
NOX, POX, and lessons learned

James “Murphy” McCauley

Organization

•  A Bit of History

•  Lessons Learned
– Part 1: Two little lessons

– Part 2: Thinking big

•  Ongoing Work

•  Wrap-Up

2	

Current NOX and POX Collaborators

•  Murphy McCauley (ICSI, UC Berkeley)
•  Aurojit Panda (UC Berkeley)
•  Colin Scott (UC Berkeley)
•  Amin Tootoonchian (ICSI, U of Toronto)
•  Andreas Wundsam (ICSI)
•  Kyriakos Zarifis (ICSI)

•  Anyone with a github account

3	

NOX: A Bit of History

•  NOX was the first SDN controller

•  Developed at Nicira at the same time
OpenFlow was being developed
– Highly synergistic relationship

•  Released under GPL in 2008
– Extensively used in research

•  Now maintained by research community

4	

NOX Highlights

•  Linux
•  C++ and Python
•  Cooperative multithreading
•  Component system
•  Event-based programming model
•  OpenFlow interface
•  Packet construction/dissection libraries
•  Applications:
–  Forwarding (reactive), topology discovery, host

tracking, …

5	

Lessons Learned

•  Part 1: Two small lessons
– Deployability matters

– Language choice matters

•  Part 2: One bigger lesson
– Thinking big

6	

Deployability matters
Language choice matters

Lessons Learned Part 1

7	

Observation 1: Deployability

NOX is difficult to deploy
•  A fairly large number of users have trouble

building and running NOX in their
environment

•  Relatively complex build with a fair number of
dependencies

•  New users are mostly researchers
•  Experienced users are mostly researchers

8	

Observation 2: C++ and Python

NOX was programmable in C++ and Python
•  Expectation: Python would be “glue” for more

substantial C++ components
•  Actuality: Significant applications entirely in Python
–  We think more than in C++
–  Very few really used C++ and Python

•  Results:
–  Python API wasn’t as good as one might hope for doing

full applications
–  Python support added a fair amount of maintenance and

build complexity – unnecessary for those just using C++

9	

What We Learned

•  Deployability matters to us
– We need to pick our dependencies very carefully

•  Pick a language
–  Integrating two languages takes effort

–  .. and nobody cares anyway

10	

Applying What We Learned

•  Remove Python from NOX: “New” NOX
–  Immediate simplification of NOX code and

deployment (less code; fewer dependencies)

– Change of threading model possible

– Makes NOX a better platform for those who want
to use C++

11	

Applying What We Learned

•  Build a new platform in pure Python: POX
– Pick our dependencies very carefully
– Take things we liked from NOX
– Target Linux, Mac OS, and Windows
– Use this as the basis for as much of our own

research going forward as possible

•  Goal: Good for research
•  Non-goal: Performance

12	

A Sidenote on Performance

•  We don’t have great SDN benchmarks yet
– Ones we have focus on purely reactive

– Many controllers outpace many hardware OpenFlow
switches

•  If performance across the board matters to you:
– Research controller probably isn’t a good fit

13	

POX

Choosing our dependencies:
1.  Python 2.7
–  Expected to have a long life
–  System Python on Ubuntu and Mac OS

•  Probably will be for a while

–  Lots of nice new stuff
–  Supported by PyPy

•  Alternative Python runtime
•  Great performance
•  Easy: download, decompress, run POX with it

3.  There is no #2! No other dependencies.

14	

POX

•  Borrowed ideas from NOX:
– Cooperative multitasking

– Component system

– OpenFlow interface (much improved)

– Messenger

•  Borrowed code from NOX:
– Packet construction/dissection

– GUI

15	

Thinking Big

Lessons Learned Part 2

16	

A Simple Example

17	

A Simple Example

18	

A Simple Example

19	

A Simple Example

20	

A Simple Example

21	

A Simple Example

22	

23	

A Simple Example

A Simple Example

•  Still need to handle:
– Link up

– Link down

– Adding endpoints

– Removing endpoints

24	

What have we been doing?

func (some_event):
 send_commands_to_switches()

25	

What have we been doing?

•  It’s a natural way to write control logic
•  OpenFlow protocol is largely deltas:
– Switch-to-Controller: changes of network state

– Controller-to-Switch: changes of configuration

•  Most example SDN code works like this

•  IT’S HARD TO GET THIS RIGHT
26	

Issues

•  Some state is actually stored on the switches
– Distributed systems problem
– Not entirely reliable connections to this state
–  Easy to accidentally assume ordering which does not

actually exist (e.g., due to differing latencies)
–  Errors are cumulative

•  Some of the state is held on the controller(s)
–  Some by the platform (topology info in example)
–  Some by the application (paths in example)

•  You’re juggling three kinds of state and they
have very different properties

27	

Issues

•  The code is fairly complex
– The example code had three event handlers with

three different algorithms to respond!

– Every event type → another algorithm ?

28	

Alternative: Think Big

29	

Alternative: Think Big

•  Said another way:
– Always recalculate the complete configuration

based on the complete state

•  Falls out of “Shenker [Casado,Koponen,…] view”

30	

Alternative: Think Big

func ():
 for each A,B in endpoints:
 path = best_path(A, B)
 path.install()

That’s it!
31	

Implications

•  Requires way less control logic
–  A single (deterministic!) algorithm
–  No cumulative errors

•  Platform gets more complex
–  Must build local model of state from deltas
–  Must build deltas from local configuration
–  But platform is cleanly separated from control logic

•  Reusable
•  Less complex than weaving this all together!

•  Easier to reason about control logic
–  A single input – not a sequence of events

•  Downside: More computation

32	

Ongoing Work

33	

Ongoing work: Troubleshooting

•  Control Logic determines
configuration of network

•  Intermediate platform
functionality makes it
harder to reason about final
configuration

•  Platform itself may contain
bugs!

34	

Ongoing work: Troubleshooting

•  SDN is all about software, so…

•  You need a debugger!

•  Approach based on correspondence checking

35	

A Quick Example

A super-simple POX learning switch

36	

Quick Example: Overview

1.  git clone http://noxrepo.org/git/pox

2.  cd pox

3.  vim ext/switch.py # Write a learning switch

4.  ./pox.py switch

37	

Quick Example: ext/switch.py
from pox.core import core
from pox.openflow.libopenflow_01 import *

def handle_PacketIn (event):
 msg = ofp_flow_mod()
 msg.match.dl_dst = event.parsed.src
 msg.actions.append(ofp_action_output(port = event.port))
 event.connection.send(msg)

 msg = ofp_packet_out()
 msg.actions.append(ofp_action_output(port = OFPP_FLOOD))
 msg.buffer_id = event.ofp.buffer_id
 msg.in_port = event.port
 event.connection.send(msg)

def launch ():
 core.openflow.addListenerByName("PacketIn", handle_PacketIn)

38	

Wrap-Up

•  NOX Classic
–  Still available. C++ and Python.

•  NOX (New fork)
–  Available this week! C++ only. Cleaner all over.

•  POX
–  Work in progress; Available now. Python only.
–  More stuff becoming available.

•  SDN Debugger
–  Work in progress; Available now.
–  Framework for finding bugs across control plane layers.

•  Find it all starting from http://noxrepo.org

39	

Thanks for listening!

40	

