

Jam Programming & Test
Language Specification

Version 1.1
October 1997

Developed by:
Altera Corporation

Notes:

Jam Programming & Test Language Specification

Introduction The Jam™ programming and test language is designed to support the

programming of programmable logic and memory devices, and testing of

electronic systems, using the IEEE 1149.1 JTAG interface. As a Jam

program is executed, signals are produced on the IEEE 1149.1 JTAG

interface, as described in the Jam program. The Jam language supports

programming any IEEE 1149.1 JTAG-compliant programmable logic or

memory device.

The Jam language may be implemented as an interpreted language,

meaning that the Jam program source code is executed directly by an

interpreter program, without first being compiled into binary executable

code.

The Jam language also provides an extended instruction set that allows

the Jam program to drive any parallel vectors to the system. Jam

compliance does not require support of this extension.

Language
Overview

A Jam program consists of a sequence of program statements. A Jam

statement consists of a label, which is optional, an instruction, and

arguments, and terminates with a semicolon (;). Arguments may be literal

constants, variables, or expressions resulting in the desired data type (i.e.,

Boolean or integer). Each statement usually occupies one line of the Jam

program, but this is not required. Line breaks are not significant to the Jam

language syntax, except for terminating comments. An apostrophe

character (‘) can be used to signify a comment, which is ignored by the

interpreter. The language does not specify any limits for line length,

statement length, or program size.

Program Flow

Execution of a Jam program starts at the beginning of the file. The

program flow is controlled using GOTO, CALL/RETURN, and FOR/NEXT
structures. The GOTO and CALL statements refer to labels, which are

symbolic names for program statements located elsewhere in the Jam

program. The language itself enforces almost no constraints on the

organizational structure or control flow of a program.

No facility exists within the Jam language for linking multiple Jam

programs together, or for including the contents of another file into a Jam

program.
 341

Jam Pr ogramming & Test Langua ge Specifi cation

Data Management

All variables in the Jam language must be declared before they are used,

and they always have global scope (i.e., they are available to all statements

encountered after the declaration statement). Jam programs have

variables of two types: integer and Boolean. Integers are 32-bit signed

numbers. Boolean variables can be considered to be single-bit unsigned

integers, although they cannot be used interchangeably with integer

variables. One-dimensional Boolean or integer arrays can be declared.

These arrays are indexed to give access to a single element or a range of

elements inside the array. Multi-dimensional arrays are not supported.

The Jam language does not support string variables. However, string

constants and string representations of integer values can be used to form

text output messages. A complete set of arithmetic, logical, and relational

operators is available for integers, and a complete set of logical operators

is provided for Boolean expressions. No operators are provided to work

directly on integer arrays or Boolean arrays. For strings, concatenation is

available to permit the construction of simple messages.

The initialization value of scalar integer or Boolean variables can be set at

run-time using an “initialization list”, which is a list of variable names and

values supplied to the Jam interpreter at run-time. These values override

the initialization values found in the Jam program. This mechanism

permits a single Jam File to perform multiple operations (e.g., device

programming and fault testing). To use this feature, the software that

invokes the Jam program must know the names and values to supply in

the initialization list to obtain the desired result. The initialization list is

described in greater detail in “Initialization List Conventions” on page

370.

The Jam language is not case sensitive. All labels, variable names,

instruction names, and other language elements are processed without

regard to case. (The only exception is the encoded format used for

compressed Boolean array initialization data, which is described in “Data

Management” on page 346.) In this document, Jam program examples use

uppercase instruction and keyword names and lowercase label and

variable names, but the language does not require this convention. For

string constants in PRINT statements, the case is preserved when printing

the string.

f Go to Appendix A on page 375 for a sample Jam File.
342

Jam Pr ogramming & Test Langua ge Specifi cation

I/O

The only input and output mechanisms supported in the Jam language

are the IEEE 1149.1 JTAG hardware interface, the initialization list for run-

time variable initialization, the PRINT statement for output messages, and

the EXPORT statement for sending data values to the calling program. The

EXPORT statement transmits information from the Jam program to the

calling program using a callback function. The EXPORT statement can be

used to relay the current execution status, or to pass other information.

The information transmitted by the EXPORT statement consists of a key

string and an integer value. The significance of the integer value depends

on the key string. See Table 10 on page 369 for a list of defined key strings.

The Jam language does not provide access to any other input or output

files or devices.

Statements Each statement in a Jam program contains up to three elements: a label

(optional), an instruction, and arguments. The number and type of

arguments depends on the instruction. A semicolon (;) terminates the

statement.

Labels (Optional)

Labels provide a means of branching within the program. A unique label

can begin each Jam program statement and must be followed by a colon

(:). Label names are not case sensitive (i.e., two label names that differ only

by case are considered equal).

Instructions

Each Jam statement begins with one of the following instruction names.

“Jam Statement Specifications” on page 356 provides a detailed

description of each instruction name. The instruction names, including

the names of the optional instructions, are reserved keywords and cannot

be used as variable or label identifiers in a Jam program.

■ BOOLEAN
■ CALL
■ CRC
■ DRSCAN
■ DRSTOP
■ EXIT
■ EXPORT
■ FOR
■ GOTO
■ IF

■ INTEGER
■ IRSCAN
■ IRSTOP
■ LET
■ NEXT
■ NOTE
■ POP
■ POSTDR
■ POSTIR
■ PREDR

■ PREIR
■ PRINT
■ PUSH
■ RETURN
■ STATE
■ WAIT
■ VECTOR (1)
■ VMAP (1)
343

Note:
(1) This instruction name is an optional language extension.

Jam Pr ogramming & Test Langua ge Specifi cation

These Jam language instructions take arguments in the form of variables

or expressions, except for the following:

■ The GOTO and CALL instructions take labels as arguments.

■ The PRINT statement takes a string expression as an argument.

■ The DRSCAN, IRSCAN, and VECTOR statements take Boolean array

expressions as arguments.

■ The RETURN statement takes no arguments at all.

When a statement is processed, each argument is checked for a valid

variable or expression type.

Table 1 shows the sixteen state names that are reserved keywords in the

Jam language. These keywords correspond to the state names specified in

the IEEE 1149.1 JTAG specification.

The following sixteen strings are also reserved keywords in the Jam

language, due to their significance in Jam statements or expressions:

Table 1. Reserved State Names

IEEE 1149.1 JTAG State Names Jam Reserved State Names

Test-Logic-Reset RESET

Run-Test-Idle IDLE

Select-DR-Scan DRSELECT

Capture-DR DRCAPTURE

Shift-DR DRSHIFT

Exit1-DR DREXIT1

Pause-DR DRPAUSE

Exit2-DR DREXIT2

Update-DR DRUPDATE

Select-IR-Scan IRSELECT

Capture-IR IRCAPTURE

Shift-IR IRSHIFT

Exit1-IR IREXIT1

Pause-IR IRPAUSE

Exit2-IR IREXIT2

Update-IR IRUPDATE

■ ABS
■ BIN
■ CAPTURE

■ CYCLES
■ FLOOR
■ HEX

■ SQRT
■ THEN
■ TO
344

■ CEIL
■ CHR$
■ COMPARE

■ LOG2
■ RLC
■ STEP

■ USEC

Jam Pr ogramming & Test Langua ge Specifi cation

Comments

A comment is a part of a Jam program that is ignored during processing.

Comments can be placed anywhere in the program. A comment is made

using the apostrophe character (‘). The apostrophe, and all characters

following it on the same line are ignored. A line break indicates the end of

a comment.

Program Flow Execution of a Jam program always begins with the first line and

terminates when the EXIT statement is processed. If the end of a file is

reached, an error occurs. The flow of execution in a Jam program is

controlled using three methods: branches, subroutine calls, and loops.

The Stack

The Jam language manages subroutine calls and loops using a stack. The

stack is a repository for information about all activities that can be nested.

These nested functions are CALL and RETURN, FOR and NEXT, and PUSH and

POP. When a CALL, FOR, or PUSH statement is encountered, information

about the function is added to the stack. When the corresponding RETURN,
NEXT, or POP statement is encountered, the record is removed from the

stack. (For the NEXT statement, the stack record is removed only when the

loop has run to completion.)

GOTO

The GOTO statement causes execution to jump to the statement that

corresponds to the label. This label may or may not have been

encountered already in the Jam program. If the label was not encountered,

the remainder of the Jam program will be processed (without executing

any statements) until the label is found, or until the end of the program is

reached. If the label is found, execution of the program will continue from

that point.

The IF statement can be used with the GOTO statement to create a

conditional branch.

CALL & RETURN

The CALL statement is like the GOTO statement, but the location of the

statement following the CALL is saved on the stack. When a RETURN
statement is executed, execution jumps to the statement following the

CALL statement, and the record is deleted from the stack. If a RETURN
statement is executed when the stack is empty or does not have a CALL
345

record on top, an error occurs. The program will terminate with a

corresponding error code.

Jam Pr ogramming & Test Langua ge Specifi cation

The IF statement can be used with the CALL and RETURN statements to call

a subroutine conditionally, or to return conditionally.

FOR Loops

The FOR statement is used for iteration or “looping”. Each FOR statement

has an associated integer variable called the “iterator”, which maintains a

count of the iterations. When a NEXT statement using the same iterator

variable is encountered, the iterator is incremented (or stepped, if the

STEP keyword is used with the FOR statement). If the iterator has reached

its terminal value and the body of the loop has been executed for the last

time, the FOR loop is complete and control is passed to the statement

following the NEXT statement. Otherwise, control jumps back to the

statement following the FOR statement.

Data
Management

Variable Names

Variable names are limited to 32 characters, and must begin with an

alphabetic character—not a number. Variable names consist of alphabetic

characters, numeric characters, and the underscore (_) character—no

other characters are allowed. Variable names are not case sensitive (i.e.,

two variable names that differ only by case are considered equal).

Declaration of a variable whose name exceeds 32 characters in length,

contains illegal characters, or conflicts with a previously defined identifier

(a variable or label name) or reserved keyword is an error.

Types

The two data types available in the Jam language are integer and Boolean.

These types may be used to declare “scalar” variables and one-

dimensional arrays. Any variable or array must be declared before any

reference to it is made.

All arrays are zero-based (i.e., valid indices range from zero to one less

than the total number of elements in the array).

Initialization

By default, the Jam interpreter initializes all variables and arrays to zero

when they are created. Variables and arrays can also be explicitly

initialized at the time of declaration. Arrays with explicit initialization are

always “read-only” (i.e., the Jam program cannot modify any element of

the array). For initialization of Boolean arrays, the initial array data can be
346

specified in one of four ways:

Jam Pr ogramming & Test Langua ge Specifi cation

■ A comma-separated list of values

■ Binary (one bit per character)

■ Hexadecimal (four bits per character)

■ Advanced Compression Algorithm (ACA)

To initialize integer arrays, the initial array data must be specified as a

comma-separated sequence of decimal numbers.

Array data can be accessed three ways:

■ Indexing (using an integer) resulting in a single scalar value

■ Sub-range indexing (using two integers) resulting in a smaller array

■ Collectively as an array

Arrays and sub-range indexed arrays can only be used as arguments with

LET, DRSCAN, IRSCAN, and VECTOR statements, which accept array

arguments. No arithmetic, logical, or relational operators are provided for

whole arrays or sub-range indexed arrays.

Literal Values

Literal data values may appear in integer or Boolean expressions. For

example, in the statement LET a = a + 1, the number one is a literal

value. The literal values 0 and 1 may be used in either integer or Boolean

expressions; other signed decimal numbers between –2147483648 and

2147483647 can be used only in integer expressions. Only decimal format

is supported for integers.

For Boolean array expressions, a literal Boolean array value can be

expressed as a hexadecimal string. Such literal arrays can be used as

arguments with LET, DRSCAN, IRSCAN, and VECTOR statements, which

accept Boolean arrays as arguments. If the size of the literal array is less

than the expected size, an error occurs. literal Boolean arrays must begin

with a numeric character to avoid confusion with variable names. For

example, “FF” must be expressed as “0FF”. The array elements are

ordered from right to left, i.e., the least significant bit (LSB) of the right-

most hexadecimal digit corresponds to index zero of the array.

No format is supported for literal use of integer arrays.

Text strings must be specified as literal values for the PRINT statement,

since the Jam language does not support any character or string variable

types.
347

Jam Pr ogramming & Test Langua ge Specifi cation

Constants

No facility is provided for integer or Boolean constants. A variable should

be declared with an initialized value when a symbolic name for a quantity

is desired.

Advanced Compression Algorithm (ACA)

The ACA format uses text characters to store Boolean array data in a

compressed form. The algorithm and syntax for recovering raw binary

data from ACA compressed format is described in this section.

ACA format achieves compression by storing raw data in two sections:

literal data and repeated data. Both sections are preceded by an

uncompressed data length block that specifies the length of the data when

it is uncompressed. Figure 1 shows the overall structure of data in the

ACA format.

Figure 1. ACA Data Structure

The uncompressed data length block is a binary, scalar value that is 4

bytes long. Thus, the total length of binary data that can be compressed by

the ACA algorithm is 232 bytes – 1 bytes of raw data. The bytes are ordered

in the Little Endian format, meaning that the order of the bytes are flipped

around within the block, but the order of the bits within the byte remain

intact. For example, the data HEX 12345678 would be ordered HEX

78563412. Figure 2 shows the uncompressed data length block.

Figure 2. ACA Uncompressed Data Length Block

The literal data section begins with a bit whose value is 0 and is followed

by 3 bytes of uncompressed data (see Figure 3). When inflated, this data

section is copied directly to the output stream.

Uncompressed
Data Length

Literal or Repeated
Data

Literal or Repeated
Data

Original Byte
Order

Little Endian
Format

31..24 23..16 15..8 7..0

7..0 31..2423..1615..8
348

Jam Pr ogramming & Test Langua ge Specifi cation

Figure 3. ACA Literal Data Section

Sections of raw data that are repetitions of previous data are stored in the

repeated data section. The repeated data section begins with a bit whose

value is 1. The next 1 to 13 bits compose the scalar offset, which is followed

by a byte specifying the length. When inflating the compressed

information, data is copied to the output stream. The offset value,

represented by a variable number of bits, specifies the number of bytes

back in the output stream where the repeated data begins. The length

variable provides the number of bytes of data that are repeated. For

example, if the offset value is 8 and the length value is 5, the data pointer

goes back 8 bytes in the uncompressed output stream and copies the 5

bytes from that location. Figure 4 illustrates the form of the repeated data

block.

Figure 4. ACA Repeated Data Section

The following example illustrates how the ACA algorithm would treat a

set of binary data. In this case, the raw binary data is composed of the

24 bytes shown in Table 2.

Bits

Position of Data
Bytes in Block

0 1..8 9..16 31..24

Byte 1 Byte 2 (MSB)Byte 0 (LSB)0

Bits

Bit Function Constant Bit Offset Length

1 N..1 8..1

Limits 1 bit
Up to 8 bits

4 ≤ Length ≤ 255
Up to 13 bits

1 ≤ Offset ≤ (213) – 1
349

Jam Pr ogramming & Test Langua ge Specifi cation

Once the ACA algorithm formats the raw data, the data is compressed.

Table 3 shows how the sample data appears after it is compressed.

Table 2. Sample Uncompressed Data

Offset Data ASCII Binary

0 61 a 01100001

1 62 b 01100010

2 63 c 01100011

3 64 d 01100100

4 65 e 01100101

5 66 f 01100110

6 61 a 01100001

7 62 b 01100010

8 63 c 01100011

9 64 d 01100100

10 65 e 01100101

11 66 f 01100110

12 67 g 01100111

13 68 h 01101000

14 69 i 01101001

15 6A j 01101010

16 6B k 01101011

17 6C l 01101100

18 64 d 01100100

19 65 e 01100101

20 66 f 01100110

21 61 a 01100001

22 62 b 01100010

23 63 c 01100011
350

Jam Pr ogramming & Test Langua ge Specifi cation

In this example, the original data is compressed from 24 bytes to 19 bytes.

Compression is achieved by recognizing that the sequence abc and def are

repeated in the original data block. These sequences are then compressed

in two repeated data sections.

Raw binary data is converted to ASCII data characters for storage. To

make the conversion, a table is constructed to encode the actual data as a

subset of ASCII characters. The character set used for compressed arrays

is the set of digits 0-9, uppercase and lowercase alphabetic characters

(A-Z) and (a-z), the underscore character (_), and the “at” character (@).

These 64 characters are used to represent numeric quantities. The

encoding of the binary values as ASCII characters is implemented by the

‘C’ program code shown below.

if ((ch >= ‘0’) && (ch <= ‘9’)) result = (ch – ‘0’);
else if ((ch >= ‘A’) && (ch <= ‘Z’)) result = (ch + 10 – ‘A’);
else if ((ch >= ‘a’) && (ch <= ‘z’)) result = (ch + 36 – ‘a’);

Table 3. Sample Compressed Data

Offset Data Binary

0 18 00011000

1 00 00000000

2 00 00000000

3 00 00000000

4 C2 11000010

5 C4 11000100

6 C6 11000110

7 90 10010000

8 95 10010101

9 99 10011001

10 B5 10110101

11 81 10000001

12 33 00110011

13 B4 10110100

14 34 00110100

15 6A 01101010

16 6B 01101011

17 6C 01101100

18 9F 10011111

19 01 00000001
351

else if (ch == ‘_’) result = 62;
else if (ch == ‘@’) result = 63;

Jam Pr ogramming & Test Langua ge Specifi cation

With this program, the numeric values from 0 to 63 are encoded as ASCII

characters. Thus, a single ASCII character represents 6 bits of raw binary

data (i.e., 6 = log2(64)).

Expressions &
Operators

Expressions

An expression in the Jam language is a collection of variables, literal data

values, or other expressions joined together by operators to describe a

computation. Parentheses may be used to control the precedence of

evaluation. The result of every expression, applied as an instruction

argument, must match the expected type.

Integer & Boolean Operations

The Jam language offers a complete set of arithmetic, logical, and

relational operators. The character codes used for these operators are

similar to the operators used in the ‘C’ programming language. The

assignment operator (=) is not included in this list because it is considered

to be part of the LET statement. The ternary operator in the ‘C’ language

(A = B ? C : D) is not supported in the Jam language. Arithmetic and

logical operators always produce the same type of result as used by the

arguments (i.e., integer arguments produce integer results, and Boolean

arguments produce Boolean results). The relational operators always

produce a Boolean result.

The arithmetic and logical operators described in Tables 4 and 5 take one

or two integer arguments and produce an integer result.

Table 4. Operators Yielding an Integer Result

Operator Description

~ Bitwise unary inversion

* Multiplication

/ Division

% Modulo

+ Addition

– Subtraction and unary negation

<< Left shift

>> Right shift

& Bitwise logic AND

^ Bitwise logical exclusive OR

| Bitwise logical OR
352

Jam Pr ogramming & Test Langua ge Specifi cation

The results of division and square-root operations are rounded down to

the nearest integer value. The ceiling (CEIL) function can be used on the

result of a division or square-root operation to round the result up. For

division, the result may be a negative number. In this case, the result is

rounded toward zero by default. The CEIL function can be used to round

the result to the more negative value.

The result of LOG2 is rounded up to the nearest integer value. The floor

(FLOOR) function can be used on the result of LOG2 to round the result

down.

The relational operators described in Table 6 take two integer arguments

and produce a Boolean result.

The logical and relational operators described in Table 7 take two Boolean

arguments and produce a Boolean result (except the unary inversion

operator, which takes one Boolean argument).

Table 5. Functions with a Single Integer Argument & an Integer Result

Function Description

ABS() Absolute value

LOG2() Logarithm base 2

SQRT() Square root

CEIL() Ceiling (least integer which is greater than...)

FLOOR() Floor (greatest integer which is less than...)

Table 6. Operators with Integer Arguments & a Boolean Result

Operator Description

== Equality comparison

!= Inequality comparison

> Greater comparison

< Less comparison

>= Greater or equal comparison

<= Less or equal comparison
353

Jam Pr ogramming & Test Langua ge Specifi cation

Note that the equality and inequality comparison operators (== and !=)

are used for both integer and Boolean arguments. However, both

arguments must be either Boolean or integers (i.e., an integer argument

cannot be directly compared to a Boolean argument).

Table 8 shows the precedence of operations, in descending order of

priority. However, parentheses can be used to force the precedence in any

expression.The precedence of operations in the Jam language closely

resembles the precedence in the ‘C’ programming language.

Integers and Booleans are never automatically converted; a relational

operator must be used to convert an integer to Boolean, since relational

operators always give a Boolean result. To convert a Boolean bit to an

integer, use an IF statement to test the value of the Boolean, and then

assign a value to the integer accordingly. The constant literal numbers 0

Table 7. Operators with Two Boolean Arguments & a Boolean Result

Operator Description

&& Logical AND

|| Logical OR

! Unary inversion

== Equality comparison

!= Inequality comparison

Table 8. Operator Precedence

Precedence Operator Description

1 !, ~ Unary inversion

2 * , / , % Multiplication, division, and
modulo

3 +, - Addition, subtraction

4 <<, >> Shift

5 <, <=, >, >= Magnitude comparison

6 ==, != Equality comparison

7 & Bitwise logical AND

8 ^ Bitwise logical exclusive OR

9 | Bitwise logical OR

10 && Logical AND

11 || Logical OR
354

and 1 can be used either as an integer or as a Boolean value, according to

the context.

Jam Pr ogramming & Test Langua ge Specifi cation

Array Operations

Square brackets ([]) are used to index arrays. The result of indexing is

either a single element (integer or Boolean) or a smaller array,

representing a subset of the original array. To gain access to a single

element of an array, the index consists of a single integer expression. For

example, one element of an array can be assigned to another element as

follows:

LET vect[52] = vect[0];

To copy a group of elements from one array to another:

FOR i = 0 TO 255;
LET dest[i + 256] = source[i];
NEXT i;

An array expression can consist of a range of elements from another array

variable. The syntax for this expression is the same as for indexing, but

with a start index and stop index, separated by two periods (..). This

method is used to provide Boolean array expressions for LET, DRSCAN,
IRSCAN, and VECTOR commands. For example:

DRSCAN length invect[start..stop] CAPTURE outvect;

If no indexing expression is given inside the brackets, this is equivalent to

a subrange index spanning the entire array. Thus, the expression vect[]

is equivalent to vect[0..n-1] where n is the total number of elements in

array vect[] .

String Operations

String operations can be used only in PRINT statements. Integers are

converted to strings automatically in the PRINT statement. For example,

the following statement prints out the value of an integer variable:

PRINT "The signed integer value of a is ", a;

The following statement displays the character represented by an integer

variable:

PRINT "The character in a is ", CHR$(a), " and you can depend
on it.";
355

Jam Pr ogramming & Test Langua ge Specifi cation

The CHR$() function coverts an integer value to its ASCII code, allowing

the Jam language to print ASCII characters in a more elegant manner. For

example, if message text is acquired from a device during test or

programming, it can be stored and manipulated as integer data, and

displayed as text characters.

Jam Statement
Specifications

The Jam language supports 28 types of statements corresponding to the 28

instruction names listed in “Language Overview” on page 341. The

following section describes each statement type.

BOOLEAN

The BOOLEAN statement declares a variable or an array of Boolean type.

Boolean variables can be initialized to 0 or 1. Arrays can be initialized

using binary, hexadecimal or ACA compressed format. By default, a

comma-separated list of data values is expected. The keywords BIN, HEX,

and ACA may be used to select other formats for initialization data.

Initialized arrays are read-only (i.e., the Jam program cannot modify any

element of the array). If the size (number of elements) of the initialization

data is less than that of the initialized array,the array elements whose

initialization data is unspecified will be set to zero. If the size of the

initialization data is greater than that of the initialized array, the excess is

ignored. If no initialization is specified, the variable or array will be

initialized to zero.

Initialization data specified using the BIN and HEX format is always

ordered from left to right (i.e., the left-most binary digit or the LSB of the

left-most hexadecimal digit corresponds to index zero of the array).

Syntax: BOOLEAN <variable name>;

BOOLEAN <variable name> = <Boolean expression>;

BOOLEAN <array name> [<array size>];

BOOLEAN <array name> [<array size>] = <Boolean array
initialization data>;

Examples: BOOLEAN status = 0;

BOOLEAN flags[3]= 0,1,0;

BOOLEAN address[32] = BIN
01011010010110100101101001011010;
356

BOOLEAN data[32] = HEX 34B4CDB7;

Jam Pr ogramming & Test Langua ge Specifi cation

BOOLEAN verify[128] = ACA hd30000t@ztV;

CALL

The CALL statement causes execution to jump to the statement

corresponding to the label, and saves a CALL record on the stack. The

RETURN statement is used to return to the statement after the CALL

statement.

Syntax: CALL <label>;

CRC

The CRC statement is used to verify the data integrity of the Jam program;

it is not an executable statement. The CRC statement should be located at

the end of the Jam program, after all executable Jam statements—

including the EXIT statement. To check the integrity of the Jam program,

the CRC (cyclic redundancy code) of all characters in the file, including

comments and white-space characters but excluding carriage-return (CR)

characters, must be calculated, up to (but not including) the CRC
statement. The CRC value obtained is then compared to the value found in

the CRC statement. If the CRC values agree, the data integrity of the Jam

program is verified.

If the CRC statement is encountered during execution of the Jam program,

an error occurs.

f See Appendix B for details on how the CRC is computed.

Syntax: CRC <4-digit hexadecimal number>;

Example: CRC 9C4A;

DRSCAN

The DRSCAN statement specifies a data register scan pattern to be applied

to the target data register. The scan data shifted out of the target data

register may be captured in a Boolean array variable, compared to a

Boolean array variable or constant, or both, or it may be ignored. The data

register length is an integer expression. The scan data array contains the

data to be loaded into the data register. The data is shifted in increasing

order of the array index, that is, beginning with the least index. The

capture array is a writable Boolean array variable (i.e. not an initialized

array). The compare array and mask array are Boolean arrays (these may
357

be initialized Boolean arrays or literal Boolean array values) and the result

Jam Pr ogramming & Test Langua ge Specifi cation

is a Boolean variable which receives the result of the comparison. An

unsuccessful comparison will cause a zero (or FALSE) value to be stored

in the result variable, but will not interrupt the Jam program execution. To

abort in the case of an error, a conditional (IF) statement must be used to

test the result value, and the EXIT statement called to stop the program.

Syntax: DRSCAN <length>, <scan data array> [,CAPTURE <capture
array>] [,COMPARE <compare array>, <mask array>,
<result>];

Examples: DRSCAN 15, add[0..14];

DRSCAN 20, datain[0..19], CAPTURE
dataout[0..19];

DRSCAN 41, indata[0..40], COMPARE
expecteddata[0..40], maskdata[0..40],
verify_error;

DRSTOP

The DRSTOP statement specifies the IEEE 1149.1 JTAG end state for data

register scan operations. This end state must be one of the IEEE 1149.1

JTAG stable states: RESET, IDLE , IRPAUSE, or DRPAUSE. The default state

is IDLE , when no state name is provided. Once an end state is specified,

all subsequent data register scan operations will park in that end state,

until another DRSTOP statement is encountered.

Syntax: DRSTOP <state name>;

EXIT

The EXIT statement terminates the Jam program with the specified error

code. By convention, an error code of zero indicates success, and non-zero

values indicate error conditions. A set of standard EXIT codes is defined

in “Conventions” on page 369.

Syntax: EXIT <integer expression>;

EXPORT

The EXPORT statement exports a key string and an integer value to the

calling program via a callback function. The calling program should

ignore exported data if the key string is not recognized. A set of standard
358

key strings is defined in “Conventions” on page 369.

Jam Pr ogramming & Test Langua ge Specifi cation

Syntax: EXPORT <key string>, <integer expression>;

Example: EXPORT "PERCENT_DONE", (done * 100) / total;

FOR

The FOR statement initiates a loop. Each FOR statement has an associated

integer variable called the “iterator”, which maintains a count of the

iterations. The NEXT statement continues or terminates the loop. When the

NEXT statement is encountered, the value of the iterator variable is

compared to the terminal value. If the loop has not yet run to completion,

the iterator is “stepped” by adding the specified step value. (If no value is

specified, the default step value is 1). Then, control jumps to the statement

after the FOR statement. If the loop has run to completion, control jumps

to the statement following the NEXT statement.

FOR loops can be nested. When a FOR statement is encountered, a FOR
record is pushed onto the stack. This record stores the name of the iterator

variable and the location of the FOR statement. When the corresponding

NEXT statement is encountered, the iterator variable is incremented (or

stepped), and the terminating condition is evaluated. If the FOR loop has

reached its terminal value and the body of the loop has been executed for

the last time, the FOR loop record is deleted from the stack and control

jumps to the statement following the NEXT statement. If the FOR loop has

not reached its terminal value, control continues at the statement

following the FOR statement. If a NEXT statement is encountered and the

top record on the stack is not a FOR record with the same iterator variable,

or if the stack is empty, an error occurs. When nesting one FOR loop inside

another, the inner loop must run to completion before the NEXT statement

of the outer loop is encountered. When nesting a FOR loop inside a

subroutine, the FOR loop must run to completion before the RETURN
statement is encountered.

Since the terminating condition is not evaluated unit the NEXT statement

is processed, the body of the loop will always be executed at least once,

even if the initial value of the iterator is equal to the terminal value.

Syntax: FOR <integer variable> = <integer-expr> TO <integer-expr>

[STEP <integer-expr>] ;

Example: FOR index = 0 TO (maximum - 1);
LET accumulator = accumulator + vector[index];
NEXT index;
359

Jam Pr ogramming & Test Langua ge Specifi cation

GOTO

The GOTO statement causes execution to jump to the statement

corresponding to the label. If the label is not already known, the reminder

of the Jam program will be processed (without executing any statements)

until the label is found, or until the end of the program is reached. If the

label is found, execution of the program will continue from that point.

Syntax: GOTO <label>;

IF

The IF statement evaluates a Boolean expression, and if the expression is

true, executes a statement. The THEN statement can be any executable

statement type (i.e., not NOTE or CRC).

Syntax: IF <Boolean expression> THEN <statement>;

Examples: IF a > b THEN GOTO greater;

IF a < b THEN CALL less;

IF a == b THEN RETURN;

INTEGER

The INTEGER statement declares an integer variable or array. Integer

variables may be initialized to a value between –2147483648 and

2147483647. Integer arrays can be initialized using a comma-separated list

of decimal integer values. If the size (number of elements) of the

initialization data is less than that of the initialized array, the array

elements whose initialization data is unspecified will be set to zero. If the

size of the initialization data is greater than that of the initialized array, the

excess is ignored. Arrays with explicit initialization data are read-only. By

default, any variable or array without initialization data is initialized to

zero.

Syntax: INTEGER <variable name>;

INTEGER <variable name> = <integer-expr>;

INTEGER <array name> [<size>];

INTEGER <array name> [<size>] = <integer-expr>, ... <integer-
360

expr>;

Jam Pr ogramming & Test Langua ge Specifi cation

Examples: INTEGER column = -32767;

INTEGER array[10] = 21, 22, 23, 24, 25, 26,
27, 28, 29, 30;

IRSCAN

The IRSCAN statement specifies an IEEE JTAG 1149.1 instruction register

scan pattern to be applied to the instruction register. Data shifted out of

the instruction register may be captured in a Boolean array variable,

compared to a Boolean array variable or constant, or both, or it may be

ignored. The capture array is a writable Boolean array variable (i.e., not an

initialized array). The compare array and mask array are Boolean arrays

(these may be initialized Boolean arrays or literal Boolean array values),

and the result is a Boolean variable that receives the result of the

comparison. An unsuccessful comparison will cause a zero (or FALSE)

value to be stored in the result variable, but will not interrupt the Jam

program execution. To abort in case of an error, a conditional (IF)

statement must be used to test the result value, and the EXIT statement

called to stop the program. The instruction register length is an integer

expression. The instruction data array is a Boolean array expression. The

instruction data is shifted into the device in increasing order of the array

index.

Syntax: IRSCAN <length>, <instruction data array>

IRSTOP

The IRSTOP statement specifies the IEEE JTAG 1149.1 end state for

instruction register scan operations. The end state must be one of the

JTAG stable states: RESET, IDLE , IRPAUSE, or DRPAUSE. When no state

name is provided, the default is IDLE . Once an end state is specified, all

subsequent instruction register scan operations will park in that end state,

until another IRSTOP statement is encountered.

Syntax: IRSTOP <state name>;

LET

The LET statement assigns the value of an expression to a variable. It may

be used to assign integer or Boolean values, and it may be used with scalar

(single) quantities or arrays. When assigning arrays or array subranges,

the variable receiving the assignment must be a writable (i.e. not

initialized) array or a subrange of such an array. The array expression
361

being assigned to the array may be writable, or read-only, or it may be a

literal Boolean array value.

Jam Pr ogramming & Test Langua ge Specifi cation

Syntax: LET <integer variable> = <integer-expr>;
LET <Boolean variable> = < Boolean-expr>;
LET <element of integer array> = <integer-expr>;
LET <element of Boolean array> = < Boolean-expr>;
LET <integer array or array subrange> =
<integer-array-expr>;
LET <Boolean array or array subrange> =
<Boolean-array-expr>;

Examples: LET i = i + 1; ' i is an integer variable
LET b = !c; ' b and c are Boolean variables
LET ia[2] = 3; ' ia[] is an integer array
LET ba[2] = 0; ' ba[] is a Boolean array
LET ia[0..7] = ia[8..15]; ' copy array subrange
LET ba[0..7] = 0FF; ' use literal Boolean array

NEXT

The NEXT statement causes the program execution to jump to the

corresponding FOR statement, where the value of the iterator variable is

compared to the terminal value. If the loop is complete, execution

proceeds to the statement following the NEXT statement, and the

corresponding FOR record is deleted from the stack; otherwise, the value

of the iterator variable is stepped and execution proceeds at the statement

following the FOR statement.

Syntax: NEXT <variable name>;

NOTE

The NOTE statement is used to store information about the Jam program

file that can be extracted without actually executing the Jam program. The

information stored in NOTE fields may include any type of documentation

or attributes related to the particular Jam program. Note statements are

ignored during program execution.

The meaning and significance of the NOTE field is determined by a note

type identifier string, or “key” string. A set of standard key strings is

provided in the section on “Conventions” on page 369. Key strings are not

case sensitive, and they must be enclosed in quotation marks. The note

text string must also be enclosed in quotation marks. (The quotation

marks are not considered part of the text string itself.) Like a comment, the

NOTE statement can be placed anywhere in the Jam program.
362

Syntax: NOTE <type identifier> <note text>;

Jam Pr ogramming & Test Langua ge Specifi cation

Examples: NOTE "USERCODE" "001EDFFF";

NOTE "DATE" "1997/05/19";

POP

The POP statement removes a PUSH record from the stack, storing the data

value into an integer or Boolean variable. If a Boolean expression is

PUSHed, it will be stored on the stack as an integer 0 or 1. Any value may

be POPed into an integer variable. If the stack is POPed into a Boolean

variable, the value on the stack must be 0 or 1, otherwise an error will

occur.

Syntax: POP <integer variable>;

POP <Boolean variable>;

Example: PUSH 3 - 2; 'Integer expressio n

POP status; 'Boolean variable gets value of 1
(TRUE)

POSTDR

The POSTDR statement modifies the behavior of subsequent DRSCAN
statements. It specifies a number of extra bits to shift after all subsequent

IEEE 1149.1 JTAG data register scan operations, and optionally specifies

the scan data pattern to be used for the extra bits. If no scan data pattern

is provided, the default is all ones. Since the POSTDR scan data is shifted

after the DRSCAN scan data, the POSTDR scan data does not pass through

the data register of the target device (or devices) during the scan

operation.

Syntax: POSTDR <integer-expr> [, <Boolean-array-expr>];

POSTIR

The POSTIR statement modifies the behavior of subsequent IRSCAN

statements. It specifies a number of extra bits to shift after all subsequent

IEEE 1149.1 JTAG instruction register scan operations, and optionally

specifies the scan data pattern to be used for the extra bits. If no scan data

pattern is provided, the default is all ones. Since the POSTIR scan data is

shifted after the IRSCAN scan data, the POSTIR scan data does not pass

through the instruction register of the target device (or devices) during the
363

scan operation.

Jam Pr ogramming & Test Langua ge Specifi cation

Syntax: POSTIR <integer-expr> [, <Boolean-array-expr>] ;

PREDR

The PREDR statement modifies the behavior of subsequent DRSCAN
statements. It specifies a number of extra bits to shift before all subsequent

IEEE 1149.1 JTAG data register scan operations, and optionally specifies

the scan data pattern to be used for the extra bits. If no scan data pattern

is provided, the default is all ones. Since the PREDR scan data is shifted

before the DRSCAN scan data, the PREDR scan data always passes through

the data register of the target device (or devices) during the scan

operation.

Syntax: PREDR <integer-expr> [, <Boolean-array-expr>];

PREIR

The PREIR statement modifies the behavior of subsequent IRSCAN

statements. It specifies a number of extra bits to shift before all subsequent

IEEE 1149.1 JTAG instruction register scan operations, and optionally

specifies the scan data pattern to be used for the extra bits. If no scan data

pattern is provided, the default is all ones. Since the PREIR scan data is

shifted before the IRSCAN scan data, the PREIR scan data always passes

through the instruction register of the target device (or devices) during the

scan operation.

Syntax: PREIR <integer-expr> [, <Boolean-array-expr>];

PRINT
The PRINT statement prints a message on the output device, if one is

installed. The specific details of writing to the output device are handled

by the Jam interpreter. If no output device exists, the PRINT statement has

no effect. A string expression consists of string constants, integer or

Boolean expressions, and characters generated by the character-code-

conversion function (CHR$), concatenated with commas.

Syntax: PRINT <string-expr>;

Examples: PRINT "The integer value ", a, " corresponds
to the character code ", CHR$(a);
364

Jam Pr ogramming & Test Langua ge Specifi cation

PUSH

The PUSH statement adds a PUSH record to the stack storing an integer or

Boolean data value. The subsequent POP statement removes the PUSH
record from the stack and stores the data value into the corresponding

variable. If a Boolean expression is PUSHed, it will be stored on the stack

as an integer 0 or 1. If the stack is POPed into a Boolean variable, the value

on the stack must be 0 or 1, otherwise an error will occur.

Syntax: PUSH <integer-expr>;

PUSH <Boolean-expr>;

Example: PUSH 3 + 2;

POP a; ' Integer variable a gets value of 5

RETURN

The RETURN statement causes execution to jump to the statement after the

corresponding CALL statement, and removes the CALL record from the

stack. If the top record on the stack is not a CALL record, an error will

occur. In the example below, the Jam program will first print “Scan

complete”. Next, the RETURN will cause program execution to jump to the

Print_Error label, where “Failed to read silicon id” will be printed.

Syntax: RETURN;

Example: CALL Print_Message;

Print_Error: PRINT “Failed to read silicon
id”;

EXIT exit_code;

Print_Message: PRINT “Scan complete”;

RETURN;
365

Jam Pr ogramming & Test Langua ge Specifi cation

STATE

The STATE statement causes the IEEE 1149.1 JTAG state machine to go to

the specified state. The path to the end state may be delineated explicitly,

by specifying one or more intermediate states between the current state

and the end state. Otherwise, the states traversed will default to the paths

outlined in Table 9. The final state must be a stable state (i.e., one of RESET,
IDLE , DRPAUSE, or IRPAUSE). Non-stable states may be specified as

intermediate states.

Syntax: STATE <state name 1> <state name 2> ... <state name n>;

Examples: STATE IRPAUSE;

STATE IREXIT2 IRSHIFT IREXIT1 IRUPDATE IDLE;

Table 9. State Table

Current State Final State State Path

RESET RESET At least one TCK cycle applied with TMS = 1

RESET IDLE RESET-IDLE

RESET DRPAUSE RESET-IDLE-DRSELECT-DRCAPTURE-DREXIT1-DRPAUSE

RESET IRPAUSE RESET-IDLE-DRSELECT-IRSELECT-IRCAPTURE-IREXIT1-IRPAUSE

IDLE RESET IDLE-DRSELECT-IRSELECT-RESET

IDLE IDLE At least one TCK cycle applied with TMS = 0

IDLE DRPAUSE IDLE-DRSELECT-DRCAPTURE-DREXIT1-DRPAUSE

IDLE IRPAUSE IDLE-DRSELECT-IRSELECT-IRCAPTURE-IREXIT1-IRPAUSE

DRPAUSE RESET DRPAUSE-DREXIT2-DRUPDATE-DRSELECT-IRSELECT-RESET

DRPAUSE IDLE IDLE-DRPAUSE-DREXIT2-DRUPDATE-IDLE

DRPAUSE DRPAUSE At least one TCK cycle applied with TMS = 0

DRPAUSE IRPAUSE DRPAUSE-DREXIT2-DRUPDATE-DRSELECT-IRSELECT-IRCAPTURE-

IREXIT1-IRPAUSE

IRPAUSE RESET IRPAUSE-IREXIT2-IRUPDATE-DRSELECT-IRSELECT-RESET

IRPAUSE IDLE IRPAUSE-IREXIT2-IRUPDATE-IDLE

IRPAUSE DRPAUSE IRPAUSE-IREXIT2-IRUPDATE-DRSELECT-DRCAPTURE-DREXIT1-DRPAUSE

IRPAUSE IRPAUSE At least one TCK cycle applied with TMS = 0
366

Jam Pr ogramming & Test Langua ge Specifi cation

WAIT

The WAIT statement causes the IEEE 1149.1 JTAG state machine to go to

the specified stable state for the specified number of TCK clock cycles,

and/or for a minimum number of microseconds. A WAIT statement may

specify either a clock cycle count or a time delay, or both. When both are

specified, the clock cycles and time delay occur concurrently until both are

satisfied. When a USEC time delay is specified, the delay implemented is

not related to the clock rate of TCK. TCK may continue to run during the

USEC delay, or it may be stopped in the low state.

If either the wait-state or the end-state is not specified, IDLE is assumed. If

an ENDSTATE is specified, the IEEE 1149.1 JTAG state machine will go to

that state immediately after the specified number of clock cycles or the

specified amount of real time has elapsed. The valid wait-state and end-

states are: IRPAUSE, DRPAUSE, RESET, and IDLE .

Syntax: WAIT [<wait-state>,] [<integer-expr> CYCLES,] [<integer-
expr> USEC,][<end-state>]

Example: WAIT 3 CYCLES, 10000 USEC;' clock 3 times,
then wait 10ms

WAIT DRPAUSE, 10 CYCLES; ' go to DRPAUSE, wait
10 cycles

WAIT 10 CYCLES, DRPAUSE;’ 10 cycles in IDLE
then DRPAUSE

Jam Extension
Specifications

The following instructions are optional extensions to the Jam language.

Because these instructions are optional, the Jam Player is not required to

support them. However, if these instructions are used, a NOTE field must

be provided to indicate the use of the instruction using the following

syntax: NOTE "VECTOR" "ON"; . These instructions provide access to a

hardware interface that does not comply with the IEEE 1149.1 JTAG

specification

VMAP

The VMAP statement provides a standard interface that maps the signal

order used when asserting or reading data with the VECTOR statement.

The signal order provided by the VMAP statement is retained until the next

VMAP statement is encountered. Each string following the VMAP statement

is surrounded by quotation marks (“) and is seperated by a comma (,).
367

Syntax: VMAP <"string0">, <"string1">, ..., <"stringn">;

Jam Pr ogramming & Test Langua ge Specifi cation

Example: VMAP "Vpp", "D0", "D1", "A0", "A1";

VECTOR

The VECTOR statement allows data to be asserted at pins other than the

interface defined by the IEEE 1149.1 JTAG specification. This is done by

first setting up the order of the signals asserted in the VMAP statement. The

VECTOR syntax requires that the direction of the signal be supplied, in the

<dir-vect> field, followed by the value to be asserted, in the <in-vect> field.

When <dir-vect> specifies an input signal, the value of the input signal will

be stored in <in-vect>. (When <dir-vect>=0, the signal is tri-stated; when

<dir-vect>=1, the signal is driven with the corresponding value in <in-
vect>). The state(s) of the signal(s) are held until the next VECTOR
statement.

The <in-vect>, <dir-vect>, <mask-vect>, and <compare-vect> fields can be

literal or compressed arrays. The <capture-vect> must be a writable

Boolean array. The number of bits supplied in each of these fields must be

the same as the number of signals supplied in the VMAP statement.

Likewise, these arrays can be sub-indexed when applied within the

VECTOR statement. Like the DRSCAN statement, the VECTOR statement can

be used to CAPTURE data, COMPARE data, or assert data. For the COMPARE
function, the last comma-separated field, <result>, must be a BOOLEAN
type.

Syntax: VECTOR <dir-vect>, <in-vect> [,CAPTURE <capture-
vect>][,COMPARE <comare-vect>, <mask-vect>, <result>];

Since the VECTOR statement updates all signals in parallel, it will be found

within a looping structure when multiple vectors must be loaded or read

from the pins. The following example illustrates how a clock might be

generated while loading data through a non-JTAG hardware interface:

BOOLEAN dir[2] = 1, 1; 'Both signals are outputs
BOOLEAN data_array[100] = HEX
14ACD135F00124A9C0341D074; 'Data to be loaded on D0
BOOLEAN in[2];
INTEGER i;

VMAP "Clock", "D0";
368

Jam Pr ogramming & Test Langua ge Specifi cation

FOR i=1 TO 100;
LET in[1] = data_array[i]; 'Load data into second
‘ bit of intermediate array, in[]
LET in[0] = 0; 'Set clock low
VECTOR dir[0..1], in[0..1]; 'Assert clock and data
LET in[0] = 1; 'Set clock high
VECTOR dir[0..1], in[0..1]; 'Assert clock and data

NEXT i;
EXIT 1;

This method allows a repetitive signal, such as a clock, to be represented

in the smallest possible space while sending large amounts of data to

other non-JTAG pins with relatively few lines of code.

Conventions Conventions in the Jam language are preferred ways of specifying tasks

to be performed on the targeted device.

NOTE String Conventions

Each NOTE statement has a key string and a value string. Table 10 defines

each key string; others may be defined in the future.

Table 10. NOTE String Conventions

Key String Value String

DEVICE Name of the device supported by the Jam program

DATE Date when the Jam program was created, in numeric
format: YYYY/MM/DD

DESIGN Design name and revision used to create the Jam program

CREATOR Name and copyright notice of the software which created
the Jam program

REF_DESIGNATOR Reference designator of the chip on the PCB (example:
“U1”)

CHECKSUM “Fuse checksum” of the pattern (if applicable)

UESCODE User-programmable Electronic Signature Code

USERCODE User-programmable identification code as captured by the
IEEE 1149.1 JTAG USERCODE instruction

VECTOR “ON” if the Jam program uses the optional VMAP and
VECTOR statement types

JAM_VERSION Version of the Jam language specification used

TITLE Text used to identify the Jam program

ALG_VERSION Component algorithm used
369

SAVE_DATA List of variable names to be preserved when the Jam
program is updated

Jam Pr ogramming & Test Langua ge Specifi cation

Each key string is used to provide additional information about the

targeted device. Each key string is optional, and can be used only once

within each source file.

Initialization List Conventions

The initialization list can be used to force the initialization value of any

integer or Boolean variable in a Jam program. In practice, it is useful to

force the value of certain specific variables to specific values which have

well-defined influence over the execution of the Jam program. The

variable names and values shown in Table 11 are defined to have specific

effects for Jam programs for programmable devices. Usage of these

reserved variable names is optional.

The variable names and values shown in Table 12 are defined to have

specific effects for Jam programs for test applications.

Table 11. Initialization List Conventions for Device Programming

Variable Name Value Description

DO_ERASE 0 Do not perform a bulk-erase

1 (default) Perform a bulk-erase

DO_BLANKCHECK 0 Do not check the erased state of the device

1 (default) Check the erased state of the device

DO_PROGRAM 0 Do not program the device

1 (default) Program the device

DO_VERIFY 0 Do not verify the device

1 (default) Verify the device

READ_UESCODE 1 (default) Do not read the JTAG UESCODE

1 Read UESCODE and EXPORT it

DO_SECURE 1 (default) Do not set the security bit

1 Set the security bit

Table 12. Initialization List Conventions for Testing

Variable Name Value Description

DO_TEST 0 Do not perform the test

1 (default) Perform the test

DO_DIAGNOSTICS 0 (default) Do not diagnose faults

1 Diagnose faults
370

Jam Pr ogramming & Test Langua ge Specifi cation

Export Conventions

The EXPORT statement transmits a key string and an integer value outside

the Jam program to the calling program. The interpretation of the integer

value depends on the key string.Table 13 lists the export key strings that

are defined.

PERCENT_DONE is an optional key. If used, it will allow the calling

program to show a “progress” display which indicates the activity of the

Jam program while it is running. To support this feature, the Jam program

should EXPORT the PERCENT_DONE value at periodic intervals during

processing. Some Jam programs may not support this feature; the calling

program may ignore this information entirely.

EXIT Code Conventions

Exit codes are the integer values used as arguments for the EXIT

statement. These codes are used to indicate the result of execution of Jam

program. An exit code value of zero indicates success, while a non-zero

value indicates failure, and identifies the general type of failure that

occurred.

Exit codes are not used to indicate errors in the processing of the Jam

program. Jam processing errors (such as “Divide by zero” or “Illegal

variable name”) are detected and reported by the system which is

processing the Jam program. Exit codes indicate the status of a Jam

program which has run to completion, including successful processing of

the EXIT statement itself (which terminates the execution of the program).

Table 14 shows the EXIT codes that are defined.

Table 13. Export Key Strings

Key String Value

PERCENT_DONE Percent of program executed so far (range 0-100)

UESCODE Integer value of User-programmable Electronic Signature
code

USERCODE Integer value of user-programmable identification code
captured by IEEE 1149.1 JTAG USERCODE instruction

IDCODE Identification code captured by IEEE 1149.1 JTAG
IDCODE instruction
371

Jam Pr ogramming & Test Langua ge Specifi cation

Note:
(1) For example, DO_ERASE=1, DO_PROGRAM=0, DO_VERIFY=1 is illegal.

The Jam Player The Jam language supports an interpreted mode of execution, in which

the Jam program source code is executed directly by an interpreter

program without first being compiled into binary executable code. This

interpreter program is called the Jam Player.

The mechanism by which the Jam Player reads the contents of the Jam

program is platform-dependent—it may use a file system, or it may

simply read characters from a memory buffer. The Jam Player has access

to the JTAG signals that are used for all scan operations. This hardware

I/O interface is also platform dependent. If the Jam Player is running

inside a system that has a console or teletype output device, that device

can be used to display messages generated by the Jam program.

Capabilities of the Jam Player

The Jam Player has the following capabilities:

■ Execute a Jam program, processing the initialization list if one is

present

■ Check the CRC of a Jam program (without executing it)

■ Extract information from the NOTE fields of a Jam program (without

executing the Jam program)

■ Access to the signals of an IEEE 1149.1 JTAG interface

■ Reliable mechanism for creating accurate real-time delays

■ Report error status information following the execution of a Jam

program (e.g., a return code)

Table 14. EXIT Codes Note (1)

EXIT Code Description

0 Success

1 Illegal flags specified in initialization list

2 Unrecognized device ID

3 Device version is not supported

4 Programming failure

5 Blank-check failure

6 Verify failure

7 Test failure
372

Jam Pr ogramming & Test Langua ge Specifi cation

Optional Features for Device Programming

A Jam program which programs a logic or memory device must contain

both the data pattern to be programmed into the device and the algorithm

for programming that data into the device. In some situations it may be

necessary to update the part of the Jam program that describes the

programming algorithm, while leaving the data pattern undisturbed. In

particular, this updating process may be required to permit programming

a new version of the device. For dedicated device programming systems,

the “update” process should be done automatically by the Jam Player.

For Jam programs to be updated automatically, the Jam Player must have

access to a library of Jam programs containing programming algorithms

for the supported devices. Each of these “reference” programs must have

NOTE statements to define the following attributes: DEVICE, SAVE_DATA,
and ALG_VERSION. When a Jam program is loaded into the Jam Player, if

the same three NOTE statements are defined in the loaded Jam program, it

is possible to update the Jam program. If the library of reference programs

contains a program whose DEVICE string matches that of the loaded Jam

program, and whose SAVE_DATA string matches that of the loaded Jam

program, the ALG_VERSION of the loaded program is compared to the

ALG_VERSION of the reference program. If the ALG_VERSION of the

reference program is greater, then the loaded program should be

updated.

To update the loaded Jam program, the list of data variables to be

preserved must be extracted from the value string of the NOTE SAVE_DATA
statement. This value string must contain a comma-separated list of

variable names. For arrays, only the variable name is used, with no

brackets or array index information. The Jam Player must then process the

loaded Jam program to find the declaration statements corresponding to

these variables. Finally, a new Jam program is created, using the reference

program as a basis, and substituting the preserved variable declaration

statements from the loaded Jam program for the corresponding variable

declaration statements in the reference program. This new Jam program

is called the “updated” Jam program.

The updated Jam program can exist only temporarily, or it can be saved

for future use. If it is not saved, then the update procedure will occur each

time that Jam program is used.

In the case where the library of reference programs does not have a

reference program for the specified device, or has a version which

precedes the version of the loaded Jam program, the device can still be

programmed using the algorithm in the loaded Jam program. This is
373

useful because it permits the Jam Player to support new programmable

devices easily and quickly.

Notes:

Jam Pr ogramming & Test Langua ge Specifi cation

Appendix A: Examples

The following examples illustrate the flexibility and utility of the Jam

Programming and Test Language. All of the examples read the IDCODE
out of a single device or out of a multi-device JTAG chain. Each example

provides increasingly complex code to illustrate the sub-routine and

intelligent capabilities of the Jam language.

Example 1. Reading IDCODE from a Single IDCODE Instruction

INITIALIZE INSTRUCTION AND DATA ARRAYS
BOOLEAN READ_DATA[32];
BOOLEAN I_IDCODE[10] = BIN 1001101000; ‘ASSUMED
BOOLEAN ONES_DATA[32] = HEX FFFFFFFF;

INTEGER i;

‘Set up stop state for IRSCAN
IRSTOP IRPAUSE;

‘Initialize device
STATE RESET;

IRSCAN 10, I_IDCODE[0..9]; ‘ LOAD IDCODE INSTRUCTION
STATE IDLE;
WAIT 5 USEC, 3 CYCLES;
DRSCAN 32, ONES_DATA[0..31], CAPTURE read_data[0..31];
‘CAPTURE IDCODE

PRINT “IDCODE:”;
FOR i=0 to 31;

PRINT read_data[i];
NEXT i;

EXIT 0;

Note that the array variable, I_IDCODE, is initialized with the IDCODE
instruction bits ordered LSB first (on the left) to MSB (on the right). This is

done since the array field in the IRSCAN instruction is always interpreted,

and sent, most significant bit to least significant bit.
 375

Appendix A: Examples

Example 2. IDCODE Read from Multiple Devices (Part 1 of 2)

‘Initialize instruction and data arrays
BOOLEAN IDCODE_data [32*10]; ‘[IDCODE_LENGTH * MAX_NUM_DEVICES]
BOOLEAN I_IDCODE[10] = BIN 1001101000; ‘assumed IDCODE instruction
BOOLEAN ONES_DATA[10*32] = HEX
FF;
BOOLEAN tmp_ir[10*10]; ‘[IR_LENGTH* MAX_NUM_DEVICES]
BOOLEAN read_data[10+1]; ‘ MAX_NUM_DEVICES + 1]

INTEGER MAX_NUM_DEVICES=10;
INTEGER IR_LENGTH=10;
INTEGER IDCODE_LENGTH=32;

INTEGER i;
INTEGER j;
INTEGER number_of_chips;

‘***
‘ MAIN
‘***
‘Initialize devices
IRSTOP IRPAUSE;
DRSTOP DRPAUSE;
STATE RESET;

CALL COMPUTE_NUMBER_OF_CHIPS;

‘Assume all devices in chain are either MAX 7000S or MAX 9000
For i=0 to (number_of_chips-1);

FOR j=0 to 9;
LET tmp_ir[i*IR_LENGTH)+j] = I_IDCODE[j];

NEXT j;
NEXT i;

IRSCAN (number_of_chips* IR_LENGTH), tmp_ir[0..((number_of_chips* IR_LENGTH)-1]’
STATE IDLE;
WAIT 5 USEC 3 CYCLES;

DRSCAN (number_of_chips* IDCODE_LENGTH),
ONES_DATA[0..((number_of_chips* IDCODE_LENGTH)-1)], CAPTURE
IDCODE_data [0..((number_of_chips* IDCODE_LENGTH)-1)];
PRINT “IDCODE:”;
FOR i=0 TO (number_of_chips-1);

PRINT “IDCODE for chip #”, (number_of_chips-i);
FOR j=0 TO (IDCODE_LENGTH-1);
376

PRINT IDCODE_data [j];

Appendix A: Examples

Example 2. IDCODE Read from Multiple Devices (Part 2 of 2)

NEXT j;
NEXT i;

EXIT 0;
‘**
‘ BEGIN: COMPUTE_NUMBER_OF_CHIPS
‘***
COMPUTE_NUMBER_OF_CHIPS:

IRSCAN (IR_LENGTH* MAX_NUM_DEVICES),
ONES_DATA[0..((IR_LENGTH* MAX_NUM_DEVICES)-1)];

DRSCAN(MAX_NUM_DEVICES+1), ONES_DATA[0.. MAX_NUM_DEVICES], CAPTURE
read_data[0.. MAX_NUM_DEVICES];
FOR i=0 to MAX_NUM_DEVICES];

IF(read_data[i] ==0) THEN
LET number_of_chips=number_of_chips+1;

NEXT i;

RETURN;

‘**
‘ END: COMPUTE_NUMBER_OF_CHIPS
‘**
377

Notes:

Jam Pr ogramming & Test Langua ge Specifi cation

Appendix B: Calculating the CRC f or a Jam File

The CRC for a Jam program is a 16-bit Cyclic Redundancy Code (CRC)

computed on all bytes in the Jam program up to (but not including) the

CRC statement, and excluding all carriage return characters. The method

for computing the CRC is explained below. The CRC statement should

always be the last statement in a Jam program—any characters located

after the CRC statement will not be included in the CRC computation.

The CRC is a 16-bit convolution code based on a generator polynomial.

CRCs for Jam programs are calculated using the generator polynomial

used by the CCITT for 16-bit CRCs:

G(X) = X16 + X12 + X5 + 1

Figure 5 shows the C code for implementing this algorithm.

Figure 5. Generator Polynomial Algorithm

#define CCITT_CRC 0x8408 /* bit-mask for CCITT CTC polynomial */
unsigned short crc_register; /*global 16-bit shift register */

void init_crc()
{

crc_register = 0xFFFF; /*start with all ones in shift register */
}

void compute_crc(unsigned char in_byte)
{

int bit, feedback;

/* compute for each bit in in_byte */
for (bit = 0; bit < CHAR_BIT; bit++)
{

feedback = (in byte ̂ crc_register) & 0x01; /* XOR LSB */
crc_register >>= 1; /* shift the shift register */
if (feedback)

crc_register ̂ = CCITT_CRC; /*invert selected bits */
in_byte >>=1; /*get the next bit of in_byte */

}
}

unsigned short crc_value()
{

 379

return(~crc_register); /* CRC is complement of shift register */
}

Appendix B: Calculating the CRC f or a Jam File

The function init_crc() must be called first to initialize the CRC shift

register. Then, compute_crc() must first be called on each byte in the

Jam program, except carriage return characters (ASCII 13 or 0D Hex). The

characters must be processed in order, from the beginning of the file up to

the CRC statement itself (or to the end of the file, if the CRC statement is

absent). Finally, crc_value() is called to obtain the final CRC value,

which is the complement of the current value of the CRC shift register

after all characters have been processed.

Carriage return characters are excluded from the CRC calculation to allow

a Jam program to have the same CRC when stored in the MS-DOS text file

format (with CR-LF characters as line separators) or in the UNIX format

(with LF character only). Since a Jam program is a text file, it may be

stored in either format, and the CRC will be the same.

If the CRC statement is found, the calculated CRC value should be

compared to the expected CRC value represented in the CRC statement.

If these values differ, the CRC check fails—the Jam program contents may

be corrupted.
380

Copyright © 1995, 1996, 1997, 1998, 1999 Altera Corporation, 101 Innovation Drive,

San Jose, CA 95134, USA, all rights reserved.

By accessing this information, you agree to be bound by the terms of Altera’s

Legal Notice.

	Contents
	Jam Programming & Test Language Specification
	Contents
	Introduction
	Language Overview
	Program Flow
	Data Management
	I/O

	Statements
	Labels (Optional)
	Instructions
	Comments

	Program Flow
	The Stack
	GOTO
	CALL & RETURN
	FOR Loops

	Data Management
	Variable Names
	Types
	Initialization
	Literal Values
	Constants
	Advanced Compression Algorithm (ACA)

	Expressions & Operators
	Expressions
	Integer & Boolean Operations
	Array Operations
	String Operations

	Jam Statement Specifications
	BOOLEAN
	CALL
	CRC
	DRSCAN
	DRSTOP
	EXIT
	EXPORT
	FOR
	GOTO
	IF
	INTEGER
	IRSCAN
	IRSTOP
	LET
	NEXT
	NOTE
	POP
	POSTDR
	POSTIR
	PREDR
	PREIR
	PRINT
	PUSH
	RETURN
	STATE
	WAIT

	Jam Extension Specifications
	VMAP
	VECTOR

	Conventions
	NOTE String Conventions
	Initialization List Conventions
	Export Conventions
	EXIT Code Conventions

	The Jam Player
	Capabilities of the Jam Player
	Optional Features for Device Programming

