
  

Scripting with Tcl

 

in the Quartus Software

 

November 1999, ver. 2.0 Application Note 118

  

®

                    
Altera Corporation  1

Introduction Developing and running tool command language (Tcl) scripts in the 
QuartusTM software allows designers to perform a wide range of simple or 
complex functions, such as compiling a design or writing procedures to 
automate common tasks. This application note describes how to develop 
Tcl scripts for the Quartus software.

1 The Quartus software supports Tcl version 8.03, which is 
supplied by Scriptics Corporation (http://www.scriptics.com).

What is Tcl? Tcl is a popular scripting language that is similar to many shell scripting 
and high-level programming languages. It provides support for control 
structures, variables, network socket access, and application 
programming interfaces (APIs) for integration. 

Tcl is an interpretive language that is easy to learn and use. It allows 
designers to create custom commands or procedures and can be used for 
multi-platform programming because it works seamlessly across most 
development platforms like UNIX and Windows NT. For literature on Tcl, 
see “References” on page 16.

Using Tcl The Quartus API details a set of interface functions that can be called 
while using Tcl. Users with some knowledge of Tcl can use the API to 
write Tcl scripts that automate tasks within the Quartus software. 
Designers can execute API functions as if they were Tcl commands, 
creating a single script that can control the design project, make 
assignments, start and stop compilation, and run simulations. 

The basic syntax for a Tcl command is:

<command> [<argument1> <argument2> <argument3>…]

The command syntax is either the name of the built-in command, a 
procedure, or a set of commands. Spaces separate a command and its 
arguments, and a new line or semicolon terminates commands. 
Arguments to commands are passed as strings.
A-AN-118-02



 

AN 118: Scripting with Tcl in the Quar tus Software

          
2 Altera Corporation

Running Tcl Scripts Interactively

You can execute Tcl commands directly in the Quartus Tcl/Tk Console 
window. To launch the Tcl/Tk Console window, choose Auxiliary 
Windows > Tcl/Tk Console (View menu). See Figure 1. 

Figure 1. Tcl/Tk Console

The Tcl/Tk Console window supports a history, but it does not allow 
commands to span more than one line. Tcl messages appear in the System 
tab in the Messages window. 



 

AN 118: Scripting with Tcl in the Quar tus Software

                                            
Altera Corporation  3

Running Tcl Scripts in Batch Mode

Once you create a Tcl Script File (.tcl), you can run it by typing the 
following command in the Tcl/Tk Console window:

source <script file> 9

You can also run a script by choosing Run Script (Tools menu).

Running Tcl Scripts from DOS or UNIX

The Quartus software also supports -f <script file> command line 
arguments. This command is equivalent to choosing Run Script (Tools 
menu). Use the following syntax for running scripts from the DOS or 
UNIX prompt:

quartus_cmd –f <script file> 9

Basic Tcl 
Commands

Tcl commands in the Quartus software can perform common tasks such 
as controlling projects and working with the Compiler and Simulator. 
Table 1 outlines the types of files in which the Tcl interface saves these 
settings, based on the type of assignment made.

Note:
(1) There will be an ESF for every entity in which settings are made. 

Table 1. Types of Tcl Settings Files

File Type Description

Quartus File (.quartus) A QUARTUS file contains settings for the entire 
project.

Project Settings File (.psf) A PSF contains settings for the entire project.

Compiler Settings File (.csf) A CSF contains settings for the Compiler.

Entity Settings File (.esf) An ESF contains parameter settings for 
individual entities and nodes. (1)

Simulator Settings File (.ssf) A SSF contains settings for the Simulator.



 

AN 118: Scripting with Tcl in the Quar tus Software

                                                                            
4 Altera Corporation

1 All commands listed in Tables 2 through 10 apply to the finite 
impulse response (FIR) filter tutorial included with the Quartus 
software. For a detailed list of Tcl commands, search for 
“Application Programming Interface Functions for Tcl” in 
Quartus Help. To see the following basic Tcl commands in a 
sample file, go to “Example” on page 10.

Creating Quartus Projects

Table 2 lists the API functions used for creating a project in the Quartus 
software. You must create a new project or open an existing one before 
performing any task.

Making Assignments to the Project

After you create a project, you can use Tcl commands to add design files, 
assign an Altera device, and create project-wide or entity-specific 
assignments. Table 3 shows the commands that add or remove 
assignments from a project.

Table 2. Quartus Project Commands

Command Description

project exists  <project name> The project exists  command verifies if a project called 
<project name> already exists to prevent errors during project 
creation.

project create  <project name> The project create  command creates a project called 
<project name> and auxiliary files, including <project 
name>.quartus .

project open  <project name> The project open  command opens an existing Quartus 
project called <project name>.

project close  The project close  command closes the project that is 
currently open.

Table 3. Add/Remove Assignments

Command Description

project add_assignment  
<entity> <section identifier> <source> 
<target> <variable> <value>

The project add_assignment  command adds an 
assignment to the project. Project-wide assignments are 
written to the PSF or QUARTUS file. Entity-specific 
assignments are written to the ESF file.

project remove_assignment  
<entity> <section identifier> <source> 
<target> <variable> <value>

The project remove_assignment  command removes an 
existing assignment from a project.



 

AN 118: Scripting with Tcl in the Quar tus Software

                                    
Table 4 defines the arguments for the commands in Table 3. 

Argument values that do not apply must be passed as empty strings using 
quotation marks (" " ). For example, specifying the source file for the 
project is a project-wide assignment, and thus entity-specific arguments 
are unnecessary. 

If you are unsure of an assignment’s scope, open the GUI, make the 
assignment, and see to which file the Quartus software wrote the 
assignment. If it is a PSF or QUARTUS file, the assignment is project-wide 
and needs no entity-specific arguments. If it is an ESF, entity-specific 
arguments must be included. This method can also aid in checking your 
syntax.

f For more information on functions related to making assignments, 
including syntax and usage, see Quartus Help.

Creating Compiler & Simulator Settings

Before compiling or simulating a design, you must create Compiler or 
Simulator settings and make assignments. Compiler settings are saved in 
a CSF, and Simulator settings are saved in an SSF. Table 5 lists the 
commands used with these files. 

Table 4. Quartus Project Arguments

Argument Description

<entity> The <entity> argument specifies the entity for the assignment being made.

<section identifier> The <section identifier> argument identifies the name of the section in the settings 
file.

<source> The <source> argument specifies the beginning instance name for a range of targets.

<target> The <target> argument specifies the ending name for the range of targets started by 
<source>.

<variable> The <variable> argument specifies the variable to be added, changed, or removed.

<value> The <value> argument specifies the value to be assigned to the variable.
Altera Corporation  5



 

AN 118: Scripting with Tcl in the Quar tus Software

                  
Table 6 shows the commands that can be used to change the assignments 
in a CSF or SSF.

Table 5. Compiler & Simulator Commands

Command Description

project cmp_exists  <settings> The project cmp_exists  command checks to see 
if CSF, <settings>.csf , already exists.

project create_cmp  <settings> The project create_cmp  command creates a CSF, 
<settings>.csf . This function also designates the 
settings as the current Compiler settings for the project.

project set_active_cmp  <settings> The project set_active_cmp  command specifies 
<settings> as the Compiler setting to use for 
compilation in the Quartus software.

project sim_exists  <settings> The project sim_exists  command checks to see 
if a SSF, <settings>.ssf , already exists.

project create_sim  <settings> The project create_sim  command creates a SSF, 
<settings>.ssf .

project set_active_sim  <settings> The project set_active_sim  command specifies 
<settings> as the Simulator settings for simulation in 
the Quartus software.

Table 6. Making Assignments in a CSF & SSF

Command Description

cmp add_assignment  <section identifier> <source>
<target> <variable> <value>

The cmp add_assignment  command adds an 
assignment to the current Compiler settings.

cmp remove_assignment  <section identifier>
<source> <target> <variable> <value>

The cmp remove_assignment  command removes 
an assignment from the current Compiler settings.

sim add_assignment  <section identifier> <source>
<target> <variable> <value>

The sim add_assignment  command adds an 
assignment to the current Simulator settings.

sim remove_assignment  <section identifier>
<source> <target> <variable> <value>

The sim remove_assignment  command removes 
an assignment from the current Simulator settings.
6 Altera Corporation



AN 118: Scripting with Tcl in the Quar tus Software
Table 7 describes the arguments for the commands in Table 6.

f For more information on functions related to making Compiler and 
Simulator assignments, including syntax and usage, see Quartus Help.

Controlling the Compiler

Table 8 lists the commands that control the Quartus Compiler after you 
specify compilation settings.

Table 7. Arguments for Compiler & Simulator Settings

Argument Description

<section identifier> The <section identifier> argument identifies the section name of the CSF or 
SSF that controls the assignment.

<source> The <source> argument specifies the beginning instance name for a range 
of targets.

<target> The <target> argument specifies the last name for the range of targets that 
began with <source>.

<variable> The <variable> argument specifies the variable to be added, changed, or 
removed in the CSF or SSF.

<value> The <value> argument specifies the value to assign to the CSF or SSF 
variable, or the value of the variable to remove.

Table 8. Compiler Commands

Command Description

cmp start The cmp start  command starts the Compiler for the active Compiler 
setting.

cmp stop The cmp stop  command stops the Compiler.

cmp is_running The cmp is_running  command checks the status of the Compiler and 
returns a value of 1 if the Compiler is running and a 0 if the Compiler is 
stopped.
Altera Corporation  7



AN 118: Scripting with Tcl in the Quar tus Software
You may also combine commands to perform conditional steps. For 
example, the code in Figure 2 checks the status of a compilation and 
stops the compilation if it is still running.

Figure 2. Example of Combining Tcl Commands 

# check if the Compiler is running, and if so, stop it
if {[cmp is_running] == 1} {

cmp stop
}

The sample while  loop in Figure 3 prevents further script execution 
during compilation. When the compilation finishes, the Tcl 
interpreter will exit this loop. The after  statement in the while  loop 
tells the interpreter how many milliseconds to wait or “sleep” before 
it flushes messages (FlushEventQueue  statement) and checks 
whether the Compiler is still running. Set a low after  value if you 
want to see real-time messages; set a high value if you are compiling 
a large design, and real-time messaging is not important.

Figure 3. Sample While Loop

while {[cmp is_running]} {
after 1000
FlushEventQueue

}

8 Altera Corporation



AN 118: Scripting with Tcl in the Quar tus Software
To pipe Quartus messages to stdout  or to a file handle, use the 
procedures in Figure 4 in a library or a calling script.

Figure 4. Example Code to Pipe Quartus Messages

proc postMessage {report msg} {
# this function overrides the postMessage procedure in
# quartus/bin/ccl_msg.tcl
split $msg " " 
set line " Q> [lindex $msg 0] : [lindex $msg 3] "
puts stdout $line

} ; #__________postMessage________#

proc InternalError {report text} {
# this function overrides the InternalError procedure in
# quartus/bin/ccl_msg.tcl
puts stdout "Q>report (IE = $report"
puts stdout "Q>msg (OE) = $text"

} ; #__________InternalError______"

Controlling the Simulator

Table 9 lists the commands that control the Quartus Simulator after you 
specify settings.

Notes:
(1) For more information on this command, see “sim run” in Quartus Help.
(2) For more information on this command, see “sim start” in Quartus Help.

Table 9. Simulator Commands

Command Description

sim initialize The sim initialize  command initializes the Simulator to read 
all netlists and sets the simulation time to zero.

sim run <time> (1) The sim run  command starts the Simulator for the active simulator 
setting. (2)

sim stop The sim stop  command stops the Simulator.

sim is_initialized The sim is_initialized  command checks if the Simulator has 
been initialized.

sim is_running The sim is_running  command checks if the Simulator is 
running.
Altera Corporation  9



AN 118: Scripting with Tcl in the Quar tus Software
10 Altera Corporation

Performing Interactive Simulations

You can also use Tcl commands to run interactive simulations with the 
Quartus Simulator. Table 10 lists useful debugging commands.

Notes:
(1) For more information on this command, see “sim run” in Quartus Help.
(2) For more information on this command, see “sim start” in Quartus Help.

f For more information on functions related to running interactive 
simulations, including syntax and usage, see Quartus Help.

Example The sample file in Figure 5 shows how to create a project, make 
assignments, and run a simple compilation using Tcl.

Table 10. Interactive Simulator Commands

Command Description

sim force_value  <signal name> <value> The sim force_value  command forces the value of the 
signal_name  signal to 1 or 0 (designate the value as 1 to force 
the value high, and 0 to force the value low).

sim release_value  <signal name> The sim release_value  command releases the value of the 
signal_name  signal to revert back to the original state, thus 
allowing the Simulator to overwrite the current value while 
simulating at a future time.

sim get_value  <signal name> The sim get_value  command checks the value of the 
signal_name  signal.

sim run  <time> (1) The sim run  command specifies the length of time to run the 
Simulator. (2)

sim run end  (1) The sim run end  command runs the simulation until 
completion.

sim get_time The sim get_time  command checks the current time of the 
on-going simulation.



AN 118: Scripting with Tcl in the Quar tus Software
Figure 5. Running a Simple Compilation in Tcl

# Change to the working directory
cd D: / qdesigns/tutorial

# check the existence of a project, and if it exists, delete the files
if [project exists filtref] {

file delete -force filtref.quartus
file delete -force filtref.psf
file delete -force filtref.esf
file delete -force filtref.csf
file delete -force filtref.ssf
file delete -force db

}

# create project
project create filtref

# open project
project open filtref

# add source files to current project 
project add_assignment "" "" "" "" SOURCE_FILE filtref.bdf
project add_assignment "" "" "" "" SOURCE_FILE acc.v
project add_assignment "" "" "" "" SOURCE_FILE accum.v
project add_assignment "" "" "" "" SOURCE_FILE hvalues.v
project add_assignment "" "" "" "" SOURCE_FILE mult.v
project add_assignment "" "" "" "" SOURCE_FILE state_m.v
project add_assignment "" "" "" "" SOURCE_FILE taps.v

# assign signal clk as a global signal
project add_assignment filref "" "" "" "" |clk "  GLOBAL_SIGNAL ON

# create Compiler settings for filtref
project create_cmp filtref

# set the current Compiler settings to filtref
project set_active_cmp filtref

# assign device family
cmp add_assignment "" "" "" "" FAMILY APEX 20K

# assign device
cmp add_assignment filtref "" "" "" DEVICE EP20K100TC144-1

# Start compilation
cmp start
Altera Corporation  11



AN 118: Scripting with Tcl in the Quar tus Software
Frequently Used 
Commands

Tcl allows command and procedure customization to fit the 
functionality of your designs, offering better control and extension 
of your projects. This section describes and gives examples of 
frequently used Tcl commands.

Multicycle Path

A multicycle path is a path that intentionally requires more than one 
cycle to become stable. Declaring a multicycle path tells the timing 
analyzer to adjust its measurements and allow x clock cycles (where 
x equals the number of cycles entered) so that it does not report set-
up time violations for the given path. 

The sample multicycle path command shown in Figure 6 creates a 
clock setting, base_clock , with an fMAX requirement of 40 MHz in 
project project_name . The signal, clock , is then assigned to use the 
base_clock  settings. The path from register start  to register 
data_outA_out  is a multicycle path of three cycles.

Figure 6. Sample Multicycle Path

project add_assignment "" "base_clock" "" "" 
FMAX_REQUIREMENT 40MHZ

project add_assignment project_name ""  ""  " |clock "  
USE_CLOCK_SETTINGS base_clock

project add_assignment entity_name ""  " |start "  
" |data_outA_out "  MULTICYCLE 3
12 Altera Corporation



AN 118: Scripting with Tcl in the Quar tus Software
Multiclock Domain

A multiclock domain sets up a clock configuration in which two or more 
clocks exist within a single device. 

The multiclock domain example in Figure 7 sets up a multiclock domain 
in project_name . There are two clocks, clock1  and clock2 , that are 
assigned to clock settings clock_40MHz  and clock_32MHz , respectively. 
clock_40MHz  is an absolute clock on which clock_32MHz  is based.

Figure 7. Sample Multiclock Domain

project add_assignment "" "clock_40MHz" "" "" 
FMAX_REQUIREMENT 40MHz

project add_assignment "" "clock_32MHz" "" "" 
BASED_ON_CLOCK_SETTINGS clock_40MHz

project add_assignment "" "clock_32MHz" "" "" 
MULTIPLY_BASE_CLOCK_PERIOD_BY 4

project add_assignment ""  " clock_32MHz "  ""  ""  
DIVIDE _BASE_CLOCK_PERIOD_BY 5

project add_assignment project_name ""  ""  " |clock2 "  
USE_CLOCK_SETTINGS clock _40MHz

project add_assignment project_name ""  ""  " |clock1 "  
USE_CLOCK_SETTINGS clock _32MHz

Add tPD Assignment

Propagation delay (tPD) is the time required for a signal from an input pin 
to propagate through combinatorial logic and appear at an output pin. 
This setting can be specified for the entire project and/or any input, 
output, or buffer pin. 

To set the tPD for the entire design, use the following Tcl command. This 
example sets the entire design’s tPD to 11 ns.

project add_assignment "" "" "" "" TPD_REQUIREMENT 11ns

To set the tPD from a logic cell, 1cell , to an output pin, use the following 
Tcl command. This example sets the 1cell  to output pin tPD to 4 ns. 

project add_assignment entity_name "" "|1cell" 
"|output_pin" TPD_REQUIREMENT 4ns
Altera Corporation  13



AN 118: Scripting with Tcl in the Quar tus Software
Add Device

To add a device to your project, use the cmp add_assignment  
command. The following example shows how to add an APEX 20K 
or APEX 20KE device using Tcl script.

cmp add_assignment "" "" "" FAMILY <family name>
cmp add_assignment entity_name "" "" DEVICE < device name>

where:
<family name> = APEX20K, APEX20KE
<device name> = any valid device in the specified family

Add Pinout

To add a pin assignment, use the following Tcl command.

cmp add_assignment <chip_name> "" " <signal_name>" LOCATION 
Pin_ <pin>

where:
<chip_name> = the name of the chip, which is typically the project 
name 
<signal_name> = the name of the I/O signal 
<pin> = the valid I/O pin number to be added

Generating Verilog HDL & VHDL Simulation Files

To generate Verilog HDL and VHDL simulation files with a standard 
Verilog HDL or VHDL simulator, use the following Tcl command. 

project add_assignment "" project_name "" "" 
EDA_SIMULATION_TOOL <simulation tool>

where:
<simulation tool> = Modelsim, SpeedWave, VCS, Verilog-XL, 
VSS, Custom Verilog HDL, or Custom
14 Altera Corporation



AN 118: Scripting with Tcl in the Quar tus Software
Using an EDA Synthesis Tool

To interface with an industry-standard EDA tool such as Synopsys 
Design Complier, Synopsys FPGA Express, Exemplar Leonardo 
Spectrum, Synplicity Synplify, or Viewlogic ViewDraw, use the 
following Tcl command.

project add_assignment ""  project_name "" ""
EDA_DESIGN_ENTRY_SYNTHESIS_TOOL <EDA tool>

where:
<EDA tool> = Design Architect, Design Compiler, 
FPGA Compiler II, FPGA Express, Leonardo Spectrum, 
Synplify, ViewDraw, Custom

Setting the Technology Mapper

The technology mapper instructs the Compiler to implement 
hierarchy in the design as ROM, product-term logic, look-up table 
(LUT), or AUTO (in which the logic type is automatically 
determined). To set the technology mapper, use the following Tcl 
command. 

project add_assignment entity_name "" "" "" 
TECHNOLOGY_MAPPER <technology>

where:
<technology> = ROM, product_term, LUT, AUTO

Setting the Optimization Technique

To optimize the area and/or timing of a project, set the optimization 
technique as in the following Tcl example.

project add_assignment "" "" "" "" 
OPTIMIZATION_TECHNIQUE <technique> 

where:
<technique> = speed, area

Altera provides extensive documentation to help you design with 
the Quartus software. For technical support, contact Altera 
Applications at (800) 800-EPLD. You can also e-mail your technical 
questions to Altera at support@altera.com or launch the Quartus 
Web Support web site directly from the Quartus software.
Altera Corporation  15



AN 118: Scripting with Tcl in the Quar tus Software
®

Altera, APEX 20K, APEX 20KE, and Quartus are trademarks and/or service marks of Altera Corporation in
the United States and other countries. Altera acknowledges the trademarks of other organizations for their
respective products or services mentioned in this document. Altera products are protected under numerous
U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera’s standard
warranty, but reserves the right to make changes to any products and services at any time without notice.
Altera assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by
Altera Corporation. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for
products or services. 

Copyright   1999 Altera Corporation. All rights reserved.

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com
Applications Hotline:
(800) 800-EPLD
Customer Marketing:
(408) 544-7104
Literature Services:
(888) 3-ALTERA

References For more information on using Tcl, refer the following sources.

■ Practical Programming in Tcl and TK, Brent B. Welch.
■ Tcl and TK Toolkit, John Ousterhout.
■ Effective Tcl/TK Programming, Michael McLennan and Mark Harrison.
■ http://www.scriptics.com
16 Altera Corporation

Printed on Recycled Paper.


	Contents
	AN 118: Scripting with Tcl in the Quartus Software
	Introduction
	What is Tcl?
	Using Tcl
	Running Tcl Scripts Interactively
	Running Tcl Scripts in Batch Mode
	Running Tcl Scripts from DOS or UNIX

	Basic Tcl Commands
	Creating Quartus Projects
	Making Assignments to the Project
	Creating Compiler & Simulator Settings
	Controlling the Compiler
	Controlling the Simulator
	Performing Interactive Simulations

	Example
	Frequently Used Commands
	Tcl allows command and procedure customization to fit the functionality of your designs, offering...
	Multicycle Path
	Multiclock Domain
	Add tPD Assignment
	Add Device
	Add Pinout
	Generating Verilog HDL & VHDL Simulation Files
	Using an EDA Synthesis Tool
	Setting the Technology Mapper
	Setting the Optimization Technique

	References


