

®

Using Jam STAPL for ISP
& ICR via an Embedded

Processor

March 2000, ver. 1.0 Application Note 122

Introduction Advances in programmable logic devices (PLDs) have enabled innovative
in-system programmability (ISP) and in-circuit reconfigurability (ICR)
features. The JamTM Standard Test and Programming Language (STAPL),
JEDEC standard JESD-71, is compatible with all current PLDs that offer
ISP and ICR via Joint Test Action Group (JTAG), providing a software-
level, vendor-independent standard for in-system programming and
configuration. Designers who use Jam STAPL to implement ISP and ICR
enhance the quality, flexibility, and life-cycle of their end products.
Regardless of the number of PLDs that must be programmed or
configured, Jam STAPL simplifies in-field upgrades and revolutionizes
the programming and configuration of PLDs.

This application note describes Altera’s programming and configuration
support using Jam STAPL in embedded systems.

Embedded
Systems

All embedded systems are made up of both hardware and software
components. When designing an embedded system, the first step is to
layout the printed circuit board (PCB). The second step is to develop the
firmware that manages the board’s functionality.

Connecting the JTAG Chain to the Embedded Processor

There are two ways to connect the JTAG chain to the embedded processor.
The most straightforward method is to connect the embedded processor
directly to the JTAG chain. In this method, four of the processor pins are
dedicated to the JTAG interface, thereby saving board space but reducing
the number of available embedded processor pins.

Figure 1 illustrates the second method, which is to connect the JTAG chain
to an existing bus via an interface PLD. In this method, the JTAG chain
becomes an address on the existing bus. The processor then reads from or
writes to the address representing the JTAG chain.
Altera Corporation 1

A-AN-122-01

AN 122: Using Jam ST APL f or ISP & ICR via an Embed ded Pr ocessor

2 Altera Corporation

Figure 1. Embedded System Block Diagram

Both JTAG connection methods should include space for the
MasterBlasterTM or ByteBlasterMVTM header connection. The header is
useful during prototyping because it allows designers to quickly verify or
modify the PLD’s contents. During production, the header can be
removed to save cost.

Example Interface PLD Design

Figure 2 shows an example design schematic of an interface PLD. A
different design can be implemented; however, important points
exemplified in this design are:

■ TMS, TCK, and TDI should be synchronous outputs
■ Multiplexer logic should be included to allow board access for the

MasterBlaster or ByteBlasterMV download cable

TDI

TMS

TCK

TDO

TDI

TMS

TCK

TDO

TDI

TMS

TCK

TDO

TDI

TMS

TCK

TDO

TDI

TMS

TCK

TDO

ControlControl

d[3..0]d[7..0]

adr[19..0]

Control

d[7..0]

adr[19..0]adr[19..0]

Interface
Logic

(Optional)

Any JTAG
Device

EPROM or
 System
Memory

to/from ByteBlasterMV

Embedded
Processor

Embedded System

8

8

4

20

2020

MAX 9000,
MAX 9000A,
MAX 7000S,
MAX 7000A,
MAX 7000AE,
or MAX 3000
Device

Any JTAG
Device

TDI

TMS
TRST (1)

CONF_DONE
nSTATUS

nCONFIG
MSEL0
MSEL1

nCE

TCK

TDO

Any FLEX 10K,
FLEX 10KA,
FLEX10KE,
APEX 20K,
or APEX 20KE
Device

1 kΩ1 kΩ

VCC VCC VCC

GND

AN 122: Using Jam ST APL f or ISP & ICR via an Embed ded Pr ocessor

1 This design example is for reference only. All of the inputs except
data[3..0] are optional and included only to show how an
interface PLD can act as an address on an embedded data bus.

Figure 2. Interface Logic Design Example

PR

CLR

D

EN

PR

CLR

D

EN

PR

CLR

D

EN
adr[19..0] AD_VALID

TDO

TDI

TMS

TCK

DATA3

DATA2

DATA1

DATA0

TDI_Reg

TMS_Reg

TCK_Reg

adr[19..0]

nDS

d[3..0]

R_nW

R_AS

nRESET

CLK

address_decode

ByteBlaster_nProcessor_Select

ByteBlaster_TDI

ByteBlaster_TMS

ByteBlaster_TCK

ByteBlaster_TDO TDO

data[1..0][2..0] result[2..0]

Byteblaster_nProcessor_Select

Q

Q

Q

result1

result0

result2

TDI_Reg

TMS_Reg

TCK_Reg

ByteBlaster_TDI

ByteBlaster_TMS

ByteBlaster_TCK

data[0][0]

data[1][0]

data[0][1]

data[1][1]

data[0][2]

data[1][2]

LPM_MUX
Altera Corporation 3

AN 122: Using Jam ST APL f or ISP & ICR via an Embed ded Pr ocessor

In Figure 2, the embedded processor asserts the JTAG chain’s address,
and the R_nW and R_AS signals can be set to tell the interface PLD when
the processor wants to access the chain. A write involves connecting the
data path data[3..0] to the JTAG outputs of the PLD via the three D
registers that are clocked by the system clock (CLK). This clock can be the
same clock that the processor uses. Likewise, a read involves enabling the
tri-state buffers and letting the TDO signal flow back to the processor. The
design also provides a hardware connection to read back the values in the
TDI , TMS, and TCK registers. This optional feature is useful during the
development phase, allowing software to check the valid states of the
registers in the interface PLD. In addition, multiplexer logic is included to
permit a MasterBlaster or ByteBlasterMV download cable to program the
device chain. This capability is useful during the prototype phase of
development, when programming and configuration must be verified.

f This interface PLD design is available as a MAX+PLUS® II Graphic
Design File (.gdf) on the Altera FTP site at
ftp://ftp.altera.com/pub/misc/intpld.zip.

Board Layout

The following elements are important when laying out a board that
programs or configures via the IEEE Std. 1149.1 JTAG chain:

■ Treat the TCK signal trace as a clock tree
■ Use a pull-down resistor on TCK
■ Make the JTAG signal traces as short as possible
■ Add external resistors to pull outputs to a defined logic level

TCK Signal Trace Protection & Integrity

TCK is the clock for the entire JTAG chain of devices. These devices are
edge-triggered on the TCK signal, so it is imperative that TCK is protected
from high-frequency noise and has good signal integrity. Ensure that the
signal meets the rise time (tR) and fall time (tF) parameters in the
appropriate device family data sheet. The signal may also need
termination to prevent overshoot, undershoot, or ringing. This step is
often overlooked since this signal is software-generated and originates at
a processor general-purpose I/O pin.

Pull-Down Resistors on TCK

TCK should be held low via a pull-down resistor to keep the JTAG Test
Access Port (TAP) in a known state at power-up. A missing pull-down
resistor can cause a device to power-up in a JTAG BST state, which may
cause conflicts on the board. A typical resistor value is 1 kΩ.
4 Altera Corporation

AN 122: Using Jam ST APL f or ISP & ICR via an Embed ded Pr ocessor

Altera Corporation 5

JTAG Signal Traces

Short JTAG signal traces help eliminate noise and drive-strength issues.
Special attention should be paid to the TCK and TMS pins. Because TCK and
TMS are connected to every device in the JTAG chain, these traces will see
higher loading than TDI or TDO. Depending on the length and loading of
the JTAG chain, some additional buffering may be required to ensure that
the signals propagate to and from the processor with integrity.

External Resistors

You should add external resistors to output pins to pull outputs to a
defined logic level during programming or configuration. Output pins
will tri-state during programming or configuration. Also, on MAX 7000,
FLEX 10K, APEX 20K, and all configuration devices the pins will be
pulled up by a weak internal resistor (e.g., 50 kΩ). However, not all Altera
devices have weak pull-up resistors during in-system programming or
in-circuit reconfiguration. Refer to the appropriate device family data
sheet to learn which devices have weak pull-up resistors. Altera
recommends that outputs driving sensitive input pins be tied to the
appropriate level by an external resistor, on the order of 1 kΩ.

Each preceding board layout element may require further analysis,
especially signal integrity. In some cases, you may need to analyze the
loading and layout of the JTAG chain to determine whether to use discrete
buffers or a termination technique.

f For more information, see Application Note 100 (In-System Programmability
Guidelines).

Software
Development

Altera’s embedded programming and configuration use the Jam file
output from the MAX+PLUS II software tool and the standardized Jam
Player software. Designing these tools requires minimal developer
intervention because Jam files contain all of the data for programming and
configuring Altera devices. The bulk of development time is spent porting
the Jam Player to the host embedded processor.

f For more information on porting the Jam Byte-Code Player, see “Porting
the Jam STAPL Byte-Code Player” on page 9.

Jam Files (.jam & .jbc)

Altera supports the following types of Jam files:

■ ASCII text files (.jam)
■ Jam Byte-Code files (.jbc)

AN 122: Using Jam ST APL f or ISP & ICR via an Embed ded Pr ocessor

ASCII Text Files (.jam)

Altera supports two types of Jam files:

■ JEDEC Jam STAPL format
■ Jam version 1.1 (pre-JEDEC format)

The JEDEC Jam STAPL format uses the syntax specified by the JEDEC
Standard JESD-71A specification. Altera recommends using JEDEC Jam
STAPL files for all new projects. In most cases, Jam files are used in tester
environments.

Jam Byte-Code Files (.jbc)

JBC files are binary files that are compiled versions of Jam files. JBC files
are compiled to a virtual processor architecture, where the ASCII Jam
commands are mapped to byte-code instructions compatible with the
virtual processor. There are two types of JBC files:

■ Jam STAPL Byte-Code (compiled version of JEDEC Jam STAPL file)
■ Jam Byte-Code (compiled version of Jam version 1.1 file)

Altera recommends using Jam STAPL Byte-Code files in embedded
applications because they use minimal memory.

Generating Jam Files

The MAX+PLUS II software can generate both Jam and JBC file types. In
addition, Jam files can be compiled into JBC files via a stand-alone Jam
Byte-Code compiler. The compiler produces a functionally equivalent JBC
file.

f The Jam Byte-Code compiler can be downloaded from the Jam web site at
http://www.jamisp.com.

Generating JBC files directly from the MAX+PLUS II software is simple.
The software tool supports the programming and configuration of
multiple devices from single or multiple JBC files. Figure 3 shows the
dialog box that specifies which JBC files are generated by the
MAX+PLUS II software.
6 Altera Corporation

AN 122: Using Jam ST APL f or ISP & ICR via an Embed ded Pr ocessor

Figure 3. Generating a JBC File for a Multi-Device JTAG Chain

The following steps explain how to generate JBC files using the
MAX+PLUS II software.

1 To generate JBC files for APEXTM devices, follow the same
procedure using SRAM Object Files (.sof) generated by the
QuartusTM software.

1. In the MAX+PLUS II Programmer, choose Create Jam or SVF File
(File menu).

2. In the Create Jam or SVF File dialog box, specify the name and
sequence of devices in the JTAG chain as well as the programming
file associated with each device.
Altera Corporation 7

AN 122: Using Jam ST APL f or ISP & ICR via an Embed ded Pr ocessor

3. Specify a Jam STAPL Byte-Code File in the File Format drop-down
list box.

4. Click OK.

You can include both Altera and non-Altera JTAG-compliant devices in
the JTAG chain. If you do not specify a programming file in the
Programming File Names field, devices in the JTAG chain will be bypassed.

Jam Players

Jam Players read the descriptive information in Jam files and translate
them into data that programs or configures the target PLDs. Jam Players
do not program or configure a particular device architecture or vendor;
they only read and understand the syntax defined by the Jam file
specification. In-field changes are confined to the Jam file, not the Jam
Player. As a result, you do not need to modify the Jam Player source code
for each in-field upgrade.

There are two types of Jam Players to accommodate the two types of Jam
files: an ASCII Jam STAPL Player and a Jam STAPL Byte-Code Player. The
general concepts within this application note apply to both player types;
however, the following information focuses on the Jam STAPL Byte-Code
Player.

Jam Player Compatibility

The embedded Jam Player is able to read Jam files that conform to the
standard JEDEC file format. The embedded Jam Player is compatible with
legacy Jam files that use version 1.1 syntax. Both Players are backward-
compatible; they can play version 1.1 files and Jam STAPL files.

f For more information on Altera’s support for version 1.1 syntax, see
Application Note 88 (Using the Jam Language for ISP & ICR via an Embedded
Processor).

The Jam STAPL Byte-Code Player

The Jam STAPL Byte-Code Player is coded in the C programming
language for 16-bit and 32-bit processors. Some 8-bit processors are also
supported by a specific subset of source code available on the Jam web site
at http://www.jamisp.com.

f For more information about Altera’s support for 8-bit processors, see
Application Note 111 (Embedded Programming Using the 8051 & Jam Byte-
Code).
8 Altera Corporation

AN 122: Using Jam ST APL f or ISP & ICR via an Embed ded Pr ocessor
The 16-bit and 32-bit source code is divided into two categories:

■ Platform-specific code that handles I/O functions and applies to
specific hardware (jbistub.c)

■ Generic code that performs the Player’s internal functions (all other
C files)

Figure 4 illustrates the organization of the source code files by function.
Keeping the platform-specific code inside the jbistub.c file simplifies the
process of porting the Jam STAPL Byte-Code Player to a particular
processor.

Figure 4. Jam STAPL Byte-Code Player Source Code Structure

Porting the Jam STAPL Byte-Code Player

The default configuration of the jbistub.c file includes code for DOS,
32-bit Windows, and UNIX so that the source code can be easily compiled
and evaluated for the correct functionality and debugging of these pre-
defined operating systems. For the embedded environment, this code is
easily removed using a single preprocessor #define statement. In
addition, porting the code involves making minor changes to specific
parts of the code in the jbistub.c file.

.jbc

Jam STAPL Player

I/O Functions
(jbistub.c file)

Main Program

Compare
& Export

Error
Message

TCK

TMS

TDI

TDO

InterpretParse
Altera Corporation 9

AN 122: Using Jam ST APL f or ISP & ICR via an Embed ded Pr ocessor
To port the Jam Player, you need to customize several functions in the
jbistub.c file, which are shown in Table 1.

To ensure that you have customized all of the necessary code, follow these
four steps:

1. Set preprocessor statements to exclude extraneous code

2. Map JTAG signals to hardware pins

3. Handle text messages from jbi_export()

4. Customize delay calibration

Step 1: Set Preprocessor Statements to Exclude Extraneous Code

At the top of jbistub.c, change the default PORT parameter to EMBEDDED
to eliminate all DOS, Windows, and UNIX source code and included
libraries.

#define PORT EMBEDDED

Step 2: Map JTAG signals to hardware pins

The jbi_jtag_io() function contains the code that sends and receives
the binary programming data. Each of the four JTAG signals should be
re-mapped to the embedded processor’s pins. By default, the source code
writes to the PC’s parallel port. The jbi_jtag_io() signal maps the
JTAG pins to the PC parallel port registers shown in Figure 5.

Table 1. Functions Requiring Customization

Function Description

jbi_jtag_io() Interface to the four IEEE 1149.1 JTAG signals, TDI ,
TMS, TCK, and TDO

jbi_export() Passes information such as the User Electronic
Signature (UES) back to the calling program

jbi_delay() Implements the programming pulses or delays needed
during execution

jbi_vector_map() Processes signal-to-pin map for non-IEEE 1149.1 JTAG
signals

jbi_vector_io() Asserts non-IEEE 1149.1 JTAG signals as defined in
the VECTOR MAP
10 Altera Corporation

AN 122: Using Jam ST APL f or ISP & ICR via an Embed ded Pr ocessor
Figure 5. Default PC Parallel Port Signal Mapping Note (1)

Note:
(1) The PC parallel port hardware inverts the most significant bit, TDO.

The mapping is highlighted in the following jbi_jtag_io() source
code:

int jbi_jtag_io(int tms, int tdi, int read_tdo)
{

int data=0;
int tdo=0;

if (!jtag_hardware_initialized)
{

initialize_jtag_hardware();
jtag_hardware_initialized=TRUE;

}
data = ((tdi?0x40:0)|(tms?0x2:0)); /*TDI,TMS*/
write_byteblaster(0,data);
if (read_tdo)
{

tdo=(read_byteblaster(1)&0x80)?0:1; /*TDO*/
}
write_blaster(0,data|0x01); /*TCK*/
write_blaster(0,data);
return (tdo);

}

In the previous code, the PC parallel port inverts the actual value of TDO.
The jbi_jtag_io() source code inverts it again to retrieve the original
data. The line which inverts the TDO value is as follows:

tdo=(read_byteblaster(1)&0x80)?0:1;

7 6 5 4 3 2 1 0 I/O Port

0 TDI 0 0 0 0 TMS TCK OUTPUT DATA -
Base Address

 TDO X X X X --- --- --- INPUT DATA -
Base Address + 1
Altera Corporation 11

AN 122: Using Jam ST APL f or ISP & ICR via an Embed ded Pr ocessor
If the target processor does not invert TDO, the code should look like:

tdo=(read_byteblaster(1)&0x80)?1:0;

To map the signals to the correct addresses, use the left shift (<<) or right
shift (>>) operators. For example, if TMS and TDI are at ports 2 and 3
respectively, the code would be as follows:

data=(((tdi?0x40:0)>>3)|((tms?0x02:0)<<1));

Apply the same process to TCK and TDO.

The read_byteblaster and write_byteblaster signals use the inp()
and outp() functions from the conio.h library, respectively, to read and
write to the port. If these functions are not available, equivalent functions
should be substituted.

Step 3: Handle Text Messages from jbi_export()

The jbi_export() function sends text messages to stdio , using the
printf() function. The Jam STAPL Byte-Code Player uses the
jbi_export() signal to pass information (e.g., the device UES or
USERCODE) to the operating system or software that calls the Player. The
function passes text (in the form of a string) and numbers (in the form of
a decimal integer).

f For definitions of these terms, see Application Note 39 (IEEE 1149.1 (JTAG)
Boundary-Scan Testing in Altera Devices).

If there is no device available to stdout , the information can be redirected
to a file or storage device, or passed as a variable back to the program that
calls the Player.

Step 4: Customize Delay Calibration

The calibrate_delay() function determines how many loops the host
processor runs in a millisecond. This calibration is important because
accurate delays are used in programming and configuration. By default,
this number is hard-coded as 1,000 loops per millisecond and represented
as the following assignment:

one_ms_delay = 1000
12 Altera Corporation

AN 122: Using Jam ST APL f or ISP & ICR via an Embed ded Pr ocessor
If this parameter is known, it should be adjusted accordingly. If it is not
known, you can use code similar to that for Windows and DOS platforms.
Code is included for these platforms that count the number of clock cycles
that run in the time it takes to execute a single while loop. This code is
sampled over multiple tests and averaged to produce an accurate result
upon which the delay can be based. The advantage to this approach is that
calibration can vary based on the speed of the host processor.

Once the Jam STAPL Byte-Code Player is ported and working, verify the
timing and speed of the JTAG port at the target device. Timing parameters
for MAX®, FLEX®, and APEX devices should comply with the values
given in Tables 2 and 3.

Table 2. IEEE Std. 1149.1 Timing Parameters

Symbol Parameter MAX 9000 MAX 7000A MAX 7000AE MAX 7000S Unit

Min Max Min Max Min Max Min Max
tJCP TCK clock period 100 100 100 100 ns

tJCH TCK clock high time 50 50 50 50 ns

tJCL TCK clock low time 50 50 50 50 ns

tJPSU JTAG port setup time 20 20 20 20 ns

tJPH JTAG port hold time 45 45 45 45 ns

tJPCO JTAG port clock to output 25 25 25 25 ns

tJPZX JTAG port high-
impedance to valid output

25 25 25 25 ns

tJPXZ JTAG port valid output to
high-impedance

25 25 25 25 ns

tJSSU Capture register setup
time

20 20 20 20 ns

tJSH Capture register hold time 45 45 45 45 ns

tJSCO Update register clock to
output

25 25 25 25 ns

tJSZX Update register
high-impedance to valid
output

25 25 25 25 ns

tJSXZ Update register valid
output to high-impedance

25 25 25 25 ns
Altera Corporation 13

AN 122: Using Jam ST APL f or ISP & ICR via an Embed ded Pr ocessor

If the Jam STAPL Byte-Code Player does not operate within the timing
specifications, the code should be optimized with the appropriate delays.
Timing violations occur only if the processor is very powerful and can
generate TCK at a rate faster than 10 MHz.

1 Other than the jbistub.c file, Altera strongly recommends
keeping source code in other files unchanged from their default
state. Altering the source code in these files will result in
unpredictable Jam Player operation.

Jam STAPL Byte-Code Player Memory Usage

The Jam STAPL Byte-Code Player uses memory in a predictable manner.
This section documents how to estimate both ROM and RAM memory
usage.

Table 3. IEEE Std. 1149.1 Timing Parameters

Symbol Parameter MAX 3000A MAX 7000B APEX 20K FLEX 10K EPC2 Unit

Min Max Min Max Min Max Min Max Min Max
tJCP TCK clock period 100 100 100 100 100 ns

tJCH TCK clock high time 50 50 50 50 50 ns

tJCL TCK clock low time 50 50 50 50 50 ns

tJPSU JTAG port setup time 20 20 20 20 20 ns

tJPH JTAG port hold time 45 45 45 45 45 ns

tJPCO JTAG port clock to output 25 25 25 25 25 ns

tJPZX JTAG port high-
impedance to valid output

25 25 25 25 25 ns

tJPXZ JTAG port valid output to
high-impedance

25 25 25 25 25 ns

tJSSU Capture register setup
time

20 20 20 20 20 ns

tJSH Capture register hold time 45 45 45 45 45 ns

tJSCO Update register clock to
output

25 25 25 25 25 ns

tJSZX Update register
high-impedance to valid
output

25 25 25 25 25 ns

tJSXZ Update register valid
output to high-impedance

25 25 25 25 25 ns
14 Altera Corporation

AN 122: Using Jam ST APL f or ISP & ICR via an Embed ded Pr ocessor
Estimating ROM Usage

Use the following equation to estimate the maximum amount of ROM
required to store the Jam Player and JBC file:

ROM Size = JBC File Size + Jam Player Size

The JBC file size can be separated into two categories: the amount of
memory required to store the programming data, and the space required
for the programming algorithm. Use the following equation to estimate
the JBC file size:

JBC File Size = Alg +

where:

Alg = Space used by algorithm
Data = Space used by compressed programming data
k = Index representing device being targeted
N = Number of target devices in the chain

This equation provides a JBC file size estimate that may vary by ±10%,
depending on device utilization. When device utilization is low, JBC file
sizes tend to be smaller because the compression algorithm used to
minimize file size is more likely to find repetitive data.

The equation also indicates that the algorithm size stays constant for a
device family, but the programming data size grows slightly as more
devices are targeted. For a given device family, the increase in JBC file size
(due to the data component) is linear.

Data
k 1=

N

∑

Altera Corporation 15

AN 122: Using Jam ST APL f or ISP & ICR via an Embed ded Pr ocessor
16 Altera Corporation

Table 4 shows algorithm file size constants when targeting a single device
family, and Table 5 shows algorithm file size constants for all possible
combinations of Altera device families that support the Jam language.

Note:
(1) When configuring FLEX or APEX devices and programming MAX devices, the

FLEX or APEX algorithm adds negligible memory.

Table 4. Algorithm File Size Constants Targeting a Single Altera Device
Family

Device Typical JBC File Algorithm
Size (Kbytes)

APEX 20K 14

APEX 20KE 14

FLEX 10K 15

FLEX 10KE 15

FLEX 10KA 15

FLEX 10KB 15

EPC2 19

MAX 7000AE 21

MAX 7000 21

MAX 3000A 21

MAX 9000 21

MAX 7000S 25

MAX 7000A 25

MAX 7000B 17

Table 5. Algorithm File Size Constants Targeting Multiple Altera Device
Families

Devices Typical JBC File
Algorithm Size

(Kbytes)

FLEX 10K, MAX 7000A, MAX 7000S, MAX 7000AE (1) 31

FLEX 10K, MAX 9000, MAX 7000A, MAX 7000S,
MAX 7000AE

45

MAX 7000S, MAX 7000A, MAX 7000AE 31

MAX 9000, MAX 7000A, MAX 7000S, MAX 7000AE 45

AN 122: Using Jam ST APL f or ISP & ICR via an Embed ded Pr ocessor
Table 6 shows data size constants for Altera devices that support the Jam
language for ISP.

Table 6. Data Constants (Part 1 of 2)

Device Typical Jam STAPL Byte-Code Data Size
(Kbytes)

Compressed Uncompressed (1)

EPM7032S 8 8

EPM7032AE 6 6

EPM7064S 13 13

EPM7064AE 8 8

EPM7128S, EPM7128A 5 24

EPM7128AE 4 12

EPM7128B 4 12

EPM7160S 10 28

EPM7192S 11 35

EPM7256S, EPM7256A 15 51

EPM7256AE 11 18

EPM7512AE 18 37

EPM9320, EPM9320A 21 57

EPM9400 21 71

EPM9480 22 85

EPM9560, EPM9560A 23 98

EPF10K10, EPF10K10A 12 15

EPF10K20 21 29

EPF10K30 33 47

EPF10K30A 36 51

EPF10K30E 36 59

EPF10K40 37 62

EPF10K50, EPF10K50V 50 78

EPF10K50E 52 98

EPF10K70 76 112

EPF10K100, EPF10K100A,
EPF10K100B

95 149

EPF10K100E 102 167

EPF10K130E 140 230

EPF10K130V 136 199

EPF10K200E 205 345

EPF10K250A 235 413
Altera Corporation 17

AN 122: Using Jam ST APL f or ISP & ICR via an Embed ded Pr ocessor
Note:
(1) For more information on how to generate JBC files with uncompressed

programming data, contact Altera Applications at (800) 800-EPLD.

After estimating the JBC file size, estimate the Jam Player size using the
information in Table 7.

Estimating Dynamic Memory Usage

Use the following equation to estimate the maximum amount of DRAM
required by the Jam Player:

RAM Size = JBC File Size + (Uncompressed Data Size)k

The JBC file size is determined by a single- or multi-device equation (see
“Estimating ROM Usage” on page 15).

The amount of RAM used by the Jam Player will be the size of the JBC file
plus the sum of the data required for each device that is targeted. If the
JBC file is generated using compressed data, then some RAM will be used
by the Player to uncompress the data and temporarily store it. The
uncompressed data sizes are provided in Tables 5 and 6. If an
uncompressed JBC file is used, use the following equation:

RAM Size = JBC File Size

EP20K100 128 244

EP20K200 249 475

EP20K400 619 1,180

EPC2 136 212

Table 7. Jam STAPL Byte-Code Player Binary Sizes

Build Description Size (Kbytes)

16-bit Pentium/486 using the MasterBlaster or
ByteBlasterMV download cables

80

32-bit Pentium/486 using the MasterBlaster or
ByteBlasterMV download cables

85

Table 6. Data Constants (Part 2 of 2)

Device Typical Jam STAPL Byte-Code Data Size
(Kbytes)

Compressed Uncompressed (1)

Data
k 1=

N

∑

18 Altera Corporation

AN 122: Using Jam ST APL f or ISP & ICR via an Embed ded Pr ocessor
1 The memory requirements for the stack and heap are negligible,
with respect to the total amount of memory used by the Jam
STAPL Byte-Code Player. The maximum depth of the stack is set
by the JBI_STACK_SIZE parameter in the jbimain.c file.

Estimating Memory Example

The following example uses a 16-bit Motorola 68000 processor to program
an EPM7128AE and EPM7064AE device in an IEEE Std. 1149.1 JTAG
chain via a JBC file that uses compressed data. To determine memory
usage, first determine the amount of ROM required and then estimate the
RAM usage. Use the following steps to calculate the amount of DRAM
required by the Jam Byte-Code Player:

1. Determine the JBC file size. Use the following multi-device equation
to estimate the JBC file size. Because JBC files use compressed data,
use the compressed data file size information, listed in Tables 5 and
6, to determine Data size.

JBC File Size = Alg +

where:

Alg = 21 Kbytes
Data = EPM7064AE Data + EPM7128AE Data = 8 + 4 = 12 Kbytes

Thus, the JBC file size equals 33 Kbytes.

2. Estimate the JBC Player size. This example uses a JBC Player size of
62 Kbytes because this 68000 is a 16-bit processor. Use the following
equation to determine the amount of ROM needed:

ROM Size = JBC File Size + Jam Player Size

ROM Size = 95 Kbytes.

3. Estimate the RAM usage with the following equation:

RAM Size = 33 Kbytes + (Uncompressed Data Size)k

Because the JBC file uses compressed data, the uncompressed data
size for each device must be summed to find the total amount of RAM
used. The Uncompressed Data Size constants are as follows:

EPM7064AE = 8 Kbytes

EPM7128AE = 12 Kbytes

Data
k 1=

N

∑

Data
k 1=

N

∑

Altera Corporation 19

AN 122: Using Jam ST APL f or ISP & ICR via an Embed ded Pr ocessor
Calculate the total DRAM usage as follows:

RAM Size = 33 Kbytes + (8 Kbytes + 12 Kbytes) = 53 Kbytes

In general, Jam Files use more RAM than ROM, which is desirable
because RAM is cheaper and the overhead associated with easy upgrades
becomes less of a factor as a larger number of devices are programmed. In
most applications, easy upgrades outweigh the memory costs.

Updating
Devices Using
Jam

Updating a device in the field means downloading a new JBC file and
running the Jam STAPL Byte-Code Player with what in most cases is the
“program” action.

The main entry point for execution of the Player is jbi_execute() . This
routine passes specific information to the Player. When the Player
finishes, it returns an exit code and detailed error information for any run-
time errors. The interface is defined by the routine’s prototype definition.

JBI_RETURN_TYPE jbi_execute
(

PROGRAM_PTR program
long program_size,
char *workspace,
long workspace_size,
*action,
char **init_list,
long *error_line,
init *exit_code

)

The code within main() , in jbistub.c, determines the variables that will be
passed to jbi_execute() . In most cases, this code will not be applicable
to an embedded environment; therefore, this code can be removed and the
jbi_execute() routine can be set up for the embedded environment.
Table 8 describes each parameter, and Table 9 describes each action name.
20 Altera Corporation

AN 122: Using Jam ST APL f or ISP & ICR via an Embed ded Pr ocessor

Notes:
(1) Mandatory parameters must be passed for the Player to run.
(2) For more information, refer to Application Note 88 (Using the Jam Language for ISP & ICR via an Embedded Processor).

Table 8. Parameters Note (1)

Parameter Status Description

program Mandatory A pointer to the JBC file. For most embedded systems, setting up this
parameter is as easy as assigning an address to the pointer before calling
jbi_execute() .

program_size Mandatory Amount of memory (in bytes) that the JBC file occupies.

workspace Optional A pointer to dynamic memory that can be used by the JBC Player to perform
its necessary functions. The purpose of this parameter is to restrict Player
memory usage to a pre-defined memory space. This memory should be
allocated before calling jbi_execute() . If maximum dynamic memory
usage is not a concern, set this parameter to null, which allows the Player to
dynamically allocate the necessary memory to perform the specified action.

workspace_size Optional A scalar representing the amount of memory (in bytes) to which workspace
points.

action Mandatory A pointer to a string (text that directs the Player). Example actions are
PROGRAM or VERIFY. In most cases, this parameter will be set to the string
PROGRAM. The Player is not case-sensitive, so the text can be either upper
or lower case. The Player supports all actions defined in the Jam Standard Test
and Programming Language Specification. See Table 9. Note that the string must
be null terminated.

init_list Optional An array of pointers to strings. This parameter is used when applying Jam
version 1.1 files. (2)

error_line – A pointer to a long integer. If an error is encountered during execution, the
Player will record the line of the JBC file where the error occurred.

exit_code – A pointer to a long integer. Returns a code if there is an error that applies to
the syntax or structure of the JBC file. If this kind of error is encountered, the
supporting vendor should be contacted with a detailed description of the
circumstances in which the exit code was encountered.
Altera Corporation 21

AN 122: Using Jam ST APL f or ISP & ICR via an Embed ded Pr ocessor
Note:
(1) Not all actions are applicable to every Altera device. See the appropriate device family data sheet to learn which

functions apply.

The Player returns a status code of type JBI_RETURN_TYPE or integer.
This value indicates whether the action was successful (returns “0”).
jbi_execute() can return any one of the following exit codes in
Table 10, as defined in the Jam Standard Test and Programming Language
Specification.

Table 9. Supported Actions Note (1)

Action Name Description

CHECKCHAIN Verify the continuity of the IEEE Std. 1149.1 scan chain

READ_IDCODE Read the IEEE 1149.1 IDCODE and EXPORT it

READ_USERCODE Read the IEEE 1149.1 USERCODE and EXPORT it

READ_UES Read the UESCODE and EXPORT it

ERASE Perform a bulk erase of the device(s)

BLANK_CHECK Check the erased state of the device(s)

PROGRAM Program the device

VERIFY Verify the programming data of the device(s)

READ Read the programming data of the device(s)

CHECKSUM Calculate one fuse checksum of the programming data of the device(s)

SECURE Set the security bit of the device(s)

QUERY_SECURITY Check whether the security bit is set

TEST Perform a test. This test can include tests such as boundary scan, internal,
vector, and built-in self tests.
22 Altera Corporation

AN 122: Using Jam ST APL f or ISP & ICR via an Embed ded Pr ocessor
Running the Jam STAPL Byte-Code Player

Calling the Jam STAPL Byte-Code Player is like calling any other sub-
routine. In this case, the sub-routine is given actions and a file name, and
then it performs its function.

In some cases, in-field upgrades can be performed depending on whether
the current device design is up-to-date. The JTAG USERCODE is often
used as an electronic “stamp” that indicates the PLD design revision. If
the USERCODE is set to an older value, the embedded firmware updates
the device. The following pseudocode illustrates how the Jam Byte-Code
Player could be called multiple times to update the target PLD:

result = jbi_execute(jbc_file_pointer, jbc_file_size, 0, 0,
“READ_USERCODE”, 0, error_line, exit_code);

The Jam STAPL Byte-Code Player will now read the JTAG USERCODE
and export it using the jbi_export() routine. The code can then branch
based upon the result.

Figure 6 shows an example code for using the Jam Player.

Table 10. Exit Codes

Exit Code Description

0 Success

1 Checking chain failure

2 Reading IDCODE failure

3 Reading USERCODE failure

4 Reading UESCODE failure

5 Entering ISP failure

6 Unrecognized device ID

7 Device version is not supported

8 Erase failure

9 Blank check failure

10 Programming failure

11 Verify failure

12 Read failure

13 Calculating checksum failure

14 Setting security bit failure

15 Querying security bit failure

16 Exiting ISP failure

17 Performing system test failure
Altera Corporation 23

AN 122: Using Jam ST APL f or ISP & ICR via an Embed ded Pr ocessor
®

Altera, APEX, ByteBlaster, ByteBlasterMV, EPF10K10, EPF10K10A, EPF10K20, EPF10K30, EPF10K30A,
EPF10K30E, EPF10K40, EPF10K50, EPF1050E, EPF10K50V, EPF10K70, EPF10K100, EPF10K100A,
EPF10K100B, EPF10K100E, EPF10K130E, EPF10K130V, EPF10K200E, EPF10K250A, EPF10K250E, EPM7032S,
EPM7064AE, EPM7064S, EPM7128A, EPM7128AE, EPM7128S, EPM7160S, EPM7192S, EPM7256A,
EPM7256S, EPM9400, EPM9480, EPM9560, EPM9560A, FLEX 10K, FLEX 10KA, Jam, MasterBlaster, MAX,
MAX+PLUS, Quartus, MAX 7000A, MAX 7000AE, MAX 7000S, MAX 9000, and MAX 9000A are trademarks
and/or service marks of Altera Corporation in the United States and other countries. Altera acknowledges the
trademarks of other organizations for their respective products or services mentioned in this document. Altera
products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights,
and copyrights. Altera warrants performance of its semiconductor products to current specifications in
accordance with Altera’s standard warranty, but reserves the right to make changes to any products and
services at any time without notice. Altera assumes no responsibility or liability arising out of
the application or use of any information, product, or service described herein except as
expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain
the latest version of device specifications before relying on any published information and
before placing orders for products or services.

Copyright 2000 Altera Corporation. All rights reserved.

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com
Applications Hotline:
(800) 800-EPLD
Customer Marketing:
(408) 544-7104
Literature Services:
(888) 3-ALTERA
lit_req@altera.com

Figure 6. Jam Player Code Example

A switch statement can be used to determine which device needs to be
updated and which design revision should be used. With Jam STAPL
Byte-Code software support, PLD updates become as easy as adding a
few lines of code.

Conclusion Using Jam STAPL provides an simple way to benefit from ISP and ICR.
Jam meets all of the necessary embedded system requirements such as
small file sizes, ease of use, and platform independence. In-field upgrades
are simplified by confining updates to the Jam STAPL Byte-Code file.
Executing the Jam Player is straightforward, as is the calculation of
resources that will be used. For the most recent updates and information,
visit the Jam web site at: http://www.jamisp.com.

switch (USERCODE)
{

case "0001": /*Rev 1 is old - update to new Rev*/
result = jbi_execute (rev3_file, file_size_3, 0, 0, “PROGRAM”, 0,

error_line, exit_code);
case "0002": /*Rev 2 is old - update to new Rev*/

result = jbi_excecute(rev3_file, file_size_3, 0, 0, "PROGRAM", 0,
error_line, exit_code);

case "0003":
; /*Do nothing - this is the current Rev*/

default: /*Issue warning and update to current Rev*/
Warning - unexpected design revision; /*Program device with newest rev

anyway*/
result = jbi_execute(rev3_file, file_size_3, 0, 0, "PROGRAM", 0,

error_line, exit_code);
}

24 Altera Corporation

Printed on Recycled Paper.

	Contents
	AN 122: Using Jam STAPL for ISP & ICR via an Embedded Processor
	Introduction
	Embedded Systems
	Connecting the JTAG Chain to the Embedded Processor
	Example Interface PLD Design

	Board Layout
	TCK Signal Trace Protection & Integrity
	Pull-Down Resistors on TCK
	JTAG Signal Traces
	External Resistors

	Software Development
	Jam Files (.jam & .jbc)
	ASCII Text Files (.jam)
	Jam Byte-Code Files (.jbc)

	Generating Jam Files
	Jam Players
	Jam Player Compatibility
	The Jam STAPL Byte-Code Player
	Porting the Jam STAPL Byte-Code Player
	Step 1: Set Preprocessor Statements to Exclude Extraneous Code
	Step 2: Map JTAG signals to hardware pins
	Step 3: Handle Text Messages from jbi_export()
	Step 4: Customize Delay Calibration

	Jam STAPL Byte-Code Player Memory Usage

	Updating Devices Using Jam
	Running the Jam STAPL Byte-Code Player
	Estimating ROM Usage
	Estimating Dynamic Memory Usage
	Estimating Memory Example

	Conclusion

