big switch n e t w o r k s

FlowVisor Engineering Tutorial
Open Networking Summit 2012

Rob Sherwood

Talk Outline

- Glossary: Flavors of Virtualization
- Use Cases
- Case-study: FlowVisor network slicing tool
 - Architecture
 - Opt-In
 - Resource allocation: FlowSpace
 - Deployments
- Virtualization discussion

Flavors of Network Virtualization

Rob's break down for ease of discussion

- Topology Virtualization
 - Who decides the network topology?
 - Virtual links, broadcast isolation, virtual nodes
 - e.g., tunnels, VLANs, "single-touch-management" solutions
- Address Virtualization
 - Who controls 10.0.0.0/8?
 - Prevent MAC address collisions
 - e.g., VRF + MPLS, VLANs
- This talk: Policy Virtualization; a.k.a. network slicing
 - Who sets ACLs? Who decides forwarding paths?
 - e.g., FlowVisor: www.flowvisor.org
- Commercial SDN solutions emerging that combine all three!

Network Virtualization Use Cases

- Multi-tenancy
 - Public/Private Cloud service providers
- Better resource utilitization
 - Move traffic around by load turn off the rest
- Simplified Management
 - Network policies migrate with VMs
 - Decouple policy from topology
 - Multi-layer delgation
- Rapid/Isolated service deployment
 - FlowVisor's initial use case

FlowVisor's Original Problem:

- Realisticly evaluating new network services is hard
- services that require changes to switches and routers
- e.g.,
 - routing protocols
 - traffic monitoring services
 - IP mobility

Result: Many good ideas don't gets deployed; Many deployed services still have bugs.

Why is Evaluation Hard?

Real Networks

Testbeds

Network Slicing with FlowVisor

A network slice is a collection of sliced switches/routers

- Data plane is unmodified
- Packets forwarded with no performance penalty
- Works with existing hardware/ASICs

- Transparent slicing layer
- each slice believes it owns the data path
- enforces isolation between slices
 - i.e., rewrites, drops rules to adhere to slice police
- forwards exceptions to correct slice(s)

big switch

Real User Traffic: Opt-In

- Allow users to Opt-In to services in real-time
 - Users can delegate control of individual flows to Slices
 - Add new FlowSpace to each slice's policy
- Example:
 - "Slice 1 will handle my HTTP traffic"
 - "Slice 2 will handle my VoIP traffic"
 - "Slice 3 will handle everything else"
- Creates incentives for building high-quality services

big switch

Slicing Policies

- The policy specifies resource limits for each slice:
 - Link bandwidth
 - Maximum number of forwarding rules
 - Topology
 - Fraction of switch/router CPU

– FlowSpace: which packets does the slice control?

FlowSpace: Maps Packets to Slices

FlowVisor Architecture

FlowVisor Message Handling Rule Alice Cathy Bob Controller Controller Controller **OpenFlow** Policy Check: Policy Check: Is this rule Who controls FlowVisor allowed? this packet? **OpenFlow** Full Line Rate OpenFlow Exception Forwarding Firmware Data Path Packet

big switch n e t w o r k s

FlowVisor Deployment: Stanford

- Our real, production network
 - o 15 switches, 35 APs
 - o 25+ users
 - 2+ year of use
 - my personal email and web-traffic!
- Same physical network hosts Stanford demos
 - o 7 different demos

FlowVisor Deployments: GENI

FlowVisor Commands

- > /usr/sbin/flowvisor /usr/etc/flowvisor/config.xml &
- > man flowvisor
- > man fvconfig
- > man fvctl

FVCTL

- fvctl is the cli used to control a running instance of flowvisor (over XMLRPC)
- fvctl --passwd-file=/etc/flowvisor/fvpasswd command [args...]
- fvctl command [args...]

> fvctl createSlice

- Specifies a controller/slice
 - fvctl createSlice <slicename> <controller_url> <email>
 - controller_url = tcp:<ip address>:<port #>
 - fvctl createSlice FinanceDept tcp: 155.55.5:6633 bob@finance.example.edu

> fvctl addFlowSpace

- Insert a flowspace rule
 - fvctl addFlowSpace <dpid> <priority> <match> <actions>
 - fvctl addFlowSpace 00:c8:08:17:f4:4b:82:00 100 in_port=22 Slice:ESNet=4

> fvctl addFlowSpace: match

- Flow packet match fields
 - in_port=port_no
 - **dl_vlan**=vlan
 - dl_src/dl_dst=mac
 - nw_src/nw_dst=ip[/netmask]
 - nw_proto=proto
 - nw_tos=tos/dscp
 - tp_src/tp_dst=port
 - More in fvctl man page

> fvctl addFlowSpace: actions

- Comma-separated list of slices with control permissions over matching flowspace
- Permissions
 - Delegate=1
 - Read=2
 - Write=4
- Ex. Slice:IU-LB=4, Monitor=2

> fvctl getSliceInfo

- Dumps information about the slice
 - controller_port=6633
 - controller_hostname=140.221.223.153
 - creator=fvadmin
 - contact_email=bob@example.edu

> fvctl changeSlice

- Edit a slice attributes:
 - controller_port=6633
 - controller_hostname=140.221.223.153
 - creator=fvadmin
 - <u>contact email=</u>you@example.edu
- Examples:
 - fvctl changeSlice <slicename> <key> <value>
 - fvctl changeSlice iCAIR controller_port 6644

> fvctl listSlices; fvctl deleteSlice

- lists the slices that have been created
 - Slice 0: iCAIR
 - Slice 1: CPQD
 - Slice 2: Clemson
 - Slice 3: I2-NOX
 - Slice 4: IU-100G
 - Slice 5: SARA
 - Slice 6: ESNet
 - Slice 7: fvadmin
- fvctl deleteSlice ESNet

> fvctl listDevices

List DPID of all connected OpenFlow devices

Device 0: 00:00:0e:83:40:39:18:58

Device 1: 00:00:0e:83:40:39:1a:57

Device 2: 00:00:0e:83:40:39:19:96

Device 3: 00:00:0e:83:40:39:1b:93

Device 4: 00:00:0e:83:40:39:18:1b

Device 5: 00:00:0e:84:40:39:19:96

Device 6: 00:00:0e:84:40:39:1a:57

Device 7: 00:00:0e:84:40:39:1b:93

Device 8: 00:00:0e:84:40:39:18:1b

Device 9: 00:00:0e:84:40:39:18:58

> fvctl getLinks

- List port # and DPID of both ends of each link
- Link 0: Link[srcDPID=00:00:0e:83:40:39:1b:
 93,srcPort=2,dstDPID=00:00:0e:83:40:39:18:1b,dstPort=2]
- Link 1: Link[srcDPID=00:00:0e: 84:40:39:18:1b,srcPort=2,dstDPID=00:00:0e:84:40:39:1b: 93,dstPort=2]

Virtualization Discussion

- Why OpenFlow for both Sound and North interface?
 - Why not in the controller with a custom North Bound API?
 - Why not in the switch, with a custom Sound Bound API
- Decouple virtualization from control
 - Let them evolve independently
 - FlowVisor works with most (all?) publicly available controllers
- Incrementally deployable
 - First: Deploy in slice
 - Then deploy same code directly on real network

Conclusion

- FlowVisor is an OpenFlow-based virtualization tool
- Deployed in lots of R&E networks, Interop 2011-12
- Open source, documentation, tools
- Thanks to Ron Milford/InCntre for slides!

www.flowvisor.org