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Resources and methods for learning about these subjects (list a few here, in preparation for your
research):
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Questions

Question 1

In this AC circuit, the resistor offers 300 Ω of resistance, and the inductor offers 400 Ω of reactance.
Together, their series opposition to alternating current results in a current of 10 mA from the 5 volt source:

R = 300 Ω

XL = 400 Ω

5 VAC

I = 10 mA

How many ohms of opposition does the series combination of resistor and inductor offer? What name
do we give to this quantity, and how do we symbolize it, being that it is composed of both resistance (R)
and reactance (X)?
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Question 2

In this AC circuit, the resistor offers 3 kΩ of resistance, and the capacitor offers 4 kΩ of reactance.
Together, their series opposition to alternating current results in a current of 1 mA from the 5 volt source:

5 VAC

XC = 4 kΩ

R = 3 kΩ

I = 1 mA

How many ohms of opposition does the series combination of resistor and capacitor offer? What name
do we give to this quantity, and how do we symbolize it, being that it is composed of both resistance (R)
and reactance (X)?
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Question 3

While studying DC circuit theory, you learned that resistance was an expression of a component’s
opposition to electric current. Then, when studying AC circuit theory, you learned that reactance was
another type of opposition to current. Now, a third term is introduced: impedance. Like resistance and
reactance, impedance is also a form of opposition to electric current.

Explain the difference between these three quantities (resistance, reactance, and impedance) using your
own words.

file 01567
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Question 4

In DC circuits, we have Ohm’s Law to relate voltage, current, and resistance together:

E = IR

In AC circuits, we similarly need a formula to relate voltage, current, and impedance together. Write
three equations, one solving for each of these three variables: a set of Ohm’s Law formulae for AC circuits.
Be prepared to show how you may use algebra to manipulate one of these equations into the other two forms.

file 00590

Question 5

It is often necessary to represent AC circuit quantities as complex numbers rather than as scalar numbers,
because both magnitude and phase angle are necessary to consider in certain calculations.

When representing AC voltages and currents in polar form, the angle given refers to the phase shift
between the given voltage or current, and a ”reference” voltage or current at the same frequency somewhere
else in the circuit. So, a voltage of 3.5 V 6 − 45o means a voltage of 3.5 volts magnitude, phase-shifted 45
degrees behind (lagging) the reference voltage (or current), which is defined to be at an angle of 0 degrees.

But what about impedance (Z)? Does impedance have a phase angle, too, or is it a simple scalar number
like resistance or reactance?

Calculate the amount of current that would go through a 100 mH inductor with 36 volts RMS applied
to it at a frequency of 400 Hz. Then, based on Ohm’s Law for AC circuits and what you know of the phase
relationship between voltage and current for an inductor, calculate the impedance of this inductor in polar

form. Does a definite angle emerge from this calculation for the inductor’s impedance? Explain why or why
not.
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Question 6

Express the impedance (Z) in both polar and rectangular forms for each of the following components:

• A resistor with 500 Ω of resistance
• An inductor with 1.2 kΩ of reactance
• A capacitor with 950 Ω of reactance
• A resistor with 22 kΩ of resistance
• A capacitor with 50 kΩ of reactance
• An inductor with 133 Ω of reactance
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Question 7

Real inductors and capacitors are never purely reactive. There will inevitably be some resistance intrinsic
to these devices as well.

Suppose an inductor has 57 Ω of winding resistance, and 1500 Ω of reactance at a particular frequency.
How would this combination be expressed as a single impedance? State your answer in both polar and
rectangular forms.

file 00592
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Question 8

Not only do reactive components unavoidably possess some parasitic (”stray”) resistance, but they also
exhibit parasitic reactance of the opposite kind. For instance, inductors are bound to have a small amount of
capacitance built-in, and capacitors are bound to have a small amount of inductance built-in. These effects
are not intentional, but they exist anyway.

Describe how a small amount of capacitance comes to exist within an inductor, and how a small amount
of inductance comes to exist within a capacitor. Explain what it is about the construction of these two
reactive components that allows the existence of ”opposite” characteristics.
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Question 9

Suppose you were given a component and told it was either a resistor, an inductor, or a capacitor.
The component is unmarked, and impossible to visually identify. Explain what steps you would take to
electrically identify what type of component it was, and what its value was, without the use of any test
equipment except a signal generator, a multimeter (capable of measuring nothing but voltage, current, and
resistance), and some miscellaneous passive components (resistors, capacitors, inductors, switches, etc.).
Demonstrate your technique if possible.

file 02120

Question 10

Suppose you were given two components and told one was an inductor while the other was a capacitor.
Both components are unmarked, and impossible to visually distinguish or identify. Explain how you could
use an ohmmeter to distinguish one from the other, based on each component’s response to direct current
(DC).

Then, explain how you could approximately measure the value of each component using nothing
more than a sine-wave signal generator and an AC meter capable only of precise AC voltage and current
measurements across a wide frequency range (no direct capacitance or inductance measurement capability),
and show how the reactance equation for each component (L and C) would be used in your calculations.
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Question 11

If a sinusoidal voltage is applied to an impedance with a phase angle of 0o, the resulting voltage and
current waveforms will look like this:

Time 

e

i

e

i

Given that power is the product of voltage and current (p = ie), plot the waveform for power in this
circuit.
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Question 12

If a sinusoidal voltage is applied to an impedance with a phase angle of 90o, the resulting voltage and
current waveforms will look like this:

Time 

e

i

e

i

Given that power is the product of voltage and current (p = ie), plot the waveform for power in this
circuit. Also, explain how the mnemonic phrase ”ELI the ICE man” applies to these waveforms.
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Question 13

If a sinusoidal voltage is applied to an impedance with a phase angle of -90o, the resulting voltage and
current waveforms will look like this:

Time 

e

i

e

i

Given that power is the product of voltage and current (p = ie), plot the waveform for power in this
circuit. Also, explain how the mnemonic phrase ”ELI the ICE man” applies to these waveforms.
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Question 14

Speakers used for audio reproduction systems (stereos, public address systems, etc.) act as power loads
to the amplifiers which drive them. These devices convert electrical energy into sound energy, which then
dissipates into the surrounding air. In this manner, a speaker acts much like a resistor: converting one
form of energy (electrical) into another, and then dissipating that energy into the surrounding environment.
Naturally, it makes sense to describe the nature of such loads in units of ”ohms” (Ω), so that they may be
mathematically analyzed in a manner similar to resistors.

Yet, despite the dissipative nature of audio speakers, their ”ohms” rating is specified as an impedance

rather than a resistance or a reactance. Explain why this is.
file 00634

Question 15

Engineers often write the capacitive and inductive reactance formulae in a different way from what you
may have seen:

XL = ωL

XC =
1

ωC

These equations should look familiar to you, from having seen similar equations containing a term for
frequency (f). Given these equations’ forms, what is the mathematical definition of ω? In other words, what
combination of variables and constants comprise ”ω”, and what unit is it properly expressed in?
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Question 16

Engineers often calculate the impedance of pure capacitances and pure inductances in a way that directly
provides results in rectangular (complex) form:

ZL = jωL

ZC = −j
1

ωC

The bold-faced type (Z instead of Z) signifies the calculated impedance as a complex rather than a
scalar quantity. Given these equations’ forms, what is the mathematical definition of ω? In other words,
what combination of variables and constants comprise ”ω”, and what unit is it properly expressed in?

Also, determine what the equations would look like for calculating the impedance of these series
networks:

L

R R

C

Z = ??? Z = ???
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Question 17

The mathematical inverse, or reciprocal, of resistance (R) is a quantity called conductance (G).

G =
1

R

Is there an equivalent quantity for impedance (Z)? What is the reciprocal of impedance, and what unit
of measurement is it expressed in? Hint: its symbol is Y .

Is there an equivalent quantity for reactance (X)? What is the reciprocal of reactance, and what unit
of measurement is it expressed in? Hint: its symbol is B.
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Question 18

The mathematical inverse, or reciprocal, of resistance (R) is a quantity called conductance (G).

G =
1

R

Is there an equivalent quantity for reactance? What is the reciprocal of reactance, and what unit of
measurement is it expressed in? Hint: its symbol is B.
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Question 19

Don’t just sit there! Build something!!

Learning to mathematically analyze circuits requires much study and practice. Typically, students
practice by working through lots of sample problems and checking their answers against those provided by
the textbook or the instructor. While this is good, there is a much better way.

You will learn much more by actually building and analyzing real circuits, letting your test equipment
provide the ”answers” instead of a book or another person. For successful circuit-building exercises, follow
these steps:

1. Carefully measure and record all component values prior to circuit construction.
2. Draw the schematic diagram for the circuit to be analyzed.
3. Carefully build this circuit on a breadboard or other convenient medium.
4. Check the accuracy of the circuit’s construction, following each wire to each connection point, and
verifying these elements one-by-one on the diagram.

5. Mathematically analyze the circuit, solving for all voltage and current values.
6. Carefully measure all voltages and currents, to verify the accuracy of your analysis.
7. If there are any substantial errors (greater than a few percent), carefully check your circuit’s construction
against the diagram, then carefully re-calculate the values and re-measure.

For AC circuits where inductive and capacitive reactances (impedances) are a significant element in
the calculations, I recommend high quality (high-Q) inductors and capacitors, and powering your circuit
with low frequency voltage (power-line frequency works well) to minimize parasitic effects. If you are on
a restricted budget, I have found that inexpensive electronic musical keyboards serve well as ”function
generators” for producing a wide range of audio-frequency AC signals. Be sure to choose a keyboard ”voice”
that closely mimics a sine wave (the ”panflute” voice is typically good), if sinusoidal waveforms are an
important assumption in your calculations.

As usual, avoid very high and very low resistor values, to avoid measurement errors caused by meter
”loading”. I recommend resistor values between 1 kΩ and 100 kΩ.

One way you can save time and reduce the possibility of error is to begin with a very simple circuit and
incrementally add components to increase its complexity after each analysis, rather than building a whole
new circuit for each practice problem. Another time-saving technique is to re-use the same components in a
variety of different circuit configurations. This way, you won’t have to measure any component’s value more
than once.
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Answers

Answer 1

Ztotal = 500 Ω.

Follow-up question: suppose that the inductor suffers a failure in its wire winding, causing it to ”open.”
Explain what effect this would have on circuit current and voltage drops.

Answer 2

Ztotal = 5 kΩ.

Answer 3

The fundamental distinction between these terms is one of abstraction: impedance is the most general
term, encompassing both resistance and reactance. Here is an explanation given in terms of logical sets
(using a Venn diagram), along with an analogy from animal taxonomy:

Impedance

Resistance

Reactance

Mammal

Horse

Rabbit
R

X

Z

Resistance is a type of impedance, and so is reactance. The difference between the two has to do with
energy exchange.
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Answer 4

E = IZ

I =
E

Z

Z =
E

I

If using phasor quantities (complex numbers) for voltage, current, and impedance, the proper way to
write these equations is as follows:

E = IZ

I =
E

Z

Z =
E

I

Bold-faced type is a common way of denoting vector quantities in mathematics.

Answer 5

ZL = 251.33 Ω 6 90o

Answer 6

• A resistor with 500 Ω of resistance: 500 Ω 6 0o or 500 + j0 Ω
• An inductor with 1.2 kΩ of reactance: 1.2 kΩ 6 90o or 0 + j1.2k Ω
• A capacitor with 950 Ω of reactance: 950 Ω 6 -90o or 0 - j950 Ω
• A resistor with 22 kΩ of resistance: 22 kΩ 6 0o or 22k + j0 Ω
• A capacitor with 50 kΩ of reactance: 50 kΩ 6 -90o or 0 - j50k Ω
• An inductor with 133 Ω of reactance: 133 Ω 6 90o or 0 + j133 Ω

Follow-up question: what would the phasors look like for resistive, inductive, and capacitive impedances?

Answer 7

ZL = 1501 Ω 6 87.8o = 57 + j1500 Ω

Answer 8

Capacitance exists any time there are two conductors separated by an insulating medium. Inductance
exists any time a magnetic field is permitted to exist around a current-carrying conductor. Look for each of
these conditions within the respective structures of inductors and capacitors to determine where the parasitic
effects originate.

Answer 9

Did you really think I would give you the answer to this?

10



Answer 10

Did you really think I would give you the answers to a question like this?

Challenge question: suppose the only test equipment you had available was a 6-volt battery and an
old analog volt-milliammeter (with no resistance check function). How could you use this primitive gear to
identify which component was the inductor and which was the capacitor?

Answer 11

Time 

e

i

e
i p

Answer 12

Time 

e

i

e

i
p

The mnemonic phrase, ”ELI the ICE man” indicates that this phase shift is due to an inductance rather
than a capacitance.
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Answer 13

Time 

e

i

e

i
p

The mnemonic phrase, ”ELI the ICE man” indicates that this phase shift is due to a capacitance rather
than an inductance.

Answer 14

The term ”resistance” refers to the very specific phenomenon of electrical ”friction,” converting electrical
energy into thermal energy. The term ”reactance” refers to electric current opposition resulting from a non-
dissipative exchange of energy between the component and the rest of the circuit. The term ”impedance”
refers to any form of opposition to electric current, whether that opposition be dissipative or non-dissipative
in nature.

While speakers are primarily dissipative devices, most of the energy dissipated by a speaker is not in
the form of heat.

Answer 15

ω = 2πf , and it is expressed in units of radians per second.

Answer 16

ω = 2πf is called the angular velocity of the circuit, and it is expressed in units of radians per second.

The impedance equations for the series LR and RC networks are as follows:

ZLR = R+ jωL

ZRC = R− j
1

ωC
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Answer 17

Y = admittance, which is the reciprocal of impedance.

Y =
1

Z

Admittance is expressed in the unit of siemens.

B = susceptance, which is the reciprocal of reactance.

B =
1

X

Susceptance is also expressed in the unit of siemens.

Answer 18

B = susceptance, which is the reciprocal of reactance.

B =
1

X

Susceptance, like conductance (G) and admittance (Y ) is expressed in the unit of siemens.

Answer 19

Let the electrons themselves give you the answers to your own ”practice problems”!
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Notes

Notes 1

Students may experience difficulty arriving at the same quantity for impedance shown in the answer. If
this is the case, help them problem-solve by suggesting they simplify the problem: short past one of the
load components and calculate the new circuit current. Soon they will understand the relationship between
total circuit opposition and total circuit current, and be able to apply this concept to the original problem.

Ask your students why the quantities of 300 Ω and 400 Ω do not add up to 700 Ω like they would if
they were both resistors. Does this scenario remind them of another mathematical problem where 3+4 = 5?
Where have we seen this before, especially in the context of electric circuits?

Once your students make the cognitive connection to trigonometry, ask them the significance of these
numbers’ addition. Is it enough that we say a component has an opposition to AC of 400 Ω, or is there more
to this quantity than a single, scalar value? What type of number would be suitable for representing such a
quantity, and how might it be written?

Notes 2

Students may experience difficulty arriving at the same quantity for impedance shown in the answer. If
this is the case, help them problem-solve by suggesting they simplify the problem: short past one of the
load components and calculate the new circuit current. Soon they will understand the relationship between
total circuit opposition and total circuit current, and be able to apply this concept to the original problem.

Ask your students why the quantities of 3 kΩ and 4 kΩ do not add up to 7 kΩ like they would if they
were both resistors. Does this scenario remind them of another mathematical problem where 3 + 4 = 5?
Where have we seen this before, especially in the context of electric circuits?

Once your students make the cognitive connection to trigonometry, ask them the significance of these
numbers’ addition. Is it enough that we say a component has an opposition to AC of 4 kΩ, or is there more
to this quantity than a single, scalar value? What type of number would be suitable for representing such a
quantity, and how might it be written?

Notes 3

The given answer is far from complete. I’ve shown the semantic relationship between the terms
resistance, reactance, and impedance, but I have only hinted at the conceptual distinctions between them.
Be sure to discuss with your students what the fundamental difference is between resistance and reactance,
in terms of electrical energy exchange.

Notes 4

Although the use of phasor quantities for voltage, current, and impedance in the AC form of Ohm’s
Law yields certain distinct advantages over scalar calculations, this does not mean one cannot use scalar
quantities. Often it is appropriate to express an AC voltage, current, or impedance as a simple scalar number.

Notes 5

This is a challenging question, because it asks the student to defend the application of phase angles to a
type of quantity that does not really possess a wave-shape like AC voltages and currents do. Conceptually,
this is difficult to grasp. However, the answer is quite clear through the Ohm’s Law calculation (Z = E

I
).

Although it is natural to assign a phase angle of 0o to the 36 volt supply, making it the reference
waveform, this is not actually necessary. Work through this calculation with your students, assuming different
angles for the voltage in each instance. You should find that the impedance computes to be the same exact
quantity every time.

Notes 6

In your discussion with students, emphasize the consistent nature of phase angles for impedances of
”pure” components.
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Notes 7

Mention to your students that ”real” components such as this may be modeled in a diagram as a
combination of two ”pure” components, in this case a resistor and an inductor. Discuss with them the
benefits of ”modeling” component characteristics in this manner, since it is a very common practice in
engineering.

This is a very important concept to understand: that reactive components are never purely reactive.
Parasitic resistance is impossible to avoid short of using superconductors. Even then, inductors are bound
to have some parasitic capacitance, and capacitors are bound to have some parasitic inductance!

Notes 8

Once students have identified the mechanisms of parasitic reactances, challenge them with inventing
means of minimizing these effects. This is an especially practical exercise for understanding parasitic
inductance in capacitors, which is very undesirable in decoupling capacitors used to stabilize power supply
voltages near integrated circuit ”chips” on printed circuit boards. Fortunately, most of the stray inductance
in a decoupling capacitor is due to how it’s mounted to the board, rather than anything within the structure
of the capacitor itself.

Notes 9

This is an excellent opportunity to brainstorm as a group and experiment on real components. There is
obviously more than one way to make the determinations of identity and value! Use the class time to engage
your students in lively discussion and debate over how to approach this practical problem.

Notes 10

This is an excellent opportunity to brainstorm as a group and experiment on real components. The
purpose of this question is to make the reactance equations more ”real” to students by having them apply
the equations to a realistic scenario. The ohmmeter test is based on DC component response, which may be
thought of in terms of reactance at a frequency at or near zero. The multimeter/generator test is based on
AC response, and will require algebraic manipulation to convert the canonical forms of these equations to
versions appropriate for calculating L and C.

Notes 11

Ask your students to observe the waveform shown in the answer closely, and determine what sign
the power values always are. Note how the voltage and current waveforms alternate between positive and
negative, but power does not. Of what significance is this to us? What does this indicate about the nature
of a load with an impedance phase angle of 0o?

Notes 12

Ask your students to observe the waveform shown in the answer closely, and determine what sign the
power values are. Note how the power waveform alternates between positive and negative values, just as the
voltage and current waveforms do. Ask your students to explain what negative power could possibly mean.

Of what significance is this to us? What does this indicate about the nature of a load with an impedance
phase angle of 90o?

The phrase, ”ELI the ICE man” has been used be generations of technicians to remember the phase
relationships between voltage and current for inductors and capacitors, respectively. One area of trouble I’ve
noted with students, though, is being able to interpret which waveform is leading and which one is lagging,
from a time-domain plot such as this.
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Notes 13

Ask your students to observe the waveform shown in the answer closely, and determine what sign the
power values are. Note how the power waveform alternates between positive and negative values, just as the
voltage and current waveforms do. Ask your students to explain what negative power could possibly mean.

Of what significance is this to us? What does this indicate about the nature of a load with an impedance
phase angle of -90o?

The phrase, ”ELI the ICE man” has been used be generations of technicians to remember the phase
relationships between voltage and current for inductors and capacitors, respectively. One area of trouble I’ve
noted with students, though, is being able to interpret which waveform is leading and which one is lagging,
from a time-domain plot such as this.

Notes 14

In a sense, resistance may be though of as a special (limiting) case of impedance, just as reactance is a
special case of impedance. Discuss this concept with your students, especially with reference to devices such
as speakers which are dissipative in nature (they dissipate energy) but yet not resistive in the strict sense of
the term.

For this reason, the word ”impedance” finds broad application in the world of electronics, and even in
some sciences outside of electricity/electronics!

Notes 15

Students who have taken trigonometry should recognize the radian as a unit for measuring angles.
Discuss with your students why multiplying frequency (f , cycles per second) by the constant 2π results in
the unit changing to ”radians per second”.

Engineers often refer to ω as the angular velocity of an AC system. Discuss why the term ”velocity” is
appropriate for ω.

Notes 16

Students who have taken trigonometry should recognize the radian as a unit for measuring angles.
Discuss with your students why multiplying frequency (f , cycles per second) by the constant 2π results in
the unit changing to ”radians per second”.

Engineers often refer to ω as the angular velocity of an AC system. Discuss why the term ”velocity” is
appropriate for ω.

Notes 17

Ask your students where they obtained this information. Also ask them what the old (pre-siemens) unit
of measurement was.

Where would such quantities be useful in AC circuit calculations? Ask your students where the quantity
of conductance (G) is useful in DC circuit calculations.

Notes 18

Ask your students where they obtained this information. Also ask them what the old (pre-siemens) unit
of measurement was.

Where would such a quantity be useful in AC circuit calculations? Ask your students where the quantity
of conductance (G) is useful in DC circuit calculations.
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Notes 19

It has been my experience that students require much practice with circuit analysis to become proficient.
To this end, instructors usually provide their students with lots of practice problems to work through, and
provide answers for students to check their work against. While this approach makes students proficient in
circuit theory, it fails to fully educate them.

Students don’t just need mathematical practice. They also need real, hands-on practice building circuits
and using test equipment. So, I suggest the following alternative approach: students should build their
own ”practice problems” with real components, and try to mathematically predict the various voltage and
current values. This way, the mathematical theory ”comes alive,” and students gain practical proficiency
they wouldn’t gain merely by solving equations.

Another reason for following this method of practice is to teach students scientific method: the process
of testing a hypothesis (in this case, mathematical predictions) by performing a real experiment. Students
will also develop real troubleshooting skills as they occasionally make circuit construction errors.

Spend a few moments of time with your class to review some of the ”rules” for building circuits before
they begin. Discuss these issues with your students in the same Socratic manner you would normally discuss
the worksheet questions, rather than simply telling them what they should and should not do. I never
cease to be amazed at how poorly students grasp instructions when presented in a typical lecture (instructor
monologue) format!

An excellent way to introduce students to the mathematical analysis of real circuits is to have them first
determine component values (L and C) from measurements of AC voltage and current. The simplest circuit,
of course, is a single component connected to a power source! Not only will this teach students how to set
up AC circuits properly and safely, but it will also teach them how to measure capacitance and inductance
without specialized test equipment.

A note on reactive components: use high-quality capacitors and inductors, and try to use low frequencies
for the power supply. Small step-down power transformers work well for inductors (at least two inductors
in one package!), so long as the voltage applied to any transformer winding is less than that transformer’s
rated voltage for that winding (in order to avoid saturation of the core).

A note to those instructors who may complain about the ”wasted” time required to have students build
real circuits instead of just mathematically analyzing theoretical circuits:

What is the purpose of students taking your course?

If your students will be working with real circuits, then they should learn on real circuits whenever
possible. If your goal is to educate theoretical physicists, then stick with abstract analysis, by all means!
But most of us plan for our students to do something in the real world with the education we give them.
The ”wasted” time spent building real circuits will pay huge dividends when it comes time for them to apply
their knowledge to practical problems.

Furthermore, having students build their own practice problems teaches them how to perform primary

research, thus empowering them to continue their electrical/electronics education autonomously.
In most sciences, realistic experiments are much more difficult and expensive to set up than electrical

circuits. Nuclear physics, biology, geology, and chemistry professors would just love to be able to have their
students apply advanced mathematics to real experiments posing no safety hazard and costing less than a
textbook. They can’t, but you can. Exploit the convenience inherent to your science, and get those students
of yours practicing their math on lots of real circuits!
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