
Frenetic: A Programming

Language for OpenFlow Networks

Jennifer Rexford

Princeton University

http://www.frenetic-lang.org/

Joint work with Nate Foster, Dave Walker, Rob Harrison, Michael

Freedman, Chris Monsanto, Mark Reitblatt, and Alec Story

Network Programming is Hard

• Programming network equipment is hard

–Complex software by equipment vendors

–Complex configuration by network administrators

• Expensive and error prone

–Network outages and security vulnerabilities

–Slow introduction of new features

• SDN gives us a chance to get this right!

–Rethink abstractions for network programming
2

Programming OpenFlow Networks

• OpenFlow already helps a lot
–Network-wide view at controller

–Direct control over data plane

• The APIs do not make it easy
– Limited controller visibility

–No support for composition

–Asynchronous events

• Frenetic simplifies the programmer’s life
–A language that raises the level of abstraction

–A run-time system that handles the gory details

3

Limited Controller Visibility

• Example: MAC-learning switch
– Learn about new source MAC addresses

–Forward to known destination MAC addresses

• Controller program is more complex than it seems
–Cannot install destination-based forwarding rules

–… without keeping controller from learning new sources

• Solution: rules on <inport, src MAC, dst MAC>

4
Must think about reading and writing at the same time.

2

3

1 1 sends to 2 learn 1, install

3 sends to 1 never learn 3

1 sends to 3 always floods

Composition: Simple Repeater

def switch_join(switch):
 # Repeat Port 1 to Port 2
 p1 = {in_port:1}
 a1 = [forward(2)]
 install(switch, p1, DEFAULT, a1)

 # Repeat Port 2 to Port 1
 p2 = {in_port:2}
 a2 = [forward(1)]
 install(switch, p2, DEFAULT, a2)

When a switch joins the network, install two forwarding rules.

Composition: Web Traffic Monitor

6

def switch_join(switch)):
 # Web traffic from Internet
 p = {inport:2,tp_src:80}
 install(switch, p, DEFAULT, [])
 query_stats(switch, p)

def stats_in(switch, p, bytes, …)
 print bytes
 sleep(30)
 query_stats(switch, p)

Web traffic

When a switch joins the network, install one monitoring rule.

Composition: Repeater + Monitor

def switch_join(switch):
 pat1 = {inport:1}
 pat2 = {inport:2}
 pat2web = {in_port:2, tp_src:80}
 install(switch, pat1, DEFAULT, None, [forward(2)])
 install(switch, pat2web, HIGH, None, [forward(1)])
 install(switch, pat2, DEFAULT, None, [forward(1)])
 query_stats(switch, pat2web)

def stats_in(switch, xid, pattern, packets, bytes):
 print bytes
 sleep(30)
 query_stats(switch, pattern)

Must think about both tasks at the same time.

Asynchrony: Switch-Controller Delays

• Common OpenFlow programming idiom
–First packet of a flow goes to the controller

–Controller installs rules to handle remaining packets

• What if more packets arrive before rules installed?
–Multiple packets of a flow reach the controller

• What if rules along a path installed out of order?
–Packets reach intermediate switch before rules do

8

Must think about all possible event orderings.

packets

Wouldn’t It Be Nice if You Could…

• Separate reading from writing
–Reading: specify queries on network state

–Writing: specify forwarding policies

• Compose multiple tasks
–Write each task once, and combine with others

• Prevent race conditions
–Automatically apply forwarding policy to extra packets

9

This is what Frenetic does!

Our Solution: Frenetic Language

• Reads: query network state
–Queries can see any packets

–Queries do not affect forwarding

– Language designed to keep packets in data plane

• Writes: specify a forwarding policy
–Policy separate from mechanism for installing rules

–Streams of packets, topology changes, statistics, etc.

– Library to transform, split, merge, and filter streams

• Current implementation
–A collection of Python libraries on top of NOX 16

Example: Repeater + Monitor

11

Static repeating between ports 1 and 2
def repeater():
 rules=[Rule(inport:1, [forward(2)]),
 Rule(inport:2, [forward(1)])]
 register(rules)

Monitoring Web traffic
def web_monitor():
 q = (Select(bytes) *
 Where(inport:2 & tp_src:80) *
 Every(30))
 q >> Print()

Composition of two separate modules
def main():
 repeater()
 web_monitor()

Repeater

Monitor

Repeater + Monitor

Frenetic System Overview

• High-level language
–Query language

–Composition of

forwarding policies

• Run-time system
– Interprets queries

and policies

– Installs rules and

tracks statistics

–Handles asynchronous

events

12

Frenetic Run-Time System

• Rule granularity
–Microflow: exact header match

–Wildcard: allow “don’t care” fields

• Rule installation
–Reactive: first packet goes to controller

–Proactive: rules pushed to the switches

• Frenetic run-time system
–Version 1.0: reactive microflow rules [ICFP’11]

–Version 2.0: proactive wildcard rules [POPL’12]

• Get it right once, and free the programmer!
13

Evaluation

• Example applications
–Routing: spanning tree, shortest path

–Discovery: DHCP and ARP servers

–Load balancing: Web requests, memcached queries

–Security: network scan detector, DDoS defenses

• Performance metrics
–Language: lines of code in applications

 Much shorter programs, especially when composing

–Run-time system: overhead on the controller
 Frenetic 1.0: competitive with programs running on NOX

 Frenetic 2.0: fewer packets to the controller

14

Ongoing and Future Work

• Consistent writes [HotNets’11]

–Transition from one forwarding policy to another

–Without worrying about the intermediate steps

• Network virtualization
–Multiple programs controlling multiple virtual networks

• Network-wide abstractions
–Path sets, traffic matrices, reachability policy, etc.

• Joint host and network management
–Controller managing the hosts and the switches

• Concurrent and distributed controllers

15

Conclusions

• Frenetic foundation
–Separating reading from writing

–Explicit query subscription and policy registration

–Operators that transform heterogeneous streams

• Makes programming easier
–Higher-level patterns

–Policy decoupled from mechanism

–Composition of modules

–Prevention of race conditions

• And makes new abstractions easier to build!

16

The Frenetic Team

Mike Freedman

Chris Monsanto Jen Rexford

Rob Harrison

Dave Walker

Nate Foster

Alec Story

Mark Reittblatt

Thanks!

http://www.frenetic-lang.org/

18

