

The Challenges of SDN/OpenFlow in an Operational and Large-scale Network

Jun Bi

Tsinghua University/CERNET OPEN NETWORKING SUMMIT April 17 2012

Outline

- Intra-AS (campus level) IPv6 source address validation using OpenFlow (with extension)
 - Good for introducing new IP services to network
- Planning next step if we run SDN as a common infrastructure for new services and architectures
 - Some personal viewpoints and thoughts on design challenges
 - Forwarding abstraction for Post-IP architectures
 - Control abstraction for scalable NOS and programmable
 /manageable virtualization platform
 - Inter-AS policies negotiation abstraction

Source Address Validation

- Source address spoofing still a problem
 - Arbor annual net. sec. report, MIT spoofer project, NANOG discussions
- False positive of uRPF due to generating filtering without global knowledge
 - e.g. asymmetric route, static route, fast reroute, ECMP
- We proposed CPF (Calculated Path Filtering)
 - An intra-AS source address validation (campus level)
 - Calculating Path Filtering based global knowledge
 - Implemented with SNMP, xFlow and Telnet in IP network
 - Deployed in 100 IPv6 campus networks of CERNET2
 - New version using Openflow

CPF Overview

Problems We Met

- Technical challenges (details in next slides)
 - No standard interfaces between control software and vendor devices, esp. for IPv6, which is new
 - No direct/full (internal) control to devices for operator's control software (all interfaces are in-direct control)

Technical Challenges We Met

- Getting routing table by SNMP

 OpenFlow
 - Poor compatibility and inconsistency of vendor implementation
 - ✓ IPV6-MIB (RFC2465)
 - ✓ IP Forwarding Table MIB (RFC4292/RFC4293)
 - ✓ Private MIB (Cisco)
- Configuring ACL by Telnet
 - Manual setting rather than automatic setting by scripts
 - \checkmark scripts are not smart enough and weak for complex control
- Sampling packet by xFlow
 - Multiple sampling protocols
 - ✓ NetFlow/Net Streams: router vendors Cisco/Huawei
 - ✓ sFlow: layer 3 switches vendors ZTE, H3C, DCN, Ruijie
- Polling network status by snmp + OpenFlow Extension
 - Passive cognizance of network state changes
 - Longer convergence time may cause slight false positive when network change

Choosing OpenFlow for CPF

- Architecture consideration
 - CPF's central control architecture
 - Flexible for deployment of innovative but long tail new functions, esp. for universities' research
- Interfaces standardization consideration
 - OpenFlow protocol to unify multiple protocols between control and device – shown in last page
- Implementation consideration
 - Easy for upgrade and deployment at legacy routers in a operational campus network "OpenRouter"
 - Forwarding abstraction based on legacy hardware by adding a "OpenFlow shim layer" in software
- Network cognizance consideration
 - RIB changes/packet sampling— "OpenFlow+" (with extension)

Current Router Architecture

Forwarding Abstraction Based on Existing Hardware

Some Autonomic Functions

Xflow: Packet Cognitive RTM: L3 IPv6 Cognitive

Implementation and TestBed

- Implementation
 - OpenRouter implementation: based on a commercial router: DCN DCRS5980
 - Controller implementation: APP/NOX loose couple mode for scalability (by socket communication)
- TestBed in Tsinghua campus.
 - OpenRouters
 - Openflow switches: PCs with NetFPGA Cards
 - Controller/App: NOX&CPF
 - Packet generator

CFP at Openflow Testbed

- CPF as a application example at Openflow testbed
 - Intra-AS source address validation based On OpenFlow (INFOCOM2012 Demo)
- Results
 - Easy for implementation
 - Easy for CPF function revision
 - Easy for deployment
 - Reduce filtering false positive caused by dynamic network change
- Can we do more like this?
 - Introducing new services
 - Introducing new net arch

We are thinking the next steps

国内其他

-代石群

兰州

呼和浩特

重庆

昆明

nternet2

亚太APAN

大连

沈阳

CNG

6IX

西安

- Large-scale network
 - 100 campus networks of CNGI-CERNET2
 - 25 ASes (core nodes)
- May try multiple APPs
 - intra-AS SAV (CPF)
 - inter-AS SAV
 - NDN/CCN
 - New IP services or
 - New network architectures

Planning a open innovation platform for new net arch (FINE)

欧洲GEANT2

乌鲁木齐

Considering SDN as the fundamental infrastructure

Some SDN Design Challenges in an Operational and Large-scale Network

- For *Intra-domain* (abstractions for programmable control)
 - Forwarding Abstraction providing APIs local or device view
 - Post-IP forwarding abstraction (taking NDN as an example)
 - Control Abstractions
 - ✓ Network Operation System (NOS) providing global physical view
 - ✓ Virtualization Platform (VP) with mgmt sys and development tool, providing APIs of logical view
- For *Inter-domain* (abstraction for programmable negotiation)
 - Standard Inter-domain policies negotiation (IPN) abstraction

NDN/CCN Architecture

NDN/CCN Forwarding

Basic Framework for NDN running over SDN

- NDN Routing Algorithm; 1. 2.
 - NDN Cache Strategy;
- 3. NDN Management;

- Three Tables: CS, PIT, FIB; 1.
- 2. FIB is generated by Controller;
- PIT and CS are generated 3. automatically by users' interest/data packets;
- PIT and CS may also be monitored 4. and changed by controller;

Discussion 1: How to add new forwarding components

 E.g. where to store the Content Data?

Position1: inside OF switch, directly stored in FlowTable 0;

Position2: outside OF switch, stored in a bypass memory devices;

Position3: stored in NOS (storage in the cloud);

Different store positions, different forwarding abilities

- Forwarding abstraction needs extension (*more autonomic*?)
- Cache update policy
- SDN device for Position1
 - Needs the ability to *generate* new packets of the data
- SDN device for Position2
 - Lookup the data in pass-by storage devices by data index
 - Fetch the data to OpenFlow switch
 - Generate a new packet of the data and send back
- SDN device and controller for Position3
 - OpenFlow switch send a request packet to controller with data index
 - Controller lookups the data by data index
 - Controller generates a new packet of the data and send to the user

Discussion2: How to add new *forwarding actions* e.g for NDN Interest packet processing (new action types shown in red)

Interest packet has been matched in FlowTable
 0--Content Store. The actions in CS are discussed;

②Otherwise, the packet is sent to FlowTable1- -

PIT. If there is a match, the actions in PIT are:

- Add the arrival face to Flow Entry;
- Drop the packet;

③Otherwise, the packet is sent to FlowTable2- -

FIB. If there is a match, the actions in FIB are:

- Forward the packet out from a face;
- Add a new Flow Entry in FlowTable1(PIT) with the Interest and forwarding face;

④Otherwise, the packet is

- Dropped;
- Or sent to the controller;

- Summary of forwarding abstraction challenge for Post-IP running over SDN
 - How to define/add new *forwarding components* for Post-IP (e.g. content store in NDN)
 - How to define/add new *forwarding actions and sequence* of Flow Tables for new procedures of Post-IP (e.g. PIT processing in NDN)
 - How to extract forwarding abstractions for arbitrary Post-IP architectures co-existing at the same forwarding platform
 - Maybe, allows hybrid forwarding abstraction technologies but managed by the common NOS ?

Challenge 2: Network Operation System

The Combination of Centralized and Distributed Control

- To improve scalability, NOS may run over multiple physical servers
- NOS may also run inside network devices, which is good for performance /robustness of some protocols/architectures
- But for APPs, virtualization platform will provide a single global view (red box) to VP and APPs

Challenge 2: Network Operation System

- An example of issues is that *large amount of APPs* (forwarding policies) may result in conflict of network control rules if NOS as a common platform
- Possible way to avoid conflict
 - Resource (virtual) isolation (e.g. VLAN-id/APP-id)
 - FCFS based (ACL-like)
 - Priority based (RTM-like)
 - Or more agility way?
 - Need some study

Challenge 3: Virtualization Platform

- Virtualization platform design goal
- Mapping from logical resources/function requirements (topology, computation, routing, security, etc) to physical resources/functions
- 1: N or N:1 resources mapping for
- Devices, links, function elements (routing, security...), resources
- N:1 mapping
- How to share forwarding resource with less conflicts from different APPs
- 1: N mapping
- One issue is that APP may has flexibility to select specific resources, e.g. ask for running inside a specific network device
- Do Need management system and tools !

Challenge 4: Inter-domain Policies Negotiation within SDN Alliance

Challenge 4: Inter-domain Policy Negotiation within SDN Alliance - Example

- Packet processed by interdomain negotiated policies, e.g.:
 - IP (routing path),
 - SAV-SMA (signature)...
- Policy negotiation are done by controllers in each AS.
- An design example: APPs use uniform XML template for policies negotiation abstraction
- Three fields in the template: Mandatory, Optional, and Userdefined

<Mandatory fields>

<APP-name> **SMA** </APP-name> <version> 2 </version> <reachability type> IPv6 </ra type> <reachability length> 128</ra length> <reachability value> 2001:xx<ra value>

</Mandatory fields>

<Optional fields>

<signagure len> 64bits </signagure len>
<signagure> xxx </signagure>

</Optional fields>

<User-defined fields>

<description> algorithm: KISS-99 64-bit Joint</description>

</User-defined fields>

Conclusion

- Inter-AS IPv6 Source address validation using OpenFlow
 - OpenFlow upgradable from legacy routers
 - OpenFlow extension for autonomic functions
 - Good results so far, discussing next step
- SDN design challenges
 - Intra-AS: forwarding abstraction for Post-IP
 - Intra-AS: control abstractions NOS and virtualization platform
 - Inter-AS: standard inter-domain policies negotiation abstraction

SDN is "FINE"

Thanks!