

®

Implementing High-Speed
Search Applications with

APEX CAM

July 1999, ver. 1.01 Application Note 119

Introduction Most memory devices store and retrieve data by addressing specific
memory locations. For example, a system using RAM or ROM searches
sequentially through memory to locate data. However, this technique can
slow system performance since the search requires multiple clock cycles
to complete.

You can considerably reduce the time required to find an item stored in
memory by identifying stored data by content, rather than by its address.
Memory accessed in this way is called content-addressable memory
(CAM). CAM offers a performance advantage over other memory search
algorithms, such as binary-based searches, tree-based searches, or look-
aside tag buffers, because it compares the desired information against the
entire list of pre-stored entries simultaneously. Thus, CAM provides an
order-of-magnitude reduction in the search time.

CAM is ideally suited for many applications, including Ethernet address
lookup, data compression, pattern recognition, cache tags, fast routing
table lookup, high-bandwidth address filtering, user privileges, and
security and encryption information.

This application note discusses the following topics:

■ CAM Fundamentals
■ CAM in APEXTM 20KE Devices
■ CAM Applications

CAM
Fundamentals

CAM is based on RAM technology. RAM operates as a circuit that stores
data at a particular address. When retrieving data from RAM, the system
supplies the address and then receives the data. With CAM, the system
supplies the data instead of the address. To locate stored data, CAM takes
one clock cycle to search through all memory locations in parallel and
returns the data’s address. CAM drives a match flag high if the data is
found, or low if the data is not found.

Figure 1 shows a block diagram of CAM operation.
Altera Corporation 1

A-AN-119-01.01

AN 119: Implementing High-Speed Search Applications with APEX CAM

2 Altera Corporation

Figure 1. CAM Block Diagram

CAM Accelerates Searches

CAM can accelerate applications requiring fast searches of databases,
lists, or patterns, such as in image or voice recognition. For example, the
search key could be a network user’s internet protocol (IP) address, and
the associated information could be a user’s access privileges and location
on the network. If the search key presented is available in CAM, CAM
indicates a match and returns the associated information, i.e., the user’s
privileges.

CAM Integration

Currently, most applications requiring fast searches use discrete CAM.
Designers must add a separate CAM device to their printed circuit board
(PCB), which increases design time and reduces the amount of usable PCB
space. Discrete CAM also reduces system performance because it
introduces additional on-chip and off-chip delays.

APEX 20KE devices, which contain on-chip CAM built into their
embedded system blocks (ESBs), eliminate the disadvantages of discrete
CAM. APEX 20KE on-chip CAM has an access time of 4 ns, compared to
a 20-ns access time for a typical discrete CAM. Because CAM is integrated
inside an APEX 20KE device, it provides faster system performance than
traditional discrete CAM. APEX 20KE device CAM is optimized for small-
and medium-sized applications that are described in the “CAM
Applications” section on page 8.

CAM in
APEX 20KE
Devices

In APEX 20KE devices, each ESB can implement a 32-word × 32-bit CAM
block. Figure 2 shows CAM implemented in an ESB, and Figure 3 shows
a block diagram of CAM.

CAM
Data

Address

Match Flag

AN 119: Implementing High-Speed Search Applications with APEX CAM

Figure 2. Implementing CAM in an ESB

Figure 3. APEX 20KE CAM Block Diagram

Writing to APEX CAM

You can either pre-load CAM with data during configuration, or you can
write data during system operation. In most cases, two clock cycles are
required to write each word into CAM.

Figure 4 shows the waveform for an 8-bit input written to address A0 of a
CAM block. The data is driven to CAM for two clock cycles.

Figure 4. Writing an 8-Bit Input to CAM

D

ena

Qdata[]

inclocken

inclock

inclock

inaclr

D

ena

Q

outclock
outclocken

data_in

RE
wren

wraddress[]

data[]

Write
Control

data_address[]

Comparator32-word × 32-bit
CAM

outaclr

match

wraddress[]
data[]
wren
inclock
inclocken
inaclr

data_address[]
match

outclock
outclocken

outaclr

Cycle 1 Cycle 2

Clock

Write Data

Write Address

11011001 11011001

A0
Altera Corporation 3

AN 119: Implementing High-Speed Search Applications with APEX CAM

4 Altera Corporation

A design can write “don’t care” bits into CAM words; bits set to “don’t
care” do not affect matching. The “don’t care” bits can be used as a mask
for CAM comparisons. A third clock cycle is required when “don’t care”
bits are used. The “don’t care” bits are signified by inverting them on the
third clock cycle.

Figure 5 shows the waveform for a 1101X100 word (with a “don’t care”
bit) written to CAM.

Figure 5. Writing 1101X100 to CAM

Reading from APEX CAM

The CAM output is either encoded or unencoded. When encoded, the ESB
outputs the data’s location as an encoded address. Encoded data is better
suited for designs without duplicate data in the memory, and reading an
encoded output requires only one clock cycle. Figure 6 shows the encoded
output for CAM in APEX 20KE devices.

Figure 6. Encoded CAM Output

Cycle 1 Cycle 2 Cycle 3

Clock

Write Data 11010100 11010100 11011100

"Don't Care" Bit

CAM

data[31..0] = 45

addr[4..0] = 02
Encoded Output

match = 1

AddressData

00
01
02
03

15
27
45
85

AN 119: Implementing High-Speed Search Applications with APEX CAM

Altera Corporation 5

You should use an unencoded output if the same data may be written to
multiple locations in the memory. In this mode, an ESB uses 16 outputs
and reads the outputs in two cycles: 16 bits at each cycle to represent the
32 words in the CAM block. Each output represents one word of the CAM.
There is no match output in this mode; if any of the outputs go high, there
is a match (e.g., if the data is located in address 15, the fifteenth output line
goes high). Figure 7 shows the CAM’s unencoded output in APEX 20KE
devices.

Figure 7. Unencoded CAM Output

Notes:
(1) For an unencoded output, the ESB only supports 31 input data bits. One input bit

is used by the select line to choose one of the two banks of 16 outputs.
(2) If the select input is a 1, then CAM outputs words 0 through 15. If the select

input is a 0, CAM outputs words 16 through 31.

Deeper & Wider CAM Blocks

Each ESB in an APEX 20KE device supports a 1-Kbit CAM block
(32 words of 32 bits each). You can implement wider or deeper CAM by
combining multiple CAM blocks using logic elements (LEs). The
QuartusTM software combines ESBs and LEs automatically to create larger
CAM blocks. There is no intrinsic limit to cascading APEX 20KE ESBs; all
ESBs in a device can be combined into one very large CAM block. For
example, by cascading 64 (out of 104) ESBs in an EP20K400E device, you
can generate a 2,048-word × 32-bit or 1,024-word × 64-bit block of CAM.
Large APEX 20KE devices, such as the EP20K1000E device (with
160 ESBs), can generate a 4,096-word × 32-bit CAM block using 128 ESBs.

CAM
data[30..0] (1)

select (2)

q0

Unencoded
Outputs

q15

clock

select

unencoded output 0 to 15 16 to 31

AN 119: Implementing High-Speed Search Applications with APEX CAM

6 Altera Corporation

Creating Deeper CAM

To create deeper CAM blocks, the Quartus software cascades the output
of each ESB. Both encoded and unencoded CAM outputs are used to
create deeper CAM blocks. In an encoded implementation, a multiplexer
selects the output of one of the ESBs and drives it out. The select line of the
multiplexer is controlled by the match flags of the ESBs. Figure 8 shows
an example of 64-word × 32- or 31-bit CAM implemented with encoded
and unencoded outputs.

AN 119: Implementing High-Speed Search Applications with APEX CAM

Figure 8. Creating Deeper CAM with Encoded & Unencoded Outputs

Notes:
(1) Words 0 through 31 are driven out in parallel in the first clock cycle, and words 32 through 63 are driven out in

parallel in the second clock cycle.
(2) For an unencoded output, the ESB only supports 31 input bits. One input bit selects one of the two banks of

16 outputs.

CAM ESB

data[31..0]
data_addr[4..0]

match

data

data_address

match

CAM ESB

data

data_address

match

data_address_5

Words 31 to 0

Words 63 to 32

Words 15 to 0
and 47 to 32

Words 31 to 16
and 63 to 48

CAM ESB

data[30..0] (2)

select

select

a0/a32 (1)

a15/a47 (1)

data

select

select data_address

CAM ESB

a16/a48 (1)

a31/a63 (1)

Encoded Output

Unencoded Output

data

data_address

0
1

Altera Corporation 7

AN 119: Implementing High-Speed Search Applications with APEX CAM

Creating Wider CAM

To increase the width of a CAM block, the Quartus software cascades the
ESB’s unencoded outputs. Encoded outputs cannot be used, because two
different data words may coincidentally contain matching portions and
cause an incorrect output. To cascade the ESBs, each bit of the first ESB is
ANDed with the corresponding bit of the second ESB. When both ESBs
report a match, the entire word matches the stored word. Figure 9 shows
an example of 32-word × 62-bit CAM implemented with unencoded
outputs.

Figure 9. Creating Wider CAM with an Unencoded Output

CAM
Applications

CAM is used to accelerate a variety of applications such as local-area
networks (LANs), database management, file-storage management, table
look up, pattern recognition, artificial intelligence, fully associative and
processor-specific cache memories, and disk cache memories. CAM can
also perform any search operation.

This section discusses the following applications:

■ Data Compression
■ Network Switch
■ IP Filters
■ ATM Switch
■ Cache Tags
■ Peripheral Component Interconnect (PCI) and Other Bus

Applications

Data Compression

Data compression removes redundancy in a given piece of information,
producing an equivalent, but shorter, message. Data compression is
particularly useful in communications because it allows devices to
transmit the same amount of data using fewer bits.

data

select

data_address

CAM ESB

data[30..0]

q0

q15

data

select

data_address

CAM ESB

data[61..31]

q0

q0

q15

q15

select select
8 Altera Corporation

AN 119: Implementing High-Speed Search Applications with APEX CAM

CAM implements data compression efficiently because it can quickly
search through the data structure containing the compression
information. Because a good portion of a compression algorithm’s time is
spent searching and maintaining this data structure, a hardware search
engine can greatly increase the algorithm throughput.

CAM look-up is performed after each word is presented. If the specific
code is not found in CAM, another word is shifted in. When the code is
found, CAM outputs the appropriate token and the input register is
flushed. CAM generates a result in a single transaction regardless of the
table size or length of the search list. This process makes CAM ideal for
data compression schemes that use sparsely populated tables as part of
their algorithm. Figure 10 shows an example of data compression using
CAM.

Figure 10. Using CAM for Data Compression

Network Switch

Switch applications use CAM to process the address information from
incoming packets. To switch a packet to the correct outgoing port, the
incoming packet address is compared with a table of network addresses
stored in CAM. CAM outputs the destination for each data packet based
on its address.

CAM can store network address and switch port numbers (see Figure 11).
CAM in the switch compares gathered data against its stored table. If the
comparison yields a match, CAM outputs the destination, and routing
control forwards the packet to the correct port.

42 59 83 42 83 27 59

0 1 2 0 2 3 1Compressed Data

Uncompressed Data
Address

0

1

2

3

Data

42

59

83

27

CAM Contents

Token

Sequence
Altera Corporation 9

AN 119: Implementing High-Speed Search Applications with APEX CAM

Figure 11. Using CAM as a Network Switch

IP Filters

An IP filter is a security feature that prohibits unauthorized users from
accessing LAN resources. It can also restrict IP traffic over a wide-area
network (WAN) link. With an IP filter, LAN users can be restricted to
specific applications on the Internet (such as e-mail). CAM works as a
filter to block all access except for packets that have permission. The
addresses that have permission are stored in CAM; when an address is
sent to memory, CAM reports whether it contains the address. If the
address resides within CAM, it has permission for a particular activity.
Figure 12 shows an example of an IP filter.

Figure 12. Using CAM as an IP Filter

PC
2712

PC
9743

PC
7461

PC
6541

PC
9811

0

1 2 3

4

Address

0

1

2

3

4

Data

6541

2712

9743

7461

9811

CAM Contents

Switch

Port

Network
Address

Address

0

1

2

3

Data

01

27

3A

4D

CAM Contents

Packet Address

27

3A

4F

25

Permission

Permit

Permit

Deny

Deny

Addresses which
are Granted Permission
10 Altera Corporation

AN 119: Implementing High-Speed Search Applications with APEX CAM

When multiple permissions are required, a combination of CAM and
RAM enables this operation. Figure 13 shows a sample application that
regulates access to e-mail, the web, file transfer protocol (FTP), and telnet.
This application uses a 4-bit RAM block; each bit of RAM refers to one
permission, or access.

Figure 13. Multiple-Permission IP Filter

ATM Switch

CAM can be used in asynchronous transfer mode (ATM) switching
network components as a translation table. Because ATM networks are
connection-oriented, virtual circuits must be set up before transferring
data. There are two kinds of ATM virtual circuits: virtual path (identified
by a virtual path identifier (VPI)) and channel path (identified by a
channel path identifier (VCI)). VPI/VCI values are localized; each
segment of the total connection has a unique VPI/VCI combination.

Whenever an ATM cell travels through a switch, its VPI/VCI value must
change the next segment of connection through a process called VPI/VCI
translation. It is critical to optimize the translation speed to improve the
performance of high throughput ATM networks. CAM acts as an address
translator in an ATM switch and performs the VPI/VCI translation very
quickly. During the translation process, CAM processes the incoming
VPI/VCI values in ATM cell headers and generates addresses that access
data stored in RAM. RAM stores the VPI/VCI mapping data and other
connection information.

VPI/VCI fields from the ATM cell header are compared against a list of
current connections stored in the CAM array. From the comparison, CAM
generates an address that is used to access the RAM. A combination of
CAM and RAM implements the translation tables with fully parallel
search capability.

CAM

Data

Net
Address 10

Net
Address 16

Net
Address 31

Net
Address 25

. . .

. . .

Address

0

1

2

3

. . .

. . .

Web

1

1

0

1

. . .

. . .

E-mail

1

1

0

0

. . .

. . .

FTP

1

0

0

0

. . .

. . .

Telnet

1

0

1

0

. . .

. . .

Address

0

1

2

3

. . .

. . .

RAM

Data

Web & E-mail
Permission

Net Address 16
Requested
Altera Corporation 11

AN 119: Implementing High-Speed Search Applications with APEX CAM

The ATM controller modifies the cell header using the VPI/VCI data from
the RAM, and the cell is sent to the switch. This application is shown in
Figure 14. For optimal performance, both CAM and RAM should be
embedded into the same device.

Figure 14. CAM in an ATM Switch

Cache Tags

Cache is high-speed memory that enables a microprocessor to quickly
access a subset of data from the main memory. The microprocessor can
access data stored in cache much faster than data located in the main
memory. Cache stores recently used items in a small amount of fast
memory; recently accessed words replace previously used words. Cache
uses both CAM and RAM to store data; CAM stores the address, or tag,
where the data can be found in RAM, and RAM contains the actual data.
For optimal performance, both CAM and RAM should be embedded into
the same device.

When requesting data, the microprocessor submits a data tag to the cache.
The cache compares the tag requested by the microprocessor with tags
stored in the CAM tag field. All tags in CAM are compared
simultaneously (in parallel) with the requested tag. If the tag is located in
the CAM block (i.e., a match is found), CAM’s match flag goes high. CAM
also sends the address of the data to RAM, which in turn outputs the
requested data to the microprocessor. Figure 15 diagrams this process.

If CAM does not find a match, CAM’s match flag goes low, and the cache
controller transfers the requested data from the main memory into cache.
The new data and address are stored in RAM and CAM, respectively, and
replace previously used data. Only the most recently used data is stored
in cache.

CAM RAM
Data

VCI/VPI08
VCI/VPI23
VCI/VPI12
. . .
. . .

Data
VCI/VPI35
VCI/VPI28
VCI/VPI03
. . .
. . .

Address
0
1
2

. . .

. . .

Address
0
1
2

. . .

. . .

Address

ATM Controller
Switch
Fabric

Current
Connection

Next
Connection
12 Altera Corporation

AN 119: Implementing High-Speed Search Applications with APEX CAM

Figure 15. Searching CAM with the Tag Field in Cache

PCI Applications

In a system that utilizes a dynamic memory map, you can use CAM to
store memory addresses for faster access. For example, in a peripheral
component interconnect (PCI) system, a single PCI device may contain up
to six memory spaces allocated in system memory. The exact location of
these spaces is determined on power-up, and their starting locations are
written into the PCI interface’s six base address registers (BARs). When a
PCI master requests access to a PCI device’s memory location, CAM can
be used to match the request to the address in memory quickly, as shown
in Figure 16. To recognize which BAR is being called, CAM compares the
requested address against the stored base addresses.

Data
(Tag)

32

44

65

. . .

. . .

. . .

Address

0

1

2

. . .

. . .

. . .

Data

A734

F275

B310

. . .

. . .

. . .

CAM
Address

0

1

2

. . .

. . .

. . .

RAM

Cache

Microprocessor
Main

Memory
Cache

Controller

Match Flag
Altera Corporation 13

AN 119: Implementing High-Speed Search Applications with APEX CAM

Figure 16. PCI Master Request

By using CAM for PCI applications, the PCI master can locate the
requested BAR faster. The CAM implementation also requires fewer
device resources than a LE implementation.

Conclusion CAM can be used to accelerate a variety of search applications. By
embedding CAM into the APEX 20KE architecture, Altera improves the
performance of memory searches without on- and off-chip delays.

Revision
History

The information contained in Application Note 119 (Implementing High-
Speed Search Applications with APEX CAM) version 1.01 supersedes
information published in previous versions. Application Note 119
(Implementing High-Speed Search Applications with APEX CAM) version 1.01
contains an update to Figure 2 on page 3.

PCI Master
PCI Address

PCI Target

Content

BAR0

BAR1

BAR2

BAR3

BAR4

BAR5

Address

0

1

2

3

4

5

CAM

Accessed BAR
14 Altera Corporation

Copyright © 1995, 1996, 1997, 1998, 1999 Altera Corporation, 101 Innovation Drive,
San Jose, CA 95134, USA, all rights reserved.

By accessing this information, you agree to be bound by the terms of Altera’s
Legal Notice.

	Contents
	AN 119: Implementing High-Speed Search Applications with APEX CAM
	Introduction
	CAM Fundamentals
	CAM Accelerates Searches
	CAM Integration

	CAM in APEX�20KE Devices
	Writing to APEX CAM
	Reading from APEX CAM
	Deeper & Wider CAM Blocks
	Creating Deeper CAM
	Creating Wider CAM

	CAM Applications
	Data Compression
	Network Switch
	IP Filters
	ATM Switch
	Cache Tags
	PCI Applications

	Conclusion
	Revision History

