FLEX 10KA-1 Devices: The Fastest HighDensity Devices Available

As increasing bandwidth and system performance continue to challenge today's system designers, programmable logic vendors race to produce the fastest, high-density devices. For example, Altera's FLEX ${ }^{\circledR}$ 10KA-1 devices offer more than twice the system performance than the original FLEX 10K-3 devices and are the fastest high-density programmable logic devices (PLDs) available. This technical brief describes FLEX 10KA-1 device performance.

FLEX 10KA-1 Device Performance

In applications where enhanced speed is critical, FLEX 10KA-1 devices can provide a new level of system performance. Table 1 shows FLEX 10KA-1 device performance for specific benchmark applications.

Table 1. FLEX 10KA-1 Performance Note (1)	
Application	FLEX 10KA-1 Performance
8-bit, 16-tap finite impulse response (FIR) filter	119 MHz
a16450 universal asynchronous receiver/ transmitter (UART) MegaCore ${ }^{\text {TM }}$ function	31 MHz
16-to-1 multiplexer	3.4 ns
256×8 RAM read cycle	143 MHz
256×8 RAM write cycle	106 MHz

Note:
(1) Source: Altera Applications Engineering

Performance Comparison of FLEX 10KA-1 Devices \& XC4000XL-09 Devices

Altera Applications tested FLEX 10KA-1 devices using the metrics listed below. The results of these tests are summarized and compared against the results published in the Xilinx Application Brief XBRF015 (Speed Metrics for High-Performance FPGAs), which compares the Xilinx XC4000XL-09 devices (the fastest speed grade XC4000XL device available) with FLEX 10KA-2 devices. FLEX 10KA-1 devices are approximately $20-30 \%$ faster than FLEX 10KA-2 devices. All performance metric numbers represent register-to-register delays.

- I/O frequency
- n-to- 1 multiplexer
- n-bit wide AND term
- n-level combinatorial logic
- Chained adders

I/O Frequency

The I/O frequency metric is the sum of clock-to-output delay $\left(\mathbf{t}_{\mathbf{C O}}\right)$ and input data setup time $\left(\mathbf{t}_{\mathbf{S U}}\right)$. Table 2 shows the external I/O frequency comparison between FLEX 10KA-1 and XC4000XL-09 devices. The global clock buffer and clock distribution delays are included when determining the external I/O frequency.

Table 2. External I/O Frequency Results

I/O Frequency	EPF10K100A-1	XC4062XL-09
External	86 MHz	73 MHz

n-to-1 Multiplexer

The n-to- 1 multiplexer metric includes 64:1 to $64: 32$ multiplexers with registered inputs and outputs. The multiplexers in the FLEX 10KA-1 devices are implemented using the 1 pm_mux function from the library of parameterized modules (LPM). The multiplexer results in the XC4000XL-09 devices are as shown in the Xilinx Application Brief XBRF015 (Speed Metrics for High-Performance FPGAs). Figure 1 shows multiplexer performance results with FLEX 10KA-1 and XC4000XL-09 devices.

Figure 1. Multiplexer Performance Results

n-Bit Wide AND Term

The n-bit wide AND term metric measures performance of AND gates that are 4 to 64 bits wide with registered inputs and outputs. A wide comparator is an example of a typical function that requires large AND gate usage. Figure 2 compares FLEX 10KA-1 and XC4000XL-09 device results.

Figure 2. AND- Term Performance Results

n-Level Combinatorial Logic

The n-level combinatorial logic metric measures logic performance that is one to six levels deep. Each level refers to a set of four, 4-input look up tables (LUTs). The four LUTs increase fan-out. To increase the number of levels, more banks of LUTs are added. In each case, all inputs and outputs are registered. Figure 3 shows the LUT performance results with FLEX 10KA-1 and XC4000XL-09 devices.

Figure 3. Combinatorial Performance Results

Chained Adders

The chained adders metric is a set of 8 -, 16-, 24-, and 32 -bit adders chained together. The various-sized adders give an indication of device performance using complex functions. The chains are 1,2 , and 4 levels deep, and all the inputs and outputs are registered. Figure 4 shows adder performance results with FLEX 10KA-1 and XC4000XL-09 devices.

Figure 4. Adder Performance Results

Adder Type
Note:
(1) $n=$ bit width of adder and $m=$ depth level.

Device Pricing

FLEX 10KA devices provide higher performance at a significantly lower price than XC4000XL devices. Table 3 shows 100-unit list pricing for FLEX 10KA-1 and XC4000XL-09 devices.

Table 3. 100-Unit List Pricing for FLEX 10KA-1 \& XC4000XL-09 Devices		
Device	Density	100-Unit Price, Note (1)
XC4062XL-09BG432C	4,608 equivalent logic elements (LEs)	$\$ 1,520$
EPF10K100ABC356-1	4,992 LEs plus 24,576 embedded RAM bits	$\$ 398$

Note:
(1) Source: Altera and Xilinx First Quarter 1998 North American distributor price lists.

Conclusion

With the introduction of FLEX 10KA-1 devices, system designers can now obtain new and higher levels of system performance. In addition to offering much higher system performance, FLEX 10KA-1 devices cost significantly less than competing FPGAs.

The documents listed below provide more detailed information and are available in the Altera 1998 Data Book.

- FLEX 10K Embedded Programmable Logic Family Data Sheet
- Application Note 91 (Understanding FLEX 10K Timing)

You can request documents from:

- Altera Literature Services at (888) 3-ALTERA

■ World-wide web at http://www.altera.com

- Your local Altera sales representative

