I²C Slave Interface Megafunction

Solution Brief 40

June 1999, ver. 1

Target Applications: Bus & Interfaces Processor & Peripherals

Family:

FLEX® 10K, FLEX 6000 & MAX® 9000

Vendor:

SICAN Microelectronics Corp. 400 Oyster Point Blvd. Suite 512 S. San Francisco, CA 94080 http://www.sican.com Tel. (650) 871-1494 Fax (650) 871-1504

Features

- Supports system clocks up to 50 MHz
- Supports inter integrated circuit (I²C) standard (100 kHz) and fast mode (400 kHz)
 - Reads and writes data bursts
- Supports special mode for I²C read and write access to a dedicated register address
- Filters spikes from the I²C bus
- Generates wait states
- Fully synchronous design

General Description

The I²C slave interface megafunction interfaces a device with an I²C bus. This megafunction is essentially a parallel-to-serial/serial-to-parallel converter, converting a device's parallel data into serial format for transfer over the I²C bus, and vice versa. Thus, a host CPU controls a device through the I²C master interface megafunction, the I²C bus, and the I²C slave interface megafunction. Figure 1 shows the symbol for the I²C slave interface megafunction.

Functional Description

The I²C slave interface megafunction is a synchronous slave that can receive or transmit data. The megafunction also allows the device to hold IICCLK low to force the master into a wait state.

For noisy environments, you can apply a spike filter to the incoming I^2C data and clock signals. The spike filter evaluates the signals for a programmed number of clock cycles (up to a maximum of eight clock cycles). During this time, the spike filter removes any spikes in the signals.

The I²C slave interface megafunction supports four operating modes. See Table 1.

	Table 1	1. I²C	Slave	Interface	Operating	Modes	
--	---------	--------	-------	-----------	-----------	-------	--

······································			
Mode	Description		
Direct write	Writes a burst of data.		
Direct read	Reads a burst of data.		
Random access write	Writes one data byte to a specified address.		
Random access read	Reads one data byte from a specified address.		

Tables 2, 3, and 4 describe the megafunction's global signals, interface signals to the device, and interface signals to the I^2C bus, respectively.

Table 2. I²C Slave Interface Megafunction Global Signals

Name	Туре	Description
clk	Input	Device clock signals.
reset_n	Input	Low active asynchronous reset signal.

Table 3. Interface Signals to	le 3. Interface Signals to the Device		
Name	Туре	Description	
DEVICE_addr[60]	Input	7-bit device address.	
MODE	Input	Mode select. A 0 indicates a random access read or random access write mode. A 1 indicates a direct read or direct write mode.	
DATA_in[70]	Input	8-bit data bus from the device to the megafunction.	
WAIT_I2c	Input	High active wait state signal.	
SLA_valid	Output	Slave address valid.	
RW	Output	Read/write select. A 0 indicates a write, and a 1 indicates a read.	
READ_en	Output	Read enable.	
WRITE_en	Output	Write enable.	
ADDRESS_out[70]	Output	8-bit address bus to the device (random access read or random access write modes only).	
DATA_out[70]	Output	8-bit data bus to the device.	

Table 4. Interface Signals	ble 4. Interface Signals to the I ² C Bus			
Name	Туре	Description		
IICCLK_in	Input	Clock input to the megafunction.		
IICDATA_in	Input	Data input to the megafunction.		
IICCLK_out	Output	Clock output for the megafunction.		
IICDATA_out	Output	Data output for the megafunction.		

Performance

Table 5 describes the megafunction's logic cell requirements for FLEX 10K, FLEX 6000, and MAX 9000 devices.

Device	Speed Grade	Utilization		Performance	
		Logic Cells	EABs (1)	(1) (MHz)	
EPF10K10	-3	166	0	31	
	-4	166	0	26	
EPF10K10A	-1	166	0	47	
	-2	166	0	39	
	-3	166	0	29	
EPF10K30E	-1	166	0	66	
EPF6010A	-1	202	-	28	
EPF6016	-2	202	-	24	
	-3	202	-	20	
EPM9320	-15	131	-	45	
	-20	131	-	32	
EPM9560	-10	131	-	52	

Note:

(1) EABs = embedded array blocks.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Copyright © 1999 Altera Corporation. Altera, MAX, MAX 9000, FLEX, FLEX 10K, FLEX 6000, EPF10K10A, EPF10K10A, EPF6010A, EPF6016, EPM9320, EPM9560, and AMPP are trademarks and/or service marks of Altera Corporation in the United States and other countries. Other brands or products are trademarks of their respective holders. The specifications contained herein are subject to change without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. All rights reserved.