

®

fp_mult

Floating-Point Multiplier

January 1996, ver. 1 Functional Specification 4

■

fp_mult

 reference design implementing a floating-point multiplier

Altera Corporation 1

Features
■ Parameterized mantissa and exponent bit widths
■ Optimized for FLEX 10K and FLEX 8000 device families
■ Supported by schematic and text design entry methods, including the

Altera Hardware Description Language (AHDL), VHDL, and
Verilog HDL

■ Easily customized for particular applications
■ Useful for a variety of applications, including video signal processing

and scientific computation

General
Description

The Altera fp_mult function implements a high-speed floating-point
multiplier with parameterized input widths. This function uses sign-
mantissa-exponent notation with parameterized mantissa and exponent
bit widths. See Figure 1.

Figure 1. fp_mult Symbol

Function Prototype

The AHDL Function Prototype for the fp_mult function is shown below:

FUNCTION fp_mult (sa, ma[mantissa_width..1],
 ea[exponent_width..1], sb, mb[mantissa_width..1],
 eb[exponent_width..1])
 WITH (mantissa_width, exponent_width)
 RETURNS (m_out[(mantissa_width) * (2)..1],
 e_out[exponent_width..1], s_out);

FP_MULT

EXPONENT_WIDTH =
MANTISSA_WIDTH =

SA
MA[MANTISSA_WIDTH..1]
EA[EXPONENT_WIDTH..1]
SB
MB[MANTISSA_WIDTH..1]
EB[EXPONENT_WIDTH..1]

M_OUT[MANTISSA_WIDTH * 2..1]
E_OUT[EXPONENT_WIDTH..1]

S_OUT
A-FS-04-01

FS 4: fp_mult Floating-Point Multiplier

Parameters

2 Altera Corporation

Parameters for the fp_mult function are provided in Table 1.

Ports

Input and output ports for the fp_mult function are shown in Table 2.

Functional
Description

The fp_mult reference design implements a fast, flexible floating-point
multiplier that provides parameterized mantissa and exponent widths.
The multiplier and the floating-point format can be easily customized for
particular applications by modifying a copy of the AHDL Text Design File
(.tdf).

In floating-point functions, the sign bit represents the sign of the mantissa:
1 for positive, 0 for negative. The mantissa is a positive number less than
1. A 0 is implied to the left of the binary point. After normalization, the
most significant bit (MSB) is always 1. The exponent is represented in
excess 2(n-1) notation, where n is the number of bits in the exponent.

Table 1. fp_mult Parameters

Name Default Value Description

exponent_width 7 Integers only Width of all exponents (in bits)

mantissa_width 8 Integers only Width of input mantissas (in bits)

Table 2. fp_mult Input & Output Ports

Port Type Name Description

Input sa Sign bit for the a input: 1 = positive, 0 = negative

Input ma[mantissa_width..1] Mantissa for the a input

Input ea[exponent_width..1] Exponent for the a input

Input sb Sign bit for the b input: 1 = positive, 0 = negative

Input mb[mantissa_width..1] Mantissa for the b input

Input eb[exponent_width..1] Exponent for the b input

Output m_out[(mantissa_width)*(2)..1] Mantissa for the output

Output e_out[exponent_width..1] Exponent for the output

Output s_out Sign bit for the output: 1 = positive, 0 = negative

FS 4: fp_mult Floating-Point Multiplier

For example, the binary representation of the number 0.75

×

 2

1

 is shown

Altera Corporation 3

below. This example assumes 8 bits for the mantissa (M) and 7 bits for the
exponent (E). S represents the sign bit.

S = 1, M = 11000000, E = 1000001

Similarly, the binary representation of the number 0.625 × 2–1 is:

S = 1, M = 10100000, E = 0111111

Figure 2 shows a block diagram of the fp_mult floating-point multiplier.

Figure 2. fp_mult Block Diagram

In this figure, m represents mantissa_width and n represents exponent_width.

Floating-Point
Multiplication

To multiply floating-point numbers, the mantissas are first multiplied
together with an unsigned integer multiplier. Then, the exponents are
added, and the excess value (exponent_offset) 2(n – 1) is subtracted
from the result. The sign of the output (s_out) is the XNOR of the signs of
the inputs (sa and sb). After multiplication has taken place, the post-
normalizer normalizes the result, if necessary, by adjusting the mantissa
and exponent of the result to ensure that the MSB of the mantissa is 1.

EXPONENT_OFFSET = 2(n – 1)

M_OUT E_OUT

Post-Normalizer

m × 2 n

EA EB

+ –

+ +

n n

Fixed-Point
Multiplier
(LPM_MULT)

m × 2

SA SB

S_OUT

MA

m

MB

m

FS 4: fp_mult Floating-Point Multiplier

Using the

fp_mult

 function in a design produces a double precision

4 Altera Corporation

output (i.e., the mantissa in the result has twice the number of bits of either
input mantissa). Therefore, the result does not lose precision and does not
require rounding.

The mantissa must be post-normalized whenever floating-point numbers
are multiplied. As a double precision output is created, the implied
denominator of the mantissa fraction is squared in value, from 8 to 16 bits.
The denominator of the mantissa fraction is 65536 (= 216) in double
precision format, and 256 (= 28) in single precision. To retain as many
significant digits as possible for consequential floating point operations,
the result must be normalized.

To normalize the mantissa, the mantissa is shifted left (i.e., the mantissa is
multiplied by powers of 2). For each bit shifted left, the exponent must be
reduced by 1. The following example shows a number before
normalization and its normalized equivalent:

Unnormalized number: 0.0001011001110001 × 250

Normalized equivalent: 0.1011001110001000 × 247

Table 3 shows an example of floating-point multiplication. The subscript
“d” indicates that the number is a decimal number.

Floating-Point
Representation

Floating-point numbers can be represented by many different notations.
The fp_mult reference design uses an implied leading zero for the
mantissa, with an unsigned m-bit mantissa, and n-bit exponent, where
m = mantissa_width and n = exponent_width. A separate sign bit
represents the sign of the mantissa.

The following examples of an 8-bit positive mantissa and a 7-bit exponent
assume mantissa_width = 8 and exponent_width = 7. The numbers
in Table 4 should be adjusted accordingly if different parameter values
are used.

Table 3. Floating-Point Multiplication

Operation Decimal Equivalent
(Exponent in Excess 0)

Binary
(Exponent in Excess 64)

Multiplication (39 × 210d) × (203 × 26d) (00100111.0 × 274) × (11001011.0 × 270)

Normalization (0.609375 × 216d) × (0.79296875 × 214d) (0.10011100 × 280) × (0.11001011 × 278)

Result 7917 × 216d 0.0001111011101101 × 280

Normalize 63336 × 213d 0.1111011101101000 × 277

Decimal result 518,848,512 —

FS 4: fp_mult Floating-Point Multiplier

An 8-bit positive mantissa allows fractions with numerators ranging from
Altera Corporation 5

0 to 255. The implied leading zero limits the range of the mantissa from 0
to 0.9961, and the separate sign bit allows the mantissa to have a value
from –0.9961 to +0.9961. Because the mantissa is in fractional form, having
an additional number of bits in the mantissa does not result in a larger
mantissa, but instead offers greater precision. Table 4 lists examples of
8-bit mantissas with implied leading zeros.

A 7-bit exponent is represented in excess 64 format—i.e., for an n-bit
exponent, the representation is excess 2(n – 1). Excess (or offset) format
allows both negative and positive exponents to be represented with
positive numbers, which results in simpler calculations for exponent
handling. To represent an exponent in excess 2(n – 1) format, add 2(n – 1) to
the value of the exponent. For example, to represent an exponent in excess
64 format, add 64 to the exponent; thus, the maximum value for the
exponent is +63, and the minimum value is –64. In excess 64 format, an
exponent of 10 is represented as 74, and an exponent of –10 is represented
as 54. The exponent 0 is represented as 64.

Examples of floating-point multiplication for 8-bit mantissa, 7-bit
exponent floating-point numbers are provided below. The subscripts “b”
and “d” indicate that the number is a binary or a decimal number,
respectively.

Example 1: Largest Positive Number

+11111111b 1111111b

= +0.11111111b × 2(1111111b – 1000000b)

= +0.11111111b × 20111111b

= +0.11111111b × 263d

= +11111111.0b × 255d

= +255d × 255d

= +9.187343239836d × 1018d

Table 4. 8-Bit Mantissas

Mantissa Implied Zero Binary Fraction Decimal
Fraction

Decimal

11001110 0.11001110 11001110 / 100000000 206 / 256 0.80469

00001100 0.00001100 00001100 / 100000000 12 / 256 0.04688

10100001 0.10100001 10100001 / 100000000 161 / 256 0.62891

FS 4: fp_mult Floating-Point Multiplier

Example 2: Largest Negative Number
6 Altera Corporation

–11111111b 1111111b

= –9.187343239836d × 1018d

Example 3: Smallest Number (Closest to Zero)

±10000000b 0000000b

= ±0.10000000b × 2(0000000b – 1000000b)

= ±0.10000000b × 2(0d – 64d)

= ±0.10000000b × 2–64d

= ±10000000.0b × 2–72d

= ±128d × 2–72d

= ±2.710505431214d × 10–20d

Example 4: Typical Value

–11000111b 1001001b

= –0.11000111b × 2(1001001b – 1000000b)

= –0.11000111b × 21101b

= –0.11000111b × 29d

= –11000111.0b × 21d

= –199d × 2d

= –398d

Floating-Point
Error Detection

The fp_mult function does not check for error conditions such as
overflow and underflow because implementing error detection and
correction in a design can add significant delays to the circuit. Although
error detection can be implemented quickly, error correction causes long
delays because it requires the exponent and/or mantissa values to be
modified. Boundary conditions for the mantissa and exponent can also be
added by the designer. Error detection and correction, and boundary
conditions can be added to fp_mult by modifying the Logic Section of a
copy of the fp_mult.tdf file.

f Go to MAX+PLUS II Help for more information about programming with
AHDL.

FS 4: fp_mult Floating-Point Multiplier

Overflow & Underflow Error Conditions
Altera Corporation 7

The most common floating-point errors are overflow and underflow.
Overflow occurs when the resultant exponent has a value greater than the
number of bits in exponent_width. For example, overflow occurs with
a 7-bit exponent when the resultant exponent is greater than 63.

To detect overflow in a design, an extra bit of precision in the exponent
must be carried when calculating the exponent of the output. With a 7-bit
exponent, overflow may have occurred if the MSB of the exponent is 1
after the exponents are added and 64 is subtracted from the result.
Overflow has occurred if the MSB of the exponent is 1 after the post-
normalization correction. Therefore, the general AHDL equation for
overflow detection is as follows:

Overflow = <MSB of exponent after addition>
AND <MSB after excess 64 subtraction>
AND <MSB after post-normalization correction>;

Underflow occurs when the MSB of the exponent is equal to 0 after the
exponents are added and 64 is subtracted from the result, but equal to 1
after the post-normalization correction. With a 7-bit exponent, underflow
occurs when the exponent is less than –64. The general AHDL equation
for underflow is as follows:

Underflow = !<MSB after addition>
AND <MSB after post-normalization correction>;

Boundary Conditions

The values of the mantissa and/or exponent can be used to set boundary
conditions or to indicate error conditions such as not-a-number (NaN).
The NaN condition occurs as a result of invalid operations, such as
zero × infinity. Infinity can be represented in several ways, such as setting
the exponent to its largest value. The largest exponent cannot be used to
represent other numbers if it is used to represent infinity. Therefore, some
dynamic range is lost.

Table 5 shows the mantissa and exponent values used to set boundary
conditions and the NaN error condition.

FS 4: fp_mult Floating-Point Multiplier
Altera, MAX, MAX+PLUS, and FLEX are registered trademarks of Altera Corporation. The following are
trademarks of Altera Corporation: MAX+PLUS II, AHDL, and FLEX 10K. Altera acknowledges the
trademarks of other organizations for their respective products or services mentioned in this document,
specifically: Verilog and Verilog-XL are registered trademarks of Cadence Design Systems, Inc. Mentor
Graphics is a registered trademark of Mentor Graphics Corporation. Synopsys is a registered trademark of
Synopsys, Inc. Viewlogic is a registered trademark of Viewlogic Systems, Inc. Altera products are protected
under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera
warrants performance of its semiconductor products to current specifications in accordance with Altera’s
standard warranty, but reserves the right to make changes to any products and services at any time without
notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in
writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing
orders for products or services.

Copyright 1996 Altera Corporation. All rights reserved.

2610 Orchard Parkway
San Jose, CA 95134-2020
(408) 894-7000
Applications Hotline:
(800) 800-EPLD
Customer Marketing:
(408) 894-7104
Literature Services:
(408) 894-7144

®

8 Altera Corporation

The fp_mult reference design does not define boundary conditions or
check for the NaN error condition. Like the overflow and underflow error
conditions, boundary conditions and NaN detection can be added to
fp_mult by modifying the Logic Section of a copy of the fp_mult.tdf file.

Table 5. Boundary & NaN Error Conditions

Condition Type Name Sign Mantissa Exponent

Boundary Zero 0 0 0

Boundary –Zero 1 0 0

Boundary Infinity 0 0 2(n – 1)

Boundary –Infinity 1 0 2(n – 1)

Error NaN – 2(m – 1) Anything except 0
Printed on Recycled Paper.

	Contents
	FS 4: fp_mult Floating-Point Multiplier
	Features
	General Description
	Function Prototype
	Parameters�
	Ports

	Functional Description
	Floating-Point Multiplication
	Floating-Point Representation
	Example 1: Largest Positive Number
	Example 2: Largest Negative Number
	Example 3: Smallest Number (Closest to Zero)
	Example 4: Typical Value

	Floating-Point Error Detection
	Overflow & Underflow Error Conditions
	Boundary Conditions

