
Phasor mathematics

This worksheet and all related files are licensed under the Creative Commons Attribution License,
version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/, or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. The terms and
conditions of this license allow for free copying, distribution, and/or modification of all licensed works by
the general public.

Resources and methods for learning about these subjects (list a few here, in preparation for your
research):
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Questions

Question 1

Provide a definition for phasor, as the term applies to electrical calculations.
file 04034

Question 2

A series is a very important concept in mathematics. The common notation for a ”series” looks
something like this (a type of ”geometric” series is shown here as an example):

∞
∑

n=0

xn

Explain what this notation means, and how we may approximate the value of a series for a finite value
of n.
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Question 3

A common mathematical function known as factorial is represented by an exclamation point following
a positive integer number. The following are all examples of factorials:

1! = 1 2! = 2 3! = 6 4! = 24 5! = 120 6! = 720

Explain in your own words what this ”factorial” function represents. What procedure (algorithm) would
we use to arithmetically calculate the value of any factorial given to us?
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Question 4

Euler’s constant, that ubiquitous constant in mathematics symbolized by the letter e, may be found as
the result of the following mathematical series:

e =

∞
∑

n=0

1

n!

Approximate the value of e in steps, using the following table:

n n! 1/n! ≈ e
0
1
2
3
4
5
6
7

Also, express this series as a partial sum up to n = 7.
file 04036
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Question 5

The trigonometric function of cosine may be found as the result of an infinite series. Note that this
series assumes the angle x to be expressed in units of radians, not degrees:

cosx =
∞
∑

n=0

(−1)n
x2n

(2n)!

Approximate the cosine of 1 radian (cos 1) in steps, using the following table, then write the partial sum
expansion up to n = 5:

n (−1)n x2n (2n)! ≈ cosx
0
1
2
3
4
5
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Question 6

The trigonometric function of sine may be found as the result of an infinite series. Note that this series
assumes the angle x to be expressed in units of radians, not degrees:

sinx =

∞
∑

n=0

(−1)n
x2n+1

(2n+ 1)!

Approximate the sine of 1 radian (sin 1) in steps, using the following table, then write the partial sum
expansion up to n = 5:

n (−1)n x2n+1 (2n+ 1)! ≈ sinx
0
1
2
3
4
5
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Question 7

Compare these three mathematical series, one for ex, one for cosx, and one for sinx:

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+
x6

6!
+
x7

7!
+ · · ·

cosx = 1−
x2

2!
+
x4

4!
−
x6

6!
+ · · ·

sinx = x−
x3

3!
+
x5

5!
−
x7

7!
+ · · ·

Note similarities in the terms of these three series. Aside from signs, it would appear the cosine series
contains all the even-powered terms of ex and the sine series contains all the odd-powered terms of ex.
Leonhard Euler, the Swiss mathematician who lived from 1707 to 1783, found a connection between these
three series which became known as Euler’s relation.

You too can find this same connection if you substitute jx for x in the first (ex) series, and then
multiply all terms in the sine series by j. Leave the cosine series unaltered. Remember that j =

√
−1 and

that j2 = −1, j3 = −j, j4 = 1, j5 = j, etc.
file 04058

Question 8

A fascinating mathematical identity discovered by Leonhard Euler (1707-1783), regarded by some as the
most beautiful equation in all of mathematics, relates five of mathematics’ fundamental constants together:

eiπ + 1 = 0

Use Euler’s relation to translate this identity into trigonometric terms, where the truth of this identity
will become more evident.
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Question 9

If you have studied complex numbers, you know that the same complex quantity may be written in

two different forms: rectangular and polar. Take for example the complex quantity
√
3
2 + j 12 . The following

illustration shows this point located on the complex plane, along with its rectangular dimensions:

Rectangular notation

j 1/2

√ 3 / 2

Next, we see the same point, on the same complex plane, along with its polar coordinates:

1
π/6 (radians)

Polar notation

Written out, we might express the equivalence of these two notations as such:

√
3

2
+ j
1

2
= 1 6

π

6
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Expressed in a more general form, the equivalence between rectangular and polar notations would look
like this:

a+ jb = c 6 Θ

However, a problem with the ”angle” symbol ( 6 ) is that we have no standardized way to deal with it
mathematically. We would have to invent special rules to describe how to add, subtract, multiply, divide,
differentiate, integrate, or otherwise manipulate complex quantities expressed using this symbol. A more
profitable alternative to using the ”angle” symbol is shown here:

a+ jb = cejΘ

Explain why this equivalence is mathematically sound.
file 04059

Question 10

Electrical engineers usually express the frequency of an AC circuit in terms of angular velocity, measured
in units of radians per second rather than cycles per second (Hertz, or Hz).

First, explain what a radian is. Next, write an equation relating frequency (f) in Hertz to angular
velocity (ω) in radians per second. Hint: the relationship between the two is perhaps most easily understood
in terms of a two-pole AC generator, or alternator, where each revolution of the rotor generates one full
cycle of AC.
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Question 11

Suppose we have a simple two-pole AC generator, or alternator, the two stator windings on either side
of the rotor connected together so as to function as a single winding:

N

S
Load

Ideally, this machine will generate a sinusoidal output voltage as the rotor turns. Suppose now that we
write index marks on the rotor shaft to measure its position as it turns, and we represent that position with
the Greek letter ”Theta” (Θ). It is purely arbitrary where we label the ”zero” position on the shaft, so we
choose to mark that point at some easily-identified point on the output waveform: the place where the coil
output voltage peaks positive while rotating counter-clockwise. When spun, the instantaneous output voltage
will then match the cosine function. In other words, the instantaneous output voltage will be proportional
to the cosine of the shaft angle:

N

S

θ0 π/2 π 3π/2 2π

V0

-V0

vcoil = V0 cos θ

vcoil

We may represent the coil’s voltage with the equation vcoil = V0 cosΘ. If we precisely know the peak
voltage value (V0) and the shaft position (Θ), we may precisely predict the coil voltage at any instant in
time (vcoil).

However, there is a more complete way of describing what is happening in this alternator. The equation
vcoil = V0 cosΘ is adequate for predicting coil voltage from shaft position, but it is not adequate for doing
the reverse: predicting shaft position from coil voltage. Note that there are only two points on the voltage
waveform where a voltage value corresponds to a unique shaft position, and those points are the positive and
negative peaks. At any other value of instantaneous voltage (−V0 < vcoil < V0), there are multiple possible
shaft positions. The most obvious example of this is where vcoil = 0. Here, the shaft position could be

π
2

radians, or it could be 3π2 radians. Note that we consider the positive peak to occur at only one position
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(0 radians) and not two positions (0 and 2π radians) in one revolution because 2π radians is identical to 0
radians just as 360 degrees is equivalent to 0 degrees.

In order to uniquely describe the alternator’s shaft position in terms of output voltage, we need more
information than just the instantaneous voltage at one coil. What we need is another coil, an imaginary

coil, shifted in angular position from the first coil:

N

S
Real

Imaginary

Load

Like the first coil (the real coil), the imaginary coil’s output voltage will also be sinusoidal. However, it
will generate an output voltage at a different phase than the real coil’s output voltage.

Plot the waveform of the imaginary coil’s voltage, superimposed on the waveform of the real coil’s
output voltage, and then write an equation expressing both instantaneous voltages as a complex sum: the
real coil’s voltage as a real number and the imaginary coil’s voltage as an imaginary number (complete with
the j prefix). Then, use Euler’s relation to re-write this complex sum as a complex exponential expression.

θ0 π/2 π 3π/2 2π

V0

-V0

vreal

vreal = V0 cos θ
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Question 12
∫

f(x) dx Calculus alert!

Impedance is defined as the complex ratio of voltage and current:

Z =
V

I

We may determine the complex definition of impedance provided by an inductor if we consider the
equation relating inductor voltage and inductor current:

v = L
d

dt
[i(t)]

First, substitute a phasor expression of current into the above equation, then differentiate with respect
to time to obtain an expression for voltage:

i(t) = ejωt

v = L
d

dt

[

ejωt
]

Then, divide the two phasor expressions to obtain an expression for inductive impedance.
file 04063

Question 13
∫

f(x) dx Calculus alert!

Impedance is defined as the complex ratio of voltage and current:

Z =
V

I

We may determine the complex definition of impedance provided by an capacitor if we consider the
equation relating capacitor voltage and capacitor current:

i = C
d

dt
[v(t)]

First, substitute a phasor expression of voltage into the above equation, then differentiate with respect
to time to obtain an expression for current:

v(t) = ejωt

i = C
d

dt

[

ejωt
]

Then, divide the two phasor expressions to obtain an expression for capacitive impedance.
file 04064
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Answers

Answer 1

A ”phasor” is a complex-number representation of an electrical quantity, such as voltage, current, or
impedance.

Answer 2

A ”series” is comprised of a set of terms added together, each term related to the others by a common
form, distinguished only by the incrementing or decrementing of a common variable. To illustrate by example,
here is an expansion of the geometric series shown in the question:

∞
∑

n=0

xn = x0 + x1 + x2 + x3 + x4 + · · ·+ x∞

Follow-up question: what do you think the value of this series would be if the value of x was greater
than (positive) 1? What if x = 0? What if 0 < x < 1?

Answer 3

I’ll let you research this on your own! The algorithm isn’t that difficult to figure out just by examining
the sequence of factorials given in the question.

Follow-up question: calculate 0!

Answer 4

n n! 1/n! ≈ e
0 1 1 1
1 1 1 2
2 2 0.5 2.5
3 6 0.16667 2.66667
4 24 0.04167 2.70833
5 120 0.00833 2.71667
6 720 0.00139 2.71806
7 5040 0.00020 2.71825

Shown here is the partial sum up to n = 7:

1

0!
+
1

1!
+
1

2!
+
1

3!
+
1

4!
+
1

5!
+
1

6!
+
1

7!

. . . and again, in slightly different form . . .

1 + 1 +
1

2
+
1

6
+
1

24
+
1

120
+
1

720
+

1

5040
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Answer 5

n (−1)n x2n (2n)! ≈ cosx
0 1 1 1 1
1 -1 1 2 0.5
2 1 1 24 0.5416667
3 -1 1 720 0.5402778
4 1 1 40320 0.5403026
5 -1 1 3628800 0.5403023

Shown here is the partial sum expansion up to n = 5:

cosx ≈ 1−
x2

2!
+
x4

4!
−
x6

6!
+
x8

8!
−
x10

10!

Answer 6

n (−1)n x2n+1 (2n+ 1)! ≈ sinx
0 1 1 1 1
1 -1 1 6 0.8333333
2 1 1 120 0.8416667
3 -1 1 5040 0.8414683
4 1 1 362880 0.8414710
5 -1 1 39916800 0.8414710

Shown here is the partial sum expansion up to n = 5:

sinx ≈ x−
x3

3!
+
x5

5!
−
x7

7!
+
x9

9!
−
x11

11!

Challenge question: which series (sine or cosine) would a computer be able to calculate quickest, given
a certain number of digits (precision) past the decimal point? In other words, which of these two infinite
series converges fastest?

Shown here is a partial sum expansion of the cosine function, for comparison:

cosx ≈ 1−
x2

2!
+
x4

4!
−
x6

6!
+
x8

8!
−
x10

10!
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Answer 7

First, I’ll perform the substitutions and multiplications for you:

ejx = 1 + jx+
(jx)2

2!
+
(jx)3

3!
+
(jx)4

4!
+
(jx)5

5!
+
(jx)6

6!
+
(jx)7

7!
+ · · ·

cosx = 1−
x2

2!
+
x4

4!
−
x6

6!
+ · · ·

j sinx = jx− j
x3

3!
+ j

x5

5!
− j

x7

7!
+ · · ·

If you properly calculate all the powers of j, you will find this relationship between these three series:

ejx = cosx+ j sinx

Answer 8

cosπ + j sinπ + 1 = 0

Answer 9

The equivalence shown is based on Euler’s relation, which is left to you as an exercise to prove.

Answer 10

A radian is that angle describing a sector of a circle, whose arc length is equal to the radius of the circle:

1 radian

r

r

r

Next, the equivalence between angular velocity (ω) and frequency (f):

ω = 2πf
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Answer 11

θ0 π/2 π 3π/2 2π

V0

-V0

vreal

vreal = V0 cos θ

vimaginary

vimaginary = V0 sin θ

Alternator output as a complex sum:

Vout = V0 cosΘ + jV0 sinΘ

Alternator output as a complex exponential:

Vout = V0e
jΘ

Answer 12

ZL = jωL

Follow-up question: explain why the following expression for inductive impedance is equivalent to the
one shown above:

ZL = ωL ejπ/2

Answer 13

ZC =
1

jωC
or ZC = −j

1

ωC

Follow-up question: explain why the following expression for capacitive impedance is equivalent to the
one shown above:

ZC =
1

ωC
ej(−π/2)
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Notes

Notes 1

The ingredient of complex must be present in any definition of a phasor. A phasor, while it may be
classified as a type of vector (possessing both magnitude and direction), is not the same as the vectors
commonly used in other areas of physics (e.g. force vectors, electric/magnetic field vectors, etc.).

Notes 2

The purpose of this question is to familiarize students with the concept of a mathematical series, and
the notation used to describe series.

Notes 3

In addition to being very useful in probability calculations, factorials are frequently seen in important
mathematical series, including those used to calculate e, sin, and cos.

Notes 4

It should go without saying that students should consult their electronic calculators (or a textbook) to
see what the actual value of e is, and compare that to their partial sum approximation.

This questions provides students with the opportunity to see where e comes from, and also to explore
the behavior of a series by calculating partial sums. Many students find it fascinating to see the sequence of
partial sums converge on the true value of e, seeing how this formerly mysterious constant can actually be
calculated using nothing more than repeated arithmetic.

Notes 5

It should go without saying that students should consult their electronic calculators to see what the
actual value of cos 1 is, and compare that to their partial sum approximation. Students should also feel free
to explore the validity of this series by approximating the cosine of angles other than 1 radian.

This questions provides students with the opportunity to see how cosx may be arithmetically calculated.
This, in fact, is how many digital electronic computers determine trigonometric functions: from partial sum
approximations.

Notes 6

It should go without saying that students should consult their electronic calculators to see what the
actual value of sin 1 is, and compare that to their partial sum approximation. Students should also feel free
to explore the validity of this series by approximating the sine of angles other than 1 radian.

This questions provides students with the opportunity to see how sinx may be arithmetically calculated.
This, in fact, is how many digital electronic computers determine trigonometric functions: from partial sum
approximations.

Notes 7

For those students who need a little more help, here is the ejx series before and after simplification:

ejx = 1 + jx+
(jx)2

2!
+
(jx)3

3!
+
(jx)4

4!
+
(jx)5

5!
+
(jx)6

6!
+
(jx)7

7!
+ · · ·

ejx = 1 + jx−
x2

2!
− j

x3

3!
+
x4

4!
+ j

x5

5!
−
x6

6!
− j

x7

7!
+ · · ·

Now, the composition of the ejx series as being the sum of the cosx series and the j sinx series should
be more evident.
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Notes 8

The beauty of this identity cannot be denied, relating five fundamental constants of mathematics (e, i,
π, 1, and 0) together in one simple equation.

Note: here I break stylistic convention by using the more traditionally mathematical i instead of the
traditionally electrical j to represent

√
−1. For those who just can’t stand to see i represent anything other

than instantaneous current, here you go:

ejπ + 1 = 0

Are you happy now?

Notes 9

This question should probably be preceded by #04058, which asks students to explore the relationship
between the infinite series for ex, cosx, and sinx. In any case, your students will need to know Euler’s
relation:

ejx = cosx+ j sinx

Notes 10

Personally, I find the rotating alternator model the best way to comprehend the relationship between
angular velocity and frequency. If each turn of the rotor is one cycle (2π radians), and frequency is cycles
per second, then one revolution per second will be 1 Hertz, which will be 2π radians per second.

Notes 11

Here, I tried my best to give simple, real-world meaning to phasor notation. Interestingly, the oft-
lamented label of ”imaginary” actually works to my advantage, describing the output of a coil that has no
useful purpose but to define the alternator’s shaft position in terms of a quadrature voltage.

Notes 12

In order to solve this problem, your students must remember the basic rule for differentiating exponential
functions:

d

dx
[eax] = aeax

This is one of the beauties of representing sinusoidal voltages and currents in complex exponential
(phasor) form: it makes differentiation and integration relatively easy! In this sense, the Euler relation of
ejx = cosx+ j sinx is a transform function, transforming one type of mathematical problem into a different
(easier) type.

Notes 13

In order to solve this problem, your students must remember the basic rule for differentiating exponential
functions:

d

dx
[eax] = aeax

This is one of the beauties of representing sinusoidal voltages and currents in complex exponential
(phasor) form: it makes differentiation and integration relatively easy! In this sense, the Euler relation of
ejx = cosx+ j sinx is a transform function, transforming one type of mathematical problem into a different
(easier) type.
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