
Altera Corporation Page 117

Application Note 36 Designing with FLEX 8000 Devices

M
AX 7000

Devices

3

Design Tips

Designing with
FLEX 8000 Devices

Introduction

May 1994, ver. 2 Application Note 36

Historically, programmable logic devices have fallen into two broad
categories: Erasable Programmable Logic Devices (EPLDs) and Field-
Programmable Gate Arrays (FPGAs). Widespread use of both EPLDs and
FPGAs has revealed the strengths of each type of device. Altera’s
FLEX 8000 architecture combines the strengths of both EPLDs and FPGAs.
This application note describes some of the basic characteristics of the
FLEX 8000 architecture and offers several design guidelines that can help
you use this architecture effectively.

Regardless of your level of familiarity with programmable logic devices,
the information in this application note can help you use FLEX 8000
devices to their fullest potential. For detailed descriptions of the FLEX 8000
architecture and device configuration, refer to Application Note 40
(FLEX 8000 Architecture), Application Note 33 (Configuring FLEX 8000 Devices),
and Application Note 38 (Configuring Multiple FLEX 8000 Devices) in this
handbook.

Engineers have learned to expect different levels of performance and
density from EPLDs and FPGAs. In both EPLD and FPGA architectures,
trade-offs are made to optimize designs either for speed or for density.
With the FLEX 8000 architecture, you can control speed/density trade-offs
to suit the needs of your application. In addition, you can use Altera’s
MAX+PLUS II software to automatically optimize all or part of a circuit for
speed or density. You can also structure designs to take advantage of the
physical characteristics of the FLEX 8000 architecture.

Automatic Design Optimization

Altera’s MAX+PLUS II software automatically optimizes a design for the
architecture of its target device family. Therefore, you can change the
target device family for a design without entering any special design
modifications. You can also combine one or more existing EPLD designs
and re-target them for one or more FLEX 8000 devices.

When you compile a design for the FLEX 8000 device family, the
MAX+PLUS II Compiler automatically uses macrofunctions that are
optimized for the FLEX 8000 architecture and performs FLEX 8000 family-
specific logic synthesis and optimization. You can use logic synthesis
styles and logic options that are tailored to the FLEX 8000 architecture to
further control design optimization. The automatic design optimization in

Designing for
Speed & Density

Application Note 40 has
been incorporated into
the FLEX 8000
Programmable Logic
Device Family Data
Sheet.

Designing with FLEX 8000 Devices Application Note 36

Page 118 Altera Corporation

MAX+PLUS II allows you to re-target designs to other device families
quickly and with minimal effort.

Designing for FLEX 8000 Architecture

In addition to using automatic design optimization, you can take advantage
of specific architectural features in FLEX 8000 devices to create circuits that
run at higher speeds or use fewer device resources. MAX+PLUS II design
entry methods provide the detailed control necessary to achieve the
maximum possible speed and density in a FLEX 8000 device.

The FLEX 8000 architecture is based on logic elements (LEs) containing
4-input look-up tables (LUTs), registers, and several other features that are
especially important in creating logic designs:

❏ Register control functions—Clock, Clear, and Preset signals that control
a programmable flipflop.

❏ FastTrack Interconnect—A series of fast, continuous paths that run
the entire length and width of the device and provide signal
interconnections between different Logic Array Block (LABs) and
between LABs and pins.

❏ Carry and cascade chains—High-speed data paths that connect adjacent
LEs without using other interconnect resources.

The FLEX 8000 LUT can implement any function of four variables. When
you compile a FLEX 8000 design, the MAX+PLUS II Compiler automatically
divides functions of more than four variables into multiple 4-input functions.

In contrast, Altera’s Classic, MAX 5000/EPS464, and MAX 7000 device
families use an AND-OR array as the fundamental building block for
combinatorial logic, with eight, five, and three product terms per macrocell,
respectively. When you compile a design for any of these EPLD families,
the Compiler divides functions requiring more than the available number
of product terms into multiple macrocells.

Altera provides and supports design entry methods that offer a full spectrum
of low- to high-level control over actual design implementation. If your
primary goal is a fast design cycle, you can describe a design with high-
level constructs in a hardware description language (HDL) such as Verilog
HDL, VHDL, or the Altera Hardware Description Language (AHDL).
Although high-level constructs help simplify the design entry process,
they can limit your control over the physical device implementation because
the synthesized logic depends on the synthesis algorithms of the software
that processes the HDL.

Design Entry
Methods

Basic
Architectural
Features

Altera Corporation Page 119

Application Note 36 Designing with FLEX 8000 Devices

M
AX 7000

Devices

3

Design Tips

If you wish to obtain the maximum performance and density in FLEX 8000
devices, you can describe designs with primitive gates and registers (i.e., a
“gate-level” design) using HDLs or schematics. MAX+PLUS II also provides
family-specific macrofunctions that have been optimized for the FLEX 8000
architecture. Gate-level designs and designs that use FLEX 8000 family-
specific macrofunctions provide the greatest control over the physical
implementation in a device. Although designing at the gate level may slow
the design process, it typically yields the highest speeds and lowest area
costs.

Regardless of the design entry method you choose, you can assign logic
options in MAX+PLUS II to guide logic synthesis on individual logic
functions. You can also apply logic synthesis styles, which are combinations
of logic option settings saved under a single name. These logic options and
logic synthesis styles can be set to optimize a design for a particular device
family. For example, specifying a setting of “Auto” for the Carry Chain
and Cascade Chain logic options instructs the Compiler to automatically
implement FLEX 8000 carry and cascade chains, which are useful for
optimizing designs for high speed or minimum area.

These logic options are also set to Auto in the Altera-provided Fast logic
synthesis style in MAX+PLUS II. In contrast, specifying a setting of “Ignore”
for the Carry Chain and Cascade Chain logic options directs the Compiler
to ignore any user-specified carry and cascade logic. These logic options
are set to Ignore in the Altera-provided Normal logic synthesis style. Since
the LEs in a carry or cascade chain must be adjacent to each other, long
carry or cascade chains can limit fitting flexibility and may reduce the
routability of a design. Therefore, you may wish to use different logic
option settings in different portions of your design. For more information
on logic options and logic synthesis styles, refer to MAX+PLUS II Help; for
more information on carry and cascade chains, refer to Application Note 40
(FLEX 8000 Architecture) in this handbook.

The following design guidelines will help you use the FLEX 8000
architecture as efficiently as possible. Following these guidelines will yield
maximum speed, reliability, and device resource utilization, and minimize
fitting problems.

Reserve Resources in the Device for Future Expansion

The design process generally includes many modification cycles for logic
changes or additional logic. Altera recommends that you leave 20% of the
device’s logic cells and I/O pins unused to accommodate future design
modifications.

General
FLEX 8000
Design
Guidelines

Application Note 40 has
been incorporated into
the FLEX 8000
Programmable Logic
Device Family Data
Sheet.

Designing with FLEX 8000 Devices Application Note 36

Page 120 Altera Corporation

Allow the Compiler to Select Pin & Logic Cell Assignments

Although you can use FLEX 8000 device resources extremely efficiently,
poorly or arbitrarily selected resource assignments can prevent a design
from fitting. During compilation, MAX+PLUS II arranges and permutes
logic cell and I/O pin locations to use the partially populated multiplexers
in the FastTrack Interconnect as efficiently as possible. Pin and/or logic
cell assignments, however, can limit the MAX+PLUS II Compiler’s ability
to arrange signals efficiently, thus reducing the probability of a successful
fit. Therefore, Altera recommends that you allow the Compiler to choose
all pin and logic cell locations automatically. You should also simulate a
design as thoroughly as possible before you lay out your printed circuit
board or back-annotate the Compiler’s pin assignments.

Balance Ripple-Carry & Carry Look-Ahead Usage

Each FLEX 8000 LE contains high-speed carry and cascade generation
logic. The dedicated carry chain in the FLEX 8000 architecture can propagate
a ripple-carry for short- and medium-length counters and adders with
minimum delay and maximum efficiency. Long carry chains, however,
restrict the Compiler’s ability to fit a design because the LEs in the chain
must be contiguous.

You can design counters using either a ripple-carry or a carry look-ahead.
In contrast to ripple-carry counters, logic cells used in carry look-ahead
counters can be non-adjacent. When the Compiler processes a carry look-
ahead counter, it can arrange and permute the LEs to map the design into
the device more efficiently.

1 Altera does not recommend using ripple-clocked counters, i.e.,
counters in which the output of one flipflop clocks another flipflop.

Altera recommends that you use carry chains only in the portions of a
design that require maximum performance. You can choose between
using ripple-carry and carry look-ahead counters on a case-by-case basis.
In some cases, you may wish to trade the speed and silicon efficiency of a
ripple-carry implementation for the increased routability and logic cell
usage of a carry look-ahead implementation. For more information on
counters, refer to Application Brief 121 (Designing Counters in FLEX 8000
Devices) in this handbook.

Use Global Clock & Clear Signals

In FLEX 8000 devices, a programmable flipflop is used to support sequential
functions. Sequential logic circuits are most reliable if they are fully
synchronous, i.e., if every register in the design is clocked by the same
global Clock signal and reset by the same global Clear signal. The FLEX 8000

Altera Corporation Page 121

Application Note 36 Designing with FLEX 8000 Devices

M
AX 7000

Devices

3

Design Tips

architecture is optimized for this type of highly reliable, fully synchronous
design. Four dedicated high-speed, low-skew global signals are available
throughout each device, independent of the FastTrack Interconnect
resources. Using these global signals for Clock and Clear functions will
ensure a more reliable design and a much more efficient fit. Figure 1 shows
the register control signals in FLEX 8000 devices.

Clear Logic

Preset Logic

Figure 1. Clear & Preset Logic

PRN

CLRN

D Q LE-Out
VCC

DATA3

LABCTRL1

LABCTRL2

PRN

CLRN

D Q LE-Out

VCC

DATA3

LABCTRL1

The Preset and Clear functions of the register can be functions of LABCTRL1,
LABCTRL2, and DATA3. This structure is especially useful for sequential
functions that require an asynchronous Clear with loading capability.

The asynchronous load (with or without a Clear input signal) and
asynchronous Preset modes can be implemented within a single
FLEX 8000 LE. Figure 2 shows an asynchronous load with a Clear input
signal. Since the Clear signal has priority over the load signal, it does not
need to feed the Preset circuitry.

Designing with FLEX 8000 Devices Application Note 36

Page 122 Altera Corporation

Figure 3 shows an asynchronous load without a Clear input signal.

Figure 4 shows an asynchronous Preset signal. Asynchronous Preset signals
are actually implemented as asynchronous loads in FLEX 8000 devices.
The FLEX 8000 device loads a “1” into the register to implement a Preset.
MAX+PLUS II uses the Clear input to the register for simple Preset signals,
thus preserving the data input for use in the LUT while providing correct
Preset functionality.

Figure 2. Asynchronous Load with a Clear Input Signal

PRN

CLRN

D Q

NOT

NOT
LDN

DATA

CLRN

Figure 3. Asynchronous Load without a Clear Input Signal

PRN

CLRN

D Q

NOT

NOT
LDN

DATA

Figure 4. Asynchronous Preset

PRN

CLRN

D Q

PRN

Altera Corporation Page 123

Application Note 36 Designing with FLEX 8000 Devices

M
AX 7000

Devices

3

Design Tips

Use One-Hot State Bit Encoding

One-hot state bit encoding increases both the system speed and routability
of a design. This type of encoding uses one register per state and allows
only one state bit to be active at any time. Although one-hot encoding
increases the number of registers, it also reduces the average fan-in to the
state bits. This reduced fan-in minimizes the number of LEs required to
implement the state decoding logic and yields a design that runs faster and
uses less interconnect.

MAX+PLUS II automatically uses one-hot encoding when compiling state
machines written in AHDL, VHDL, or Verilog HDL and targeted for
FLEX 8000 devices. Altera also recommends using the options provided by
other industry-standard CAE tools, such as the Mentor Graphics Autologic
and Synopsys Design Compiler tools, to synthesize state machines described
in VHDL or Verilog HDL with one-hot state bit encoding. For more
information, refer to Application Brief 131 (State Machine Encoding) in this
handbook.

Use Pipelining for Complex Combinatorial Logic

Maintaining the system Clock speed at or above a certain frequency is
often a major goal in a circuit design. For example, if you have a fully
synchronous system that must run at 25 MHz, the longest delay path from
the output of any register to the input(s) of the register(s) it feeds must be
less than 40 ns. Maintaining system Clock speed can be difficult if some of
the delay paths through the more complex logic are long. In these cases,
Altera recommends pipelining complex blocks of combinatorial logic by
inserting flipflops between combinatorial logic. Although pipelining may
increase device resource usage, it lowers the propagation delay between
registers and allows you to maintain high system Clock speeds.

The benefits of pipelining can be demonstrated with a 4-bit pipelined
adder that adds two 4-bit numbers. This adder is based on two 2-bit adders
that have outputs that are registered using D flipflops. Figure 5 shows one
of the 2-bit pipelined adders. The function 2ADD is the 2-bit adder that
feeds both sum bits (SUM1 and SUM2) and a carry bit (COUT) to the D
flipflops in 4REG.

Figure 5. 2-Bit Pipelined Adder (2REGADD)

CIN
A1
B1
A2
B2

SUM1
SUM2
COUT

2ADD

D1
D2
D3
D4
CLK

Q1
Q2
Q3
Q4

4REGCIN
A0
B0
A1
B1

CLOCK

SUM1
SUM2
COUT

Carry-Out to Carry-In of Next Stage

Designing with FLEX 8000 Devices Application Note 36

Page 124 Altera Corporation

Figure 6 shows two 2-bit adders that are combined to form a 4-bit pipelined
adder. The most significant bits (MSBs) of the 4-bit adder (A3, B3, A2, and
B2) require the carry from the least significant bits (LSBs) for their sum.
However, the MSB data inputs to the adder and the carry-in arrive at
different times, due to the time it takes to generate the carry. Pipelining this
design ensures that the MSBs are presented to the inputs of the adder at the
same time as the carry-out signal from the previous stage. In Figure 6, the
two sets of LSBs (A0, B0, A1, and B1) are added on the first Clock cycle,
while bits A2, B2, A3, and B3 are added on the next Clock cycle. The
outputs of 2REGADD are registered.

Figure 6. 4-Bit Pipelined Adder

1 Pipelining is most effective with register-intensive devices such
as FLEX 8000 devices. While it can be used in product-term-based
architectures such as those of the MAX 5000 and MAX 7000
devices, it may be less effective than in the FLEX 8000 architecture.
Since each MAX 5000 and MAX 7000 logic cell has higher fan-in
than a 4-input LUT, complex functions that require several
FLEX 8000 LUTs may need only a single MAX 5000 or MAX 7000
logic cell.

CIN
A1
B1
A2
B2
CLOCK

SUM1
SUM2
COUT

2REGADD
CIN
A0
B0
A1
B1

CLOCK

D1
D2
D3
D4
CLOCK

Q1
Q2
Q3
Q4

4REG

A2
B2
A3
B3

SUM1
SUM2

D1
D2
CLK

Q1
Q2

2REG

2REGADD
CIN
A1
B1
A2
B2
CLOCK

SUM1
SUM2
COUT

SUM3
SUM4
COUT

Altera Corporation Page 125

Application Note 36 Designing with FLEX 8000 Devices

M
AX 7000

Devices

3

Design Tips

Occasionally, a design may require more interconnect resources than are
available in the device. When a design does not fit, the MAX+PLUS II
Compiler issues one or more error messages; up-to-date information on
these error messages is available from on-line help. In many cases, it allows
you to change compilation settings and pin and logic cell assignments or
insert logic cells to adjust the fit during the compilation.

If the project does not fit after you have followed all of the design guidelines
provided in this application note, you can use several techniques to help
the Compiler fit the design:

❏ If you are willing to discard your pin assignments, you can allow the
Compiler to automatically ignore all assignments, the minimum
number of assignments possible, or specific individual assignments.

❏ If you wish to maintain your pin assignments, Altera recommends
trying each of the following techniques, in order:

1. Direct the Compiler to automatically insert logic cells between
the design logic and the pins. Inserting logic cells gives the
Compiler more fitting flexibility by separating device inputs and
outputs from the design logic.

2. Delete any logic cell assignments or allow the Compiler to ignore
them.

3. Allow the Compiler to ignore explicitly entered carry and cascade
chain logic on a case-by-case basis or throughout the design.

4. Break long carry chains by inserting logic cells into the chain.

5. Redesign functions with long carry chains (e.g., adders and
counters) with techniques such as carry look-ahead.

6. Place input and bidirectional pins on column interconnects when
possible.

7. If an input pin has a high degree of fan-out, break the fan-out
down by inserting LCELL primitives between the pin and some of
its destinations.

Refer to MAX+PLUS II Help for additional information on entering pin,
logic cell, and clique assignments; implementing carry and cascade logic;
and adjusting the fit during compilation.

Fitting
Techniques

Designing with FLEX 8000 Devices Application Note 36

Page 126 Altera Corporation

Altera has combined the strengths of both EPLDs and FPGAs into the
FLEX 8000 architecture. Altera’s MAX+PLUS II software allows you to
quickly enter new designs or re-target existing designs for FLEX 8000
devices with design compilation that is automatically optimized for the
FLEX 8000 architecture. In addition, MAX+PLUS II design entry methods
offer detailed control over physical device implementation so that you can
use your knowledge of the FLEX 8000 architecture to achieve the maximum
speed and density for your designs.

Conclusion

Copyright © 1995, 1996, 1997, 1998, 1999 Altera Corporation, 101 Innovation Drive,
San Jose, CA 95134, USA, all rights reserved.

By accessing this information, you agree to be bound by the terms of Altera’s
Legal Notice.

	Contents
	AN 36: Designing with FLEX 8000 Devices
	Introduction
	Designing for Speed & Density
	Automatic Design Optimization
	Designing for FLEX 8000 Architecture

	Basic Architectural Features
	Design Entry Methods
	General FLEX 8000 Design Guidelines
	Reserve Resources in the Device for Future Expansion
	Allow the Compiler to Select Pin & Logic Cell Assignments
	Balance Ripple-Carry & Carry Look-Ahead Usage
	Use Global Clock & Clear Signals
	Use One-Hot State Bit Encoding
	Use Pipelining for Complex Combinatorial Logic

	Fitting Techniques
	Conclusion

