passed along. Inside the recursive call,
two more copies are made. One of these copies is used to do computation, and
the other is saved for a future recursive call. The computation proceeds in this
way until the base case of the recursion occurs, at which point the function
returns.

Let us make this method a little clearer by looking at an example. We wish
to write a recursive summate function that sums the integers {0,1,...,n} for
argument n. We first define

summate0 = Function this -> Function arg ->
If arg = O Then O Else arg + this this (arg - 1)

Then we can write a function call as

summate0 summateO 7

which computes the sum of the integers {0,1,...,7}. summate0 always expects
its first argument this to be itself. It can then use one copy for the recursive call
(the first this) and pass the other copy on for future duplication. So summate0
summateO “primes the pump”, so to speak, by giving the process an initial extra
copy of itself. In general, we can write the whole thing in D as
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summate = Let summ = Function this -> Function arg ->
If arg = 0 Then O Else arg + this this (arg - 1)
In Function arg -> summ summ arg

and invoke as simply summate 7 so we don’t have to expose the self-passing.

The Y-Combinator The Y-combinator is a further abstraction of self-passing.
The idea is that the Y-combinator does the self-application with an abstract
body of code that is passed in as an argument. We first define a function called
almost_y, and then revise that definition to arrive at the real Y-combinator.

almost_y = Function body —->
Let fun = Function this -> Function arg —>
body this arg
In Function arg -> fun fun arg

using almost_y, we can define summate as follows.

summate = almost_y (Function this -> Function arg ->
If arg = O Then O Else arg + this this (arg - 1))

The true Y-combinator actually goes one step further and passes this (this)
as argument, not just this, simplifying what we pass to Y:

Definition 2.11 (Y-Combinator).

combY = Function body ->
Let fun = Function this -> Function arg —->
body (this this) arg
In Function arg -> fun fun arg

The Y-combinator can then be used to define summate as

summate = combY (Function this -> Function arg —>
If arg = O Then O Else arg + this (arg - 1))

2.3.6 Call-By-Name Parameter Passing

In call-by-name parameter passing, the argument to the function is not eval-
uated at function call time, but rather is only evaluated if it is used. This style
of parameter passing is largely of historical interest now, Algol uses it but no
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modern languages do. The reason is that it is much harder to write efficient
compilers if call-by-name parameter passing is used. Nonetheless, it is worth
taking a brief look at call-by-name parameter passing.

Let us define the operational semantics for call-by-name.

e1 = Function z -> e, eles/x] = v

Call-By-N. Applicati
(Call-By-Name Application) p—

Freezing and thawing, defined in Section is a way to get call-by-name
behavior in a call-by-value language. Consider, then, the computation of

(Function x -> Thaw x + Thaw x) (3 - 2)

(3 - 2) is not evaluated until we are inside the body of the function where it
is thawed, and it is then evaluated two separate times. This is precisely the
behavior of call-by-name parameter passing, so Freeze and Thaw can encode it
by this means. The fact that (3 - 2) is executed twice shows the main weakness
of call by name, namely repeated evaluation of the function argument.

Lazy or call-by-need evaluation is a version of call-by-name that caches
evaluated function arguments the first time they are evaluated so it doesn’t
have to re-evaluate them in subsequent uses. Haskell [?, ?] is a pure functional
language with lazy evaluation.

2.4 Operational Equivalence

One of the most basic operations defined over a space of mathematical objects
is the equivalence relation. Equivalence makes sense for programs too, and we
will give it some treatment in this section.

Defining an equivalence relation, 2, for programs is actually not as straight-
forward as one might expect. The initial idea is to define the relation such that
two programs are equivalent if they always lead to the same results when used.
As we will see, however, this definition is not sufficient, and we will need to do
some work to arrive at a satisfactory definition.

Let us begin by looking at a few sample equivalences to get a feel for what
they are. n-conversion (or eta-conversion) is one example of an interesting
equivalence. It is defined as follows.

Function z -> e =
Function z -> (Function = -> e) z, for z not free in e

n-conversion is similar to the proxy pattern in object oriented programming[?].
A closely related law for our freeze/thaw syntax is
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Thaw (Freeze e) e

In both examples, one of the expressions may be replaced by the other without ill
effects (besides perhaps changing execution time), so we say they are equivalent.
We will need to develop a more rigorous definition of equivalence, though.

Equivalence is an important concept because it allows programs to be trans-
formed by replacing bits with equal bits and the programmer need not even be
told since the observed behavior will be the same. Thus, they are transforma-
tions that can be performed by a compiler, and operational equivalence provides
a rigorous foundation for compiler optimization.

2.4.1 Defining Operational Equivalence

Let’s begin by informally strengthening our definition of operational equivalence.
We define equivalence in a manner dating all the way back to Leibniz[?]:

Definition 2.12 (Operational Equivalence (Informal)). Two programs are
equivalent if and only if one can be replaced with the other at any place, and no
external change in behavior will be noticed.

We wish to study equivalence for possibly open programs, because there are
good equivalences such as * + 1 - 1 = 2. We define “at any place” by the
notion of a program context, which is, informally, a D program with some
holes (o) in it. Using this informal definition, testing if e; 2 e5 would be roughly
equivalent to performing the following steps (for all possible programs and all
possible holes, of course).

1. Place e; in the e position and run the program.
2. Do the same for es.

3. If the observable result is the same, they are equivalent, otherwise they
are not.

Now let us elaborate on the notion of a program context. Take a D program
with some “holes” (o) punched in it: replace some subterms of any expression
with e. Then “hole-filling” in this program context C, written Cf[e], means
replacing e with e in C'. Hole filling is like substitution, but without the concerns
of bound or free variables. It is direct replacement with no conditions.

Let us look at an example of contexts and hole-filling using n-conversion as
we defined above. Let

C = (Function z -> Function x -> e) z
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Now, filling the hole with x + 2 is simply written

((Function z -> Function x -> e) z)[x + 2] =
(Function z -> Function x -> X + 2) z

Finally, we are ready to rigorously define operational equivalence.

~

Definition 2.13 (Operational Equivalence). e 2 ¢’ if and only if for all
contexts C, Cle] = v for some v if and only if Cle'] = v for some v'.

Another way to phrase this definition is that two expressions are equivalent
if in any possible context, C, one terminates if the other does. We call this
operational equivalence because it is based on the interpreter for the language,
or rather it is based on the operational semantics. The most interesting, and
perhaps nonintuitive, part of this definition is that nothing is said about the
relationship between v and v’. In fact, they may be different in theory. However,
intuition tells us that v and v’ must be very similar, since their equivalence hold
for any possible context.

For example, to prove that 2 2 3, we must demonstrate a context C' such
that C[2] = v and C[3] # v’ for any v’ in the language. One possible C' is

C =Let Rec fun x = If x = 2 Then O Else fun x In fun e

Then clearly, C[2] = 2 and C[3] % v for any v.

The only problem with this definition of equivalence is its “incestuous”
nature—there is no absolute standard of equivalence removed from the lan-
guage. Domain theory is a mathematical discipline which defines an algebra
of programs in terms of existing mathematical objects (complete and continu-
ous partial orders). We are not going to discuss domain theory here, mainly
because it does not generalize well to programming languages with side effects.
[?] explores the relationship between operational semantics and domain theory.

2.4.2 Example Equivalences
In this section, we present some general equivalence principles for in D.

Definition 2.14 (Reflexivity).
e=e

Definition 2.15 (Symmetry).

exe ifd e

Definition 2.16 (Transitivity).

" / / 2
eXe ifeXe ande Ze
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Definition 2.17 (Congruence).
Cle] 2 Cle'] ifexe
Definition 2.18 (8-Equivalence).

((Function x -> e) v) = (e{v/z})

where e{v/x} is the capture-avoiding substitution defined below.
Definition 2.19 (7-Equivalence).

(Function x -> e) = ((Function z -> Function x -> e) z)
Definition 2.20 (a-Equivalence).

(Function x -> e) = ((Function y -> e){y/z})

Definition 2.21.

(n +n') = the sum of n and n’

Similar rules hold for -, And, Or, Not, and =.

Definition 2.22.

(If True Then ¢ Else €') e

A similar rule holds for If False...

Definition 2.23.
If e= v thene 2 v

Equivalence transformations on programs can be used to justify results of
computations instead of directly computing with the interpreter; it is often
easier. An important component of compiler optimization is applying transfor-
mations, such as the ones above, that preserve equivalence.

2.4.3 Capture-Avoiding Substitution

The variable-capture problem has appeared in the (-equivalence above. We use
renaming substitution, or capture-avoiding substitution, to deal with the
problem of variable capture. Renaming substitution, e{e’/x}, is a generalized
form of substitution that differs from our previously defined substitution oper-
ation ele’/z] in that e’ does not have to be closed. In such a case, we want to
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replace x with ¢/, but avoid capture from occurring. This is implemented by
renaming any capturing variable bindings in e. For example,

(Function z -> (Function x -> y + x) z){x + 2/y} =
(Function z -> Function x1 -> x + 2 + x1) z

Observe, in the above example, that if we had just substituted z+ 2 in for y,
the x would have been “captured.” This is a bad thing, because it contradicts
our definition of equivalence. We should be able to replace one equivalent thing
for another anywhere, but in

Function x -> (Function z -> (Function x -> y + x) 2z) (x + 2)
if we ignored capture in the g-rule we would get
Function x -> (Function z -> (Function x -> (x + 2) + x) 2z)

which is clearly not equivalent to the first expression. To avoid this problem,
the capture-avoiding substitution operation renames x to a fresh variable not
occurring in e or €', z; in this case.

The Lambda-Calculus Now that we have defined capture-avoiding substi-
tution, we briefly consider the lambda-calculus. In Section[2:3] we saw how to
encode tuples, lists, Let statements, freezing and thawing, and even recursion
in D. The encoding approach is very powerful, and also gives us a way to un-
derstand complex languages based on our understanding of simpler ones. Even
numbers, booleans, and if-then-else statements are encodable, although we will
skip these topics. Thus, all that is needed is functions and application to make
a Turing-complete programming language. This language is known as the pure
lambda calculus, because functions are usually written as Az.e instead of
Function =z -> e.

Execution in lambda calculus is extremely straightforward and concise. The
main points are as follows.

e Even programs with free variables can execute (or reduce in lambda-
calculus terminology).

e Execution can happen anywhere, e.g. inside a function body that hasn’t
been called yet.

o (Az.e)e’ = e{e’/x} is the only execution rule, called S-reduction.

This form of computation is conceptually interesting, but is more distant
from how actual computer languages execute.
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2.4.4 Proving Equivalences Hold

It is surprisingly difficult to actually prove any of these equivalences hold. Even
1 + 122 is hard to prove. See [?].
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