
1 © 2013 Netronome 1

Selective and transparent offload of

OpenFlow switches

Rolf Neugebauer
rolf.neugebauer@netronome.com

mailto:rolf.neugebauer@netronome.com

2 © 2013 Netronome 2

Problem
• Hardware OpenFlow switches are fast but inflexible:

• Most implement the required OpenFlow 1.0 features with many optional features missing

• Recently on packetpusher.net:

• OpenFlow is rapidly evolving
• 1.3/1.4/1.5 are significantly more complex with more features added

• Evolution of SDN in general
• Overlays with edge switches and a “dumb” fabric

e.g. Casado et al: “Fabric: A Retrospective on Evolving SDN”, HotSDN 2012

➡ Rapid evolution requires the flexibility of a software implementation

‣ Existing software implementations perform rather poorly

3 © 2013 Netronome

Approach
• Start with a mature software implementation

• Open vSwitch in our case

• Pair it with a highly programmable network card

• Selective offload to the network card
• Implement some OpenFlow switch functionality on the network card

• Other Packets are processed by the software switch implementation as normal

➡ Some packets (or features) are handled entirely on card

➡High performance PCIe interface essential

• Initially aim for minimum changes to software switch
• Enables to follow the rapid evolution of the software

• Tradeoff between accelerated feature set and being able to track changes

• Enable more offloads over time

3

4 © 2013 Netronome

Implementation (based on OVS 1.7)

4

12 hooks in OVS

kernel datapath

Unmodified

userspace code

Partial OVS datapath

implementation on the

NFP-32xx
• Exact match on full IPv4 OVS flow key, full support for all OVS stats

• All packet modification actions

• GRE tunnel vPorts support

• Implemented in ~1000 lines of C code on the NFP-32xx

5 © 2013 Netronome

Preliminary performance evaluation

• L2-in-L3 Gateway configuration
• GRE decapsulation -> VLAN push

• Best case scenario: Most packets handled on fastpath

• Standard OVS: 650-519Kpps

• ovs-nfp: 3.98Mpps (Line rate)

5

Forwarding performance

Standard
OVS

ovs-nfp

vSwitch 32.9K 35.1K

GRE vPort 27.4K 26.8K

New connection rate

• ovs-benchmark rate

• “Worst-case” scenario

• All packets handled by the host

• Host CPU is the bottleneck

System configuration: 6 core Intel Xeon E5-

2630 with 16GB RAM. Intel 82599EB 10G

NICs, 1.0 GHz NFP-32xx w/ 4GB RAM. Ubuntu

12.04, Linux 3.2.0, OVS 1.7

6 © 2013 Netronome 6

Summary
• Host based implementation for maximum flexibility

• Necessary to keep track with rapid evolution

• Selective offload to a highly programmable network card
• Necessary to achieve good performance in the common case

• Offload feature set should be driven by workloads
• The common case varies between deployments

• Prototype implementation targeted at edge switches in overlays
• Minimal changes to OVS code base

• Simple implementation on network card

• Achieves line-rate forwarding

• Plans to extend to more offloads

7 © 2013 Netronome

Thank you!

 Questions?

7

