
FIR Compiler MegaCore
Function User Guide
September 1999

FIR Compiler MegaCore Function User Guide, September 1999 A-UG-FIRCOMPILER-01.10

ACCESS, Altera, AMPP, APEX, APEX 20K, Atlas, FLEX, FLEX 10K, FLEX 10KA, FLEX 10KE, FLEX 6000, FLEX 6000A, MAX, MAX+PLUS, MAX+PLUS II,
MegaCore, MultiCore, MultiVolt, NativeLink, OpenCore, Quartus, System-on-a-Programmable-Chip, and specific device designations are trademarks and/or service
marks of Altera Corporation in the United States and other countries. Product design elements and mnemonics used by Altera Corporation are protected by copyright
and/or trademark laws.

Altera Corporation acknowledges the trademarks of other organizations for their respective products or services mentioned in this document, including the following:
MATLAB and Simulink are trademarks of The Mathworks, Inc. Verilog is a registered trademark of Cadence Design Systems, Incorporated. Microsoft is a registered
trademark and Windows is a trademark of Microsoft Corporation.

Altera reserves the right to make changes, without notice, in the devices or the device specifications identified in this document. Altera advises its customers to obtain
the latest version of device specifications to verify, before placing orders, that the information being relied upon by the customer is current. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera’s standard warranty. Testing and other quality control techniques are used to the extent
Altera deems such testing necessary to support this warranty. Unless mandated by government requirements, specific testing of all parameters of each device is not
necessarily performed. In the absence of written agreement to the contrary, Altera assumes no liability for Altera applications assistance, customer’s product design, or
infringement of patents or copyrights of third parties by or arising from use of semiconductor devices described herein. Nor does Altera warrant or represent any patent
right, copyright, or other intellectual property right of Altera covering or relating to any combination, machine, or process in which such semiconductor devices might
be or are used.

Altera products are not authorized for use as critical components in life support devices or systems without the express written approval of the president of Altera
Corporation. As used herein:

1. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to
perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.

Products mentioned in this document are covered by one or more of the following U.S. patents: 5,873,113; 5,872,463; 5,870,410; 5,861,760; 5,859,544; 5, 850,365;
5,850,152; 5,850,151; 5,848,005; 5,847,617; 5,845,385; 5,844,854; RE35,977; 5,838,628; 5,838,584; 5,835,998; 5,834,849; 5,828,229; 5,825,197; 5,821,787:
5,821,773; 5,821,771; 5,815,726; 5,815,024; 5,815,003; 5,812,479; 5,812,450; 5,809,281; 5,809,034; 5,805,516; 5,802,540; 5,801,541; 5,796,267; 5,793,246;
5,790,469; 5,787,009; 5,771,264; 5,768,562; 5,768,372; 5,767,734; 5,764,583; 5,764,569; 5,764,080; 5,764,079; 5,761,099; 5,760,624; 5,757,207; 5,757,070;
5,744,991; 5,744,383; 5,740,110; 5,732,020; 5,729,495; 5,717,901; 5,705,939; 5,699,020; 5,699,312; 5,696,455; 5,693,540; 5,694,058; 5,691,653; 5,689,195;
5,668,771; 5,680,061; 5,672,985; 5,670,895; 5,659,717; 5,650,734; 5,649,163; 5,642,262; 5,642,082; 5,633,830; 5,631,576; 5,621,312; 5,614,840; 5,612,642;
5,608,337; 5,606,276; 5,606,266; 5,604,453; 5,598,109; 5,598,108; 5,592,106; 5,592,102; 5,590,305; 5,583,749; 5,581,501; 5,574,893; 5,572,717; 5,572,148;
5,572,067; 5,570,040; 5,567,177; 5,565,793; 5,563,592; 5,561,757; 5,557,217; 5,555,214; 5,550,842; 5,550,782; 5,548,552; 5,548,228; 5,543,732; 5,543,730;
5,541,530; 5,537,295; 5,537,057; 5,525,917; 5,525,827; 5,523,706; 5,523,247; 5,517,186; 5,498,975; 5,495,182; 5,493,526; 5,493,519; 5,490,266; 5,488,586;
5,487,143; 5,486,775; 5,485,103; 5,485,102; 5,483,178; 5,477,474; 5,473,266; 5,463,328, 5,444,394; 5,438,295; 5,436,575; 5,436,574; 5,434,514; 5,432,467;
5,414,312; 5,399,922; 5,384,499; 5,376,844; 5,375,086; 5,371,422; 5,369,314; 5,359,243; 5,359,242; 5,353,248; 5,352,940; 5,309,046; 5,350,954; 5,349,255;
5,341,308; 5,341,048; 5,341,044; 5,329,487; 5,317,212; 5,317,210; 5,315,172; 5,301,416; 5,294,975; 5,285,153; 5,280,203; 5,274,581; 5,272,368; 5,268,598;
5,266,037; 5,260,611; 5,260,610; 5,258,668; 5,247,478; 5,247,477; 5,243,233; 5,241,224; 5,237,219; 5,220,533; 5,220,214; 5,200,920; 5,187,392; 5,166,604;
5,162,680; 5,144,167; 5,138,576; 5,128,565; 5,121,006; 5,111,423; 5,097,208; 5,091,661; 5,066,873; 5,045,772; 4,969,121; 4,930,107; 4,930,098; 4,930,097;
4,912,342; 4,903,223; 4,899,070; 4,899,067; 4,871,930; 4,864,161; 4,831,573; 4,785,423; 4,774,421; 4,713,792; 4,677,318; 4,617,479; 4,609,986; 4,020,469 and
certain foreign patents.

Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights.

Copyright © 1999 Altera Corporation. All rights reserved.

Printed on Recycled Paper.

®

About this User Guide

September 1999
This user guide provides comprehensive information about the Altera® FIR
compiler MegaCore™ function.

f For the most up-to-date information about Altera products, go to the Altera world-
wide web site at http://www.altera.com.

How to Contact
Altera

For additional information about Altera products, consult the sources shown in
Table 1.

Note:
(1) You can also contact your local Altera sales office or sales representative.

Table 1. How to Contact Altera

Information Type Access USA & Canada All Other Locations

Altera Literature
Services

Telephone hotline (888) 3-ALTERA (1) (888) 3-ALTERA (1)

Electronic mail lit_req@altera.com (1) lit_req@altera.com (1)

Non-technical
customer service

Telephone hotline (800) SOS-EPLD (408) 544-7000

Fax (408) 544-7606 (408) 544-7606

Technical support Telephone hotline
(6:00 a.m. to 6:00 p.m.
Pacific Time)

(800) 800-EPLD (408) 544-7000 (1)

Fax (408) 544-6401 (408) 544-6401 (1)

Electronic mail sos@altera.com sos@altera.com

FTP site ftp.altera.com ftp.altera.com

General product
information

Telephone (408) 544-7104 (408) 544-7104 (1)

World-wide web site http://www.altera.com http://www.altera.com
Altera Corporation v

About this User Guide FIR Compiler MegaCore Function User Guide
Typographic
Conventions

The FIR Compiler MegaCore Function User Guide uses the typographic
conventions shown in Table 2.

Table 2. Conventions

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names and dialog box titles are shown in bold, initial capital letters.
Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold type.
Examples: fMAX, \maxplus2 directory, d: drive, chiptrip.gdf file.

Bold italic type Book titles are shown in bold italic type with initial capital letters. Example: 1999 Data
Book.

Italic Type with Initial
Capital Letters

Document titles, checkbox options, and options in dialog boxes are shown in italic type
with initial capital letters. Examples: AN 75 (High-Speed Board Design), the Check
Outputs option, the Directories box in the Open dialog box.

Italic type Internal timing parameters and variables are shown in italic type. Examples: tPIA, n + 1.
Variable names are enclosed in angle brackets (< >) and shown in italic type. Example:
<file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of MAX+PLUS® II Help topics are
shown in quotation marks. Example: “Configuring a FLEX 10K or FLEX 8000 Device
with the BitBlaster™ Download Cable.”

Courier type Reserved signal and port names are shown in uppercase Courier type. Examples:
DATA1, TDI, INPUT.

User-defined signal and port names are shown in lowercase Courier type. Examples:
my_data, ram_input.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\max2work\tutorial\chiptrip.gdf. Also, sections of an actual
file, such as a Report File, references to parts of files (e.g., the AHDL keyword
SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier.

1., 2., 3., and a., b., c.,... Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.
vi Altera Corporation

®

Introduction

September 1999, ver. 1.10 User Guide

Introduction

1

Altera
MegaCore
Functions

As programmable logic device (PLD) densities grow to over 1 million gates,
design flows must be as efficient and productive as possible. Altera provides
ready-made, pre-tested, and optimized megafunctions that let you rapidly
implement the functions you need, instead of building them from the ground up.
Altera® MegaCore™ functions, which are reusable blocks of pre-designed
intellectual property, improve your productivity by allowing you to concentrate
on adding proprietary value to your design. When you use MegaCore functions,
you can focus on your high-level design and spend more time and energy on
improving and differentiating your product.

Digital Signal Processing Functions

Traditionally, designers have been forced to make a tradeoff between the
flexibility of digital signal processors, and the performance of application-
specific integrated circuits (ASICs) and application-specific standard products
(ASSPs) digital signal processing (DSP) solutions. The Altera FLEX® and
APEX™ DSP solution eliminates the need for this tradeoff by providing
exceptional performance combined with the flexibility of PLDs. See Figure 1.

Figure 1. Comparison of DSP Throughput

1 G

100 M

1 M

100 K

10 K

Function
Implementation

Building Block
Implementation

System
Implementation

MCU/MPU

DSP
Processor

PLDs

ASICsData
Throughput
in Megasamples
per Second (MSPS)

Function Complexity
Altera Corporation 1

Introduction FIR Compiler MegaCore Function User Guide
Altera DSP solutions include MegaCore functions developed and supported by
Altera, and Altera Megafunction Partners Program (AMPPSM) functions.
Additionally, many commonly used functions, such as adders and multipliers, are
available from the industry-standard library of parameterized modules (LPM).
Altera devices easily implement DSP applications, while leaving ample room for
your custom logic. The devices are supported by Altera’s MAX+PLUS® II and
Quartus™ development systems, which allow you to perform a complete design
cycle including design entry, synthesis, place-and-route, simulation, timing
analysis, and device programming. Altera devices, software, and DSP MegaCore
functions provide you with a complete design solution. Figure 2 shows a
hypothetical DSP system and highlights the functions that are available from
Altera, the LPM, and AMPP partners.

Figure 2. Hypothetical Modulator System

OpenCore Feature

Altera’s exclusive OpenCore™ feature allows you to evaluate MegaCore
functions before deciding to license them. You can instantiate a MegaCore
function in your design, compile and simulate the design, and then verify the
MegaCore function’s size and performance. This evaluation provides first-hand
functional, timing, and other technical data that allows you to make an informed
decision on whether to license the MegaCore function. The finite impulse
response (FIR) compiler function generates register transfer level (RTL) VHDL
and Verilog HDL simulation models, MATLAB and Simulink models, and vector
files. Once you license the function, you can use the MAX+PLUS II or Quartus
software to generate programming files as well as EDIF, VHDL, or Verilog HDL
output netlist files for simulation in third-party EDA tools. Figure 3 shows a
typical design flow using MegaCore functions and the OpenCore feature.

Scrambler
Linear Feedback

Shift Register

FEC
Reed Solomon

Encoder

Symbol
Mapper

ROM or LUT

Convolutional
Encoder

Outer Encoding Layer

Output
Data

Input
Data

NCO
Compiler DAC

FIR Compiler

N
LPF

FIR Compiler

N
LPF

Convolutional
Interleaver

Inner Coding Layer

Altera MegaCore Functions

AMPP Functions

LPM Lunctions

I

Q

2 Altera Corporation

FIR Compiler MegaCore Function User Guide Introduction

Introduction

1
Figure 3. OpenCore Design Flow

Altera Devices The FIR compiler MegaCore function has been optimized and targeted for Altera
APEX, FLEX 10K, and FLEX 6000 devices. The FLEX 10K embedded PLD
family delivers the flexibility of traditional programmable logic with the
efficiency and density of gate arrays with embedded memory. The new 2.5-V
FLEX 10KE devices support efficient implementation of dual-port RAM, and
further enhance the performance of the FLEX 10K family. Using EABs to
implement FIR filters helps reduce the overall resource usage of the filter.

Altera’s 5.0-V and 3.3-V FLEX 6000 devices deliver the flexibility and time-to-
market of programmable logic at prices that are competitive with gate arrays.
Featuring the OptiFLEX™ architecture, FLEX 6000 devices provide a flexible,
high-performance, and cost-effective alternative to ASICs for high-volume
production.

APEX 20K devices offer complete system-level integration on a single device.
The APEX MultiCore™ architecture delivers the ultimate in design flexibility
and efficiency for high-performance System-on-a-Programmable Chip™
applications. With densities ranging from 100,000 to 1,000,000 gates, the APEX
20K architecture integrates look-up-table (LUT) logic, product-term logic, and
memory into a single architecture, eliminating the need for multiple devices,
saving board space, and simplifying the implementation of complex designs.

Download the FIR compiler
function from the Internet.

Simulate your fixed-point
DSP design in Altera or

other EDA tools.

Does the solution work
for your application?

No risk.

License the function and
configure your devices.

Yes

No

The FIR compiler generates fixed-point
coefficients from floating-point values,
analyzes the effects of coefficient
quantization in the frequency domain,
generates FIR filter hardware structures
and performs architectural (area/speed)
tradeoffs, and generates MATLAB Simulink,
Verilog HDL, and VHDL models.

Simulate your floating-point
DSP design.

Generate a custom filter
using the FIR compiler wizard.
Altera Corporation 3

Introduction FIR Compiler MegaCore Function User Guide
In the APEX MultiCore architecture, embedded system blocks (ESBs) and logic
array blocks (LABs) are combined into MegaLAB™ structures. Each APEX 20K
ESB can be configured as product-term logic, enabling APEX 20K devices to
achieve unmatched integration efficiency, as LUT logic or as memory. The ESB
can be configured as dual-port RAM, with a wide range of RAM widths and
depths as ROM in APEX 20K devices, and as content-addressable memory
(CAM), a memory technology that accelerates applications requiring fast
searches, in APEX 20KE devices.

f For more information on APEX 20K, FLEX 10K, and FLEX 6000 devices, refer
to the following documents:

■ APEX 20K Programmable Logic Device Family Data Sheet
■ FLEX 10K Embedded Programmable Logic Family Data Sheet
■ FLEX 10KE Embedded Programmable Logic Family Data Sheet
■ FLEX 6000 Programmable Logic Device Family Data Sheet

Software Tools Altera offers the fastest, most powerful, and most flexible programmable logic
development software in the industry. The MAX+PLUS II and Quartus software
offer a completely integrated development flow and an intuitive, graphical user
interface, making them easy to learn and use.

The MAX+PLUS II software offers a seamless development flow, allowing you
to enter, compile, and simulate your design and program devices using a single,
integrated tool, regardless of the Altera device you choose. Altera’s fourth-
generation Quartus software offers designers the ideal platform for processing
multi-million gate designs, with state-of-the-art features that shorten design
cycles, streamline the development flow, and reduce verification time. The
Quartus software shortens design cycles with the revolutionary nSTEP™
Compiler, which permits incremental recompilation, and multiple processor
support that can operate locally or across networks and even platforms.

MegaWizard Plug-Ins

MegaWizard™ Plug-Ins are parameterization tools that help you integrate
megafunctions into your designs without requiring the use of third-party tools.
You can use this feature in the MAX+PLUS II and Quartus software or as a stand-
alone tool with third-party EDA design interfaces. MegaWizard Plug-Ins provide
maximum flexibility, allowing you to customize megafunctions without changing
your design’s source code. You can integrate a parameterized megafunction in
any hardware description language (HDL) or netlist file using any EDA tool.

The MAX+PLUS II MegaWizard Plug-In Manager allows you to bring up the
megafunction’s wizard so that you can set the parameters of the megafunction to
fit your design. The wizard then generates a customized instance of the
megafunction, which you can instantiate in your design file.
4 Altera Corporation

FIR Compiler MegaCore Function User Guide Introduction

Introduction

1
EDA Interfaces

Altera has worked closely with major EDA vendors to develop the best interface
any PLD software has to offer.

As a standard feature, the MAX+PLUS II software interfaces with all major EDA
design tools, including tools for ASIC designers. Once a design is captured and
simulated using the tool of your choice, you can transfer your EDIF file directly
into the MAX+PLUS II software. After synthesis and fitting, you can transfer
your file back into your tool of choice for simulation. The MAX+PLUS II system
outputs the full-timing VHDL, Verilog HDL, Standard Delay Format (SDF), and
EDIF netlists that can be used for post-route device- and system-level simulation.
Altera opened the Quartus interface to various EDA partners to enable them to
provide unmatched levels of integration. NativeLink integration provides a truly
seamless interface to major EDA software tools to support existing design flows,
eliminating the need to learn new design tools.

To support Altera’s DSP functions, the DSP MegaWizard Plug-Ins work together
with the MATLAB and Simulink software. The wizard imports MATLAB
coefficients and outputs MATLAB/Simulink-compatible models for system
verification.

To simplify the design flow between the Altera software and other EDA tools,
Altera has developed the MAX+PLUS II Altera Commitment to Cooperative
Engineering Solutions (ACCESSSM) Key Guidelines and the Quartus NativeLink
Guidelines. These guidelines provide complete instructions on how to create,
compile, and simulate your design with tools from leading EDA vendors. The
guidelines are part of Altera’s ongoing efforts to give you state-of-the-art tools
that fit into your design flow, and to enhance your productivity for even the
highest-density devices. The MAX+PLUS II ACCESS Key Guidelines are
available on the Altera web site (http://www.altera.com) and the MAX+PLUS
II CD-ROM. The NativeLink guidelines are integrated into Quartus Help.
Altera Corporation 5

®

Specifications

September 1999, ver. 1.10 User Guide

Specifications

2

Features ■ First system-level, programmable logic solution for digital signal processing

(DSP) designs, including:
– Automatic interpolation filters
– Automatic decimation filters

■ Fully integrated finite impulse response (FIR) filter development
environment

■ Highly optimized for Altera® device architectures
■ Fully parallel or serial arithmetic architectures
■ Supports any number of taps
■ Includes a built-in coefficient generator
■ Imports floating-point or integer coefficients from third-party tools
■ Provides multiple coefficient scaling algorithms
■ Provides floating-point to fixed-point coefficient analysis
■ Supports coefficient widths from 4 to 32 bits of precision
■ Supports signed or unsigned input data widths, from 4 to 32 bits wide
■ User-selectable output precision via parameterizable rounding and

saturation
■ Generates MATLAB Simulink, VHDL, and Verilog HDL simulation

models
■ Generates MAX+PLUS® II and Quartus™ vector files
■ Includes an impulse, step function, and random input testbed
■ Provides resource estimates dynamically

General
Description

Many digital systems use signal filtering to remove unwanted noise, to provide
spectral shaping, or to perform signal detection or analysis. Two types of filters
that provide these functions are FIR filters and infinite impulse response (IIR)
filters. FIR filters are used in systems that require linear phase and have an
inherently stable structure. IIR filters are used in systems that can tolerate phase
distortion. Typical filter applications include signal preconditioning, band
selection, and low-pass filtering.

In contrast to IIR filters, FIR filters have a linear phase and inherent stability. This
benefit makes FIR filters attractive enough that they are designed into a large
number of systems. However, for a given frequency response, FIR filters are a
higher order than IIR filters, making FIR filters more computationally expensive.
Altera Corporation 7

Specifications FIR Compiler MegaCore Function User Guide
The structure of a FIR filter is a weighted, tapped delay line (see Figure 1). The
filter design process involves identifying coefficients that match the frequency
response specified for the system. The coefficients determine the response of the
filter. You can change which signal frequencies pass through the filter by
changing the coefficient values or adding more coefficients.

Figure 1. Basic FIR Filter

DSP processors have a limited number of multiplier-accumulators (MACs),
which require many clock cycles to compute each output value (the number of
cycles is directly related to the order of the filter). A dedicated hardware solution
can achieve one output per clock cycle. A fully parallel, pipelined FIR filter
implemented in a programmable logic device (PLD) can operate at data rates
above 100 million samples per second (MSPS), making PLDs ideal for high-
speed filtering applications.

Table 1 compares the resource usage and performance for different
implementations of a 120-tap FIR filter with a 12-bit data input bus.

xin

yout

Z -1 Z -1 Z -1 Z -1

C0 C1 C2 C3

Tapped
Delay Line

Coefficient
Multipliers

Adder Tree

Table 1. FIR Filter Implementation Comparison

Device Implementation Clock Cycles to
Compute Result

DSP processor 1 MACs 120

PLD 1 serial filter 12

1 parallel filter 1
8 Altera Corporation

FIR Compiler MegaCore Function User Guide Specifications

Specifications

2

The FIR compiler speeds up the design cycle by:

■ Finding the coefficients needed to design custom FIR filters.
■ Generating clock-cycle-accurate FIR filter models (also known as bit-true

models) in the Verilog HDL and VHDL languages, and for the MATLAB
environment (Simulink Model Files and M-Files).

■ Automatically generating the code required for the MAX+PLUS II or
Quartus software to synthesize high-speed, area-efficient FIR filters of
various architectures.

■ Creating standard test vectors (i.e., impulse, step, and random input) to test
the FIR filter’s response.

Figure 2 compares the design cycle using the FIR compiler MegaCore function
versus a traditional implementation.

Figure 2. Design Cycle Comparison

Define & Design Architectural
Blocks

Determine Behavioral
Characteristics of FIR Filter

Calculate Filter Coefficients
(MATLAB)

Determine Hardware Filter
Architecture

Design Structural or Synthesizable
FIR Filter

Simulate

Synthesize & Place & Route

Area/Speed Tradeoff

FIR Filter
Design
6 Weeks

Define & Design Architectural
Blocks

Simulate

Synthesize & Place & Route

FIR Filter Design
1 Day

Specify Filter Characteristics
to FIR Compiler Megafunction

Traditional Flow FIR Compiler Flow
Altera Corporation 9

Specifications FIR Compiler MegaCore Function User Guide
Signals The FIR compiler can generate two different FIR structures:

■ Parallel—Optimized for speed; provides one output per clock cycle.
■ Serial—Optimized for area. Uses a small number of clock cycles per output.

Figure 3 shows the symbols for serial and parallel FIR compiler functions.

Figure 3. Serial & Parallel Symbols

The FIR compiler function has the signals shown in Table 2.

To clock in data, the clken signal must be high for at least one clock cycle. Serial
filters require at least N clock cycles to complete the calculation before the
clken signal goes high again. When the next_data signal goes high, the next
data word can be clocked. Figure 4 shows the input requirements for a parallel
filter with no pipelining. Parallel filters generate an output every clock cycle.

xin[3..0]

clken

clock

yout[10..0]

yout_valid

sout

next_data

xin[3..0]

clken

clock

yout[10..0]

xout[3..0]

Parallel FilterSerial Filter

Table 2. FIR Compiler Signals

Signal Structure Type Description

xin[width_xin-1..0] Parallel and serial Input Input data to be filtered.

yout[width_yout-1..0] Parallel and serial Output Result of filtering operation performed in xin.

clock Parallel and serial Input Input clock signal.

clken Parallel and serial Input Active-high clock enable.

yout_valid Serial Output Goes high when the output result is valid.

next_data Serial Output Goes high when it is ready to load the next data
word.

xout[width_xin-1..0] Parallel Output Output data from the tapped delay line.

sin[x..0] Serial Input Input data to be filtered. The data is shifted in
serially one bit at a time (LSB first).

sout Serial Output Output from the tapped delay line (LSB first).

phase_o[] Parallel and serial Output Phase outbut buses for the polyphase filter with
an interpolation or decimation factor greater than
1.
10 Altera Corporation

FIR Compiler MegaCore Function User Guide Specifications

Specifications

2

Figure 4. Parallel Filter (No Pipelining)

Figure 5 shows the input waveform for an 8-bit serial filter.

Figure 5. 8-Bit Serial Filter

MegaWizard
Plug-In

You can launch the MegaWizard™ Plug-In Manager from within the Quartus or
MAX+PLUS II software, or you can run it from the command line. The FIR
compiler wizard generates an instance of the megafunction that you can
instantiate in your design. Table 3 highlights the main features of the wizard.

FFFCBFFFFF00000E000004FFFFE00000

Invalid data clock is disabled; the output is unaffected.

000100

clock

clken

xin[3..0]

yout[17..0]

clock

clken

xin[7..0]

yout[19..0]

yout_valid

next_data

sout

8-Bit Input Requires 8 Clock Cycles to Compute the Output

The FIR hardware is ready to
load the next input data when
the next_data signal goes high.

The output is valid when
yout_valid goes high.

An invalid clock is disabled.
The current calculation
continues until it is finished.

XX
Altera Corporation 11

Specifications FIR Compiler MegaCore Function User Guide
When you finish going through the wizard, it generates the following files:

■ Text Design File (.tdf) used to instantiate an instance of the FIR filter in your
design

■ MAX+PLUS II Vector File (.vec) used for simulation within the
MAX+PLUS II environment

■ Symbol File (.sym) used to instantiate the filter into a schematic design
■ ASCII text file coef.txt that contains the rounded and scaled coefficients
■ MATLAB and Simulink files used for simulation in MATLAB Simulink
■ VHDL and Verilog HDL models used for simulation in other EDA tools

Table 3. FIR Compiler Wizard Options

Option Description

Architecture You can indicate whether the filter is parallel or serial, and the number of channels for
the filter. For serial filters, you can use either EABs or logic cells to implement the filter.
For both parallel and serial filters, you can specify whether or not to use pipelining.

Coefficients The FIR compiler can read filter coefficients that have been exported from a third-party
system-level application or generate coefficients using a built-in coefficient generator.
In both cases, you can scale the coefficients and indicate the bits of precision. The
wizard detects the filter symmetry and displays it.

The built-in coefficient generator lets you specify the sample rate (either in Hertz or in
relation to the Nyquist rate), the number of taps, and cut-off frequencies. The function
supports low-pass, high-pass, band-pass, and band-reject filters. The supported filter
windows include rectangular, Hanning, Hamming, and Blackman. As you change the
coefficient settings, you can view the frequency and response of the filter dynamically.

Input Data Specification You can specify the width of the input data bus (from 4 to 32 bits wide) and whether
the bus is signed or unsigned.

Limiting Precision The FIR compiler determines the output bit width for full precision based on the actual
coefficient values and the input bit width. These two parameters define the maximum
positive and negative output values. The wizard extrapolates the number of bits
required to represent that range of values. For full precision, you must use this number
of bits in your system.

You can reduce the precision of your filter by removing bits from the most significant
bit (MSB) via truncation or saturation, or LSB via truncation or rounding.

Multi-Rate Filters You can use the wizard to create multi-rate filters using interpolation and decimation.
You can specify the interpolation and decimation factors, as well as a polyphase output
enable.

Simulation Output Files The FIR compiler generates several types of simulation files, including MAX+PLUS II
Vector Files (.vec), MATLAB M-Files (.m), Simulink Model Files (.mdl), Verilog HDL
models, and VHDL output files. You can specify the clock frequency for the output files.
12 Altera Corporation

FIR Compiler MegaCore Function User Guide Specifications

Specifications

2

Functional
Description

The FIR compiler has an interactive wizard-driven interface that allows you to
create custom FIR filters easily. The wizard outputs simulation files for use with
third-party tools, including MATLAB. The FIR compiler supports any number of
taps.

Number Systems & Fixed-Point Precision

The FIR compiler function supports signed or unsigned fixed-point numbers from
4 to 32 bits wide using two’s complement numbers. The entire filter operates in a
single number system. The coefficient precision is independent of input data
width; the user can specify the output precision.

Generating or Importing Coefficients

You can use the FIR compiler function to create coefficients, or you can create
them using another application such as MATLAB, save them as an ASCII file,
and read them into the FIR compiler. Coefficients can be expressed as floating-
point or integer numbers; each one must be listed on a separate line. Figure 6
shows the contents of a sample coefficient text file.

1 If you specify negative values for the coefficients, the FIR compiler
generates a two’s complement signed output.

Figure 6. Sample Filter Coefficients

-3.09453e-005
-0.000772299
-0.00104106
-0.000257845
0.00150377
.
.
.
0.00163125
0.00278506
0.00150377
-0.000257845
-0.00104106
-0.000772299
-3.09453e-005
Altera Corporation 13

Specifications FIR Compiler MegaCore Function User Guide
The FIR compiler automatically creates coefficients (with a user-specified
number of taps) for the following filters:

■ Low-pass and high-pass
■ Band-pass and band-reject
■ Raised cosine and root raised cosine

You can adjust the number of taps, cut-off frequencies, sample rate, filter type,
and window method to build a custom frequency response. Each time you apply
the settings, the FIR compiler calculates the coefficient values and displays the
frequency response on a logarithmic scale. These coefficients are floating-point
numbers and must be scaled. The FIR compiler saves the coefficients into the
coef_float.txt file.

When the FIR compiler reads in the coefficients, it automatically determines any
symmetry and selects the appropriate architecture. The filter gives you several
scaling options, e.g., scaling to a specified number of bits of precision, or scaling
by a user-specified factor. After scaling, the coefficients are output to the coef.txt
file.

Coefficient Scaling

Coefficient values are often represented as floating-point numbers. To convert
these numbers to a fixed-point system, the coefficients must be multiplied by a
scaling factor and rounded. The FIR compiler provides four scaling options:

■ Scale to a specified number of precision bits—Because the coefficients are
represented by a certain number of bits, it is possible to apply whatever gain
factor is required such that the maximum coefficient value equals the
maximum possible value for a given number of bits. This approach produces
coefficient values with a maximum signal-to-noise ratio.

■ Limit scaling factors to powers of 2—With this approach, the FIR compiler
chooses the largest power of two scaling factor that can represent the largest
number within a particular number of bits of resolution. Multiplying all of
the coefficients by a particular gain factor is the same as adding a gain factor
before the FIR filter. In this case, applying a power of two scaling factor
makes it relatively easy to remove the gain factor by shifting a binary
decimal point.

■ Scale manually—The FIR compiler lets you manually scale the coefficient
values by a specified gain factor.

■ No scaling—The FIR compiler can read in pre-scaled integer values for the
coefficients and not apply scaling factors.
14 Altera Corporation

FIR Compiler MegaCore Function User Guide Specifications

Specifications

2

Symmetrical Architecture Selection

Many FIR filters have symmetrical coefficient values. The FIR compiler
examines the coefficients and automatically determines the filter symmetry: even,
odd, or none. After detecting symmetry, the wizard chooses an optimum
algorithm to minimize the amount of computation needed. The filter determines
coefficient symmetry after the coefficients are rounded. If even symmetry is
present, two data points are added prior to the multiplication step, saving a
multiplication operation (taking advantage of filter symmetry reduces the number
of multipliers by about half). If the filter has odd symmetry, two data points are
subtracted prior to the multiplication step (again eliminating half of the
multipliers). Odd and even filter structures are shown in Figures 7 and 8.

Figure 7. 7-Tap Symmetrical FIR Filter

Data In

Data Out

Z -1

C0

Z -1

C0 C0 C0

Z -1

Z -1

Z -1

Z -1

Z -1
Altera Corporation 15

Specifications FIR Compiler MegaCore Function User Guide
Figure 8. 6-Tap Symmetrical FIR Filter

The FIR compiler wizard generates parallel, serial, multi-channel, and single and
multiple MAC arithmetic structures.

Parallel Structures

A parallel structure calculates the filter output in a single clock cycle. Parallel
filters provide the highest performance and consume the largest area. Pipelining
a parallel filter allows you to generate filters that run between 70 and 120 MHz at
the cost of pipeline latency. Refer to Figure 4 on page 11 for a waveform of the
parallel structure. Figure 9 shows the parallel filter block diagram.

Data In

Data Out

Z -1

C0

Z -1

C0 C0

Z -1

Z -1

Z -1 Z -1
16 Altera Corporation

FIR Compiler MegaCore Function User Guide Specifications

Specifications

2

Figure 9. Parallel Filter Block Diagram

Serial Structures

A serial structure trades off area for speed. The filter processes input data one bit
at a time per clock cycle. Therefore, serial structures require N clock cycles
(where N is the input data width) to calculate an output. You can use FLEX 10K
EABs or APEX 20K ESBs to store data for the tapped delay line (shift register).
Refer to Figure 5 on page 11 for a waveform of the serial structure. Figure 10
shows the serial filter block diagram.

Figure 10. Serial Filter Block Diagram

yout

Array Multiplier Array Multiplier

xin xoutD Q D Q D QD QD QD Q

yout

Bit Array Multiplier Bit Array Multiplier

xin

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

Serial
Accumulator
Altera Corporation 17

Specifications FIR Compiler MegaCore Function User Guide
Multi-Channel Structures

When designing DSP systems, you may need to generate two FIR filters that have
the same coefficients. If high speed is not required, your design can share one
filter, which uses fewer resources than two individual filters. For example, a two-
channel parallel filter requires two clock cycles to calculate two outputs. The
resulting hardware would need to run at twice the data rate of an individual filter.
Figure 11 shows the inputs and outputs of a multi-channel parallel filter.

Figure 11. Parallel Multi-Channel Filter

1 For maximum area efficiency, use a distributed serial arithmetic
architecture, multiple channels, and dual-port RAM in FLEX 10KE
EABs or APEX ESBs.

Interpolation & Decimation

You can use the FIR compiler to interpolate or decimate a signal. Interpolation
generates extra points in between the original samples; decimation removes
redundant data points. Both operations change the effective sample rate of a
signal.

When a signal is interpolated, zeros are inserted between data points and the data
is filtered to remove spectral components that were not present in the original
signal. See Figure 12.

0 1 0

0000 FFFE 0000 FFFF 0000

clock

clken

xin[3..0]

yout[15..0]

Channel 1 Input Data Channel 1 Output Data

Channel 2 Input Data Channel 2 Output Data
18 Altera Corporation

FIR Compiler MegaCore Function User Guide Specifications

Specifications

2

Figure 12. Signal Interpolation

To decimate a signal, a low-pass filter is applied, which removes spectral
components that are not present at the low sample rate. After filtering,
appropriate sample values are taken. See Figure 13.

Figure 13. Signal Decimation

The FIR compiler automatically creates interpolation and decimation filters using
a polyphase decomposition. Polyphase decimation filters provide speed
optimization because each filter runs at the output data rate. Polyphase
interpolation filters provide the following benefits:

■ Speed optimization—Each of the polyphase filters runs at the input data rate
for maximum throughput.

■ Area optimization—The polyphase interpolator shares resources.

Figure 14 shows block diagrams for polyphase interpolation and decimation.

N

Input
Data

After
Zero
Stuffing

After
Low-Pass
Filtering

LPF
Input Output

M

Input
Data

Filtered
Data

Decimated
Data

LPF
Input Output
Altera Corporation 19

Specifications FIR Compiler MegaCore Function User Guide
Figure 14. Polyphase Interpolation & Decimation Block Diagrams

Serial Interpolation Waveforms

Figure 15 shows the waveform for a serial interpolation filter in which the
interpolation factor is equal to the input data width (both have a value of four).
The filter has four polyphase outputs.

Figure 15. Interpolation Factor = Input Data Width

4xin youtPrototype Filter
C0, C1, C2, ...

xin yout
Polyphase Filter
C0, C4, C8, ...

Polyphase Filter
C1, C5, C9, ...

Polyphase Filter
C2, C6, C10, ...

Interpolation

Polyphase Interpolator

Polyphase Filter
C3, C7, C11, ...

xin

Polyphase Filter
C0, C4, C8, ...

Polyphase Filter
C1, C5, C9, ...

Polyphase Filter
C2, C6, C10, ...

Polyphase Decimator

Polyphase Filter
C3, C7, C11, ...

yout
20 Altera Corporation

FIR Compiler MegaCore Function User Guide Specifications

Specifications

2

The structure runs at a 4× clock. The input data is held for 4 clock cycles, and each
polyphase is computed every 4 clocks. The interpolation scheme switches through
the four outputs every clock cycle to generate yout (the final output). The FIR
compiler provides access to the polyphase outputs, which allows you to multiplex
through the outputs to suit the needs of your application.

Figure 16 shows the waveform for a filter in which the interpolation factor (six)
is greater than the input data width (four). The filter has six polyphase outputs.

Figure 16. Interpolation Factor > Input Data Width

The entire structure runs at a 6× clock. The input data is held for 6 clock cycles.
There are six serial filters, and each filter calculates a particular phase. Each of the
six serial filters requires 4 clock cycles to compute a phase because there are 4 bits
of input data. However, six clock cycles are needed to switch through all the
filters, so the entire design requires a 6× clock.

Figure 17 shows the waveform for a filter in which the interpolation factor (four)
is less than the input data width (six). The filter has four polyphase outputs.

Figure 17. Interpolation Factor < Input Data Width

For this filter, a 4× clock does not provide enough cycles to calculate an individual
polyphase output. To ensure a constant output data rate, the FIR compiler uses an
8× clock (or a clock rate of two times the interpolation factor), switching between
every polyphase output every two clocks. The 8× clock provides sufficient clock
cycles to perform the serial calculation.
Altera Corporation 21

Specifications FIR Compiler MegaCore Function User Guide
Parallel Interpolation Waveforms

Figure 18 shows the waveform for a parallel interpolation filter with an
interpolation factor of four. The filter has four polyphase outputs, each running at
the input data rate. There is a final multiplexer that switches through all the filters.

Figure 18. Parallel Interpolation Waveform

The parallel case, which is the simplest for timing, illustrates the benefit of a
polyphase decomposition. This technique relaxes the timing requirements on the
FIR filter that is generated. If the input data rate is 50 MHz, and the interpolation
factor is four, the polyphase filters must run at the 50 MHz data rate. The
multiplexer which switches through all the filters need to run at 200 MHz (Altera
FLEX and APEX devices support multiplexers that run at these speeds). Because
the filter has fewer gates toggling at a slower rate, the design also saves power.
Finally, a polyphase interpolation filter uses fewer resources than zero insertion
followed by filtering.

Serial Decimation Waveforms

Figure 19 shows a serial decimation filter in which the decimation factor (four)
equals the input bit width (four).
22 Altera Corporation

FIR Compiler MegaCore Function User Guide Specifications

Specifications

2

Figure 19. Decimation Factor = Input Bit Width

In this case, the FIR compiler generates four serial filters because the decimation
factor is four. Each of the decimation filters requires four clock cycles to generate
an output. The decimation scheme switches through the four filters individually
and adds the result of four filters together to generate a final decimated output. In
addition, outputs from each of the four individual filters are available separately.

Figure 20 shows a serial decimation filter in which the decimation factor (six) is
greater than the input data width (four).

Figure 20. Decimation Factor > Input Data Width

The entire structure operates with a 6× clock. The input data is held constant while
it is switched between the polyphase filter (in this case, for six clock cycles). The
structure has six serial filters, and each filter calculates a particular phase. Each of
the six serial filters requires four clock cycles to compute a phase (because there
are four bits of input data). The entire computation requires the results from the
six polyphase filters, so a 6× clock relative to the output rate is sufficient.

Figure 21 shows a filter in which the decimation factor (four) is less than the input
data width (six).
Altera Corporation 23

Specifications FIR Compiler MegaCore Function User Guide
Figure 21. Decimation Factor < Input Data Width

The FIR compiler generates four polyphase filters. Each filter requires at least 6
clock cycles to generate an output because they are serial filters with input data
widths of six bits. Therefore, a single 4× clock is not sufficient to create the
structure. By providing twice the clock rate (8×) there are enough clock cycles to
compute the polyphase result; i.e., the input data is held for two clock cycles for
each polyphase input. Eight clock cycles total are required for the structure to
operate. Additionally, each of the polyphase outputs are available for use.

Parallel Decimation Waveform

Figure 22 shows a parallel decimation waveform with a decimation factor of four.
The polyphase technique for decimation generates four filters, each of which
operate at the output rate. At every clock cycle, the input data goes to the next
polyphase. After four clock cycles, the outputs from the each polyphase are added
together.

Figure 22. Parallel Decimation Filter

The benefits of a polyphase decomposition for decimation are twofold. Because
the individual polyphase filters operate at the output clock rate, the timing
requirements for the polyphase filter are relaxed. For example, a 4-to-1
decimation filter with an input data rate of 200 MSPS, would require 4 polyphase
filters, each of which operate at a data rate of 50 MSPS. Additionally, the input
24 Altera Corporation

FIR Compiler MegaCore Function User Guide Specifications

Specifications

2

data is time division multiplexed across 4 different filters with a switch rate of 200
MHz. Altera FLEX and APEX devices can easily generate multiplexers that
operate at these speeds. The total system throughput is 200 MSPS (generated from
4 filters operating in parallel at a 50 MSPS rate).

Pipelining

Pipelining is most effective for producing high-performance filters at the cost of
increased latency. The FIR compiler provides the following pipelining options:

■ Automatic—The wizard adds pipeline stages for maximum throughput.
■ None—The wizard does not pipeline the design.

Simulation Output Files

The FIR compiler generates several types of output files for use in system
simulation. After you have created a custom FIR filter, you can use the output files
with MATLAB, VHDL, or Verilog HDL simulation tools.

The FIR compiler automatically generates test vectors for the following types of
stimulus:

■ Impulse
■ Step function
■ Random input

You can use these test vectors and MATLAB software to simulate your design.
When you compile your FIR filter design, the FIR compiler wizard generates
MATLAB Simulink-compatible models for system verification.

Performance Table 4 shows the FIR compiler function’s performance using the MAX+PLUS
II version 9.2 software.

Table 4. FIR Compiler Performance

Device Parameters LEs
Used

EABs
Used

fMAX (MHz)

FLEX 10KE-1 17-tap, fully parallel 879 0 82

19-tap, fully parallel 1,260 0 101

79-tap, serial 761 5 69
Altera Corporation 25

Notes:

®

Getting Started

September 1999, ver. 1.10 User Guide

Getting Started

3

Altera digital signal processing (DSP) MegaCore™ functions provide solutions
for integrating finite impulse response (FIR) filters into your digital
communications system. The functions are optimized for Altera® APEX™ 20K,
FLEX® 10K, and FLEX 6000 devices, greatly enhancing your productivity by
allowing you to focus efforts on the custom logic in the system. This section
describes how to obtain the FIR compiler MegaCore function, explains how to
install it on your PC, and walks you through the process of implementing the
function in a design. You can test-drive MegaCore functions using Altera’s
OpenCore™ feature to simulate the functions within your custom logic. When
you are ready to license a function, contact your local Altera sales representative.

Design
Walkthrough

This design walkthrough involves the following steps:

1. Build your system using MATLAB Simulink.

2. Download and install the FIR compiler function.

3. Generate the filter(s) for your system using the FIR compiler wizard.

4. Drag and drop the FIR compiler wizard-generated Simulink model files
your system model.

5. Implement the rest of your system using the Altera Hardware Description
Language (AHDL), VHDL, Verilog HDL, or schematic entry.

6. Use the FIR compiler wizard-generated VHDL or Verilog HDL simulation
models to confirm your system’s operation.

7. Compile your design and perform place-and-route.

8. Perform system verification.

9. License the FIR compiler function to configure or program the devices.
Altera Corporation 21

Getting Started FIR Compiler MegaCore Function User Guide
The instructions assume that:

■ You are using a PC running Windows NT 3.51 or 4.0, or Windows 95/98.
■ You are familiar with the MATLAB and MAX+PLUS II software.
■ MAX+PLUS II version 9.2 or higher is installed in the default location

(c:\maxplus2).
■ You are using the OpenCore feature to test-drive the FIR compiler function

or you have licensed the function.

Download & Install the FIR Compiler Function

Before you can start using Altera MegaCore functions, you must obtain the
MegaCore files and install them on your PC. The following instructions describe
this process.

Obtaining the FIR Compiler MegaCore Function

If you have Internet access, you can download MegaCore functions from Altera’s
web site at http://www.altera.com. Follow the instructions below to obtain the
MegaCore functions via the Internet. If you do not have Internet access, you can
obtain the MegaCore functions from your local Altera representative.

1. Run your web browser (e.g., Netscape Navigator or Microsoft Internet
Explorer).

2. Open the URL http://www.altera.com.

3. Click the Tools icon on the home page toolbar.

4. Click the MegaCore Functions link.

5. Click the link for the FIR compiler function.

6. Follow the on-line instructions to download the function and save it to your
hard disk.
22 Altera Corporation

FIR Compiler MegaCore Function User Guide Getting Started

Getting Started

3

Installing the FIR Compiler Files

For Windows 95/98 and Windows NT 4.0, follow the instructions below:

1. Click Run (Start menu).

2. Type <path name>\<filename>.exe, where <path name> is the location of
the downloaded MegaCore function and <filename> is the filename of the
function.

3. Click OK. The MegaCore Installer dialog box appears. Follow the on-line
instructions to finish installation.

4. After you have finished installing the MegaCore files, you must specify the
directory in which you installed them (e.g., <path>/fir_compiler/lib) as a
user library in the MAX+PLUS II software. Search for “User Libraries” in
MAX+PLUS II Help for instructions on how to add these libraries.

Generate a FIR Filter

This section describes the design flow using the Altera FIR compiler MegaCore
function and the MAX+PLUS II development system. The MegaWizard Plug-In
Manager, which you can use within the MAX+PLUS II software or as a stand-
alone application, lets you create or modify design files that contain megafunction
variations. You can then instantiate the megafunction variation in your design file.
The FIR compiler function is parameterized, and you can customize it with the
MegaWizard Plug-In to meet the needs of your application.

You can use Altera’s OpenCore feature to compile and simulate the MegaCore
functions, allowing you to evaluate the functions before deciding to license them.
However, you must obtain a license from Altera before you can generate
programming files or EDIF, VHDL, or Verilog HDL gate-level netlist files for
simulation in third-party EDA tools.

1 You should use the MAX+PLUS II software version 9.2 or higher when
designing with the FIR compiler function. The function relies on library
files that only exist in these versions of software.

To create a FIR function using the wizard, follow these steps:

1. Start the MegaWizard Plug-in Manager by choosing the MegaWizard
Plug-In Manager command (File menu) in any MAX+PLUS II
application, or by starting the stand-alone version of the MegaWizard Plug-
In Manager by typing the command megawiz r at a command prompt.
The MegaWizard Plug-In Manager dialog box is displayed.
Altera Corporation 23

Getting Started FIR Compiler MegaCore Function User Guide
1 Refer to MAX+PLUS II Help for detailed instructions on how to
use the MegaWizard Plug-In Manager.

2. Specify that you want to create a new custom megafunction variation and
click Next.

3. On the second page of the wizard, select the FIR compiler function from the
DSP MegaCore drop-down list in the Available Megafunctions box, choose
that you wish to create an AHDL TDF, specify the directory and name for
the files the wizard creates, and click Next.

1 If you do not specify the directory in which you installed the
MegaCore files as a user library in the MAX+PLUS II software,
the function will not appear in the Available Megafunctions box.
Search for “User Libraries” in MAX+PLUS II Help for
information on how to specify these libraries.

4. Specify the bit width of the filter input data bus. You can also specify
whether the bus is signed or unsigned; the signed representation uses the
two’s complement numbering system. See Figure 1. Click Next.

Figure 1. Enter Data Bus Parameters

5. Specify coefficients for your filter. The wizard can generate coefficients or
you can read the coefficients from a file. The wizard can read fixed-point or
floating-point coefficients from a simple ASCII text file. Refer to Figure 6
on page 13 for a sample filter coefficient file. To use the wizard to generate
coefficients, click the Generate Coefficient Values button on the fourth
page of the wizard. See Figure 2.

Number System

Number of Input Bits
24 Altera Corporation

FIR Compiler MegaCore Function User Guide Getting Started

Getting Started

3

Figure 2. Specify Coefficients

6. The wizard coefficient generator allows you to specify the sample rate, the
number of taps, the cut-off frequencies, the filter type, and the window
method. Specify the characteristics for your filter and click the Apply
button to view the frequency response and the coefficient values. The
wizard automatically generates symmetrical filters as needed. By default,
the sample rate is in Hertz. To enter the filter parameters in relation to the
Nyquist rate, enter a 1 for the sample rate. (The maximum cut-off frequency
changes to 0.5.) You can also enter decimation and interpolation factors, or
you can generate decimation or interpolation factors automatically. Figure 3
shows the coefficient generator. When you are satisfied with the settings,
click Next. The wizard loads the coefficients automatically.
Altera Corporation 25

Getting Started FIR Compiler MegaCore Function User Guide
Figure 3. Generating Coefficients with the Wizard

7. After you have specified the coefficients, either by using the wizard or
reading them from a file, you can scale the coefficients or use them as is.
However, if you specified the coefficients as floating point numbers, you
must scale them. The coefficients are displayed in the Scaled and Rounded
Coefficients box. The wizard detects any symmetry present, automatically
selects an architecture to create a smaller filter, and displays the resulting
symmetry in the Symmetry Type box (see Figure 4). Click Next to continue.

Frequency
Response

Click the Apply
button to view
the results of
your input
parameters.

Coefficient
Values

You can create
high pass, low
pass, band pass,
band reject, raised
cosine, and root
raised cosine filters.

The filter supports
Rectangular,
Hamming, Hanning,
and Blackman window
types.
26 Altera Corporation

FIR Compiler MegaCore Function User Guide Getting Started

Getting Started

3

Figure 4. Scaled & Rounded Coefficients

8. After scaling and rounding the coefficients, you can use the wizard to view
the resulting fixed-point coefficients and compare them to the floating-point
values. The wizard displays both the frequency and coefficient values. The
fixed-point coefficient analyzer lets you quickly determine the number of
bits of preceision required to obtain a desired spectral response. See
Figure 5.
Altera Corporation 27

Getting Started FIR Compiler MegaCore Function User Guide
Figure 5. Fixed-Point Coefficient Analyzer

9. You can specify whether to use full or limited precision for the filtered
output (yout). The FIR compiler determines the output bit width based on
the actual coefficient values and the input bit width. These two parameters
define the maximum positive and negative output values. The wizard
extrapolates the number of bits required to represent that range of values.
For full precision, you must use this number of bits in your system.

If you choose limited precision, the wizard gives you the option of
truncating or saturating the MSB and/or rounding or truncating the LSB.
Saturation and rounding are non-linear operations. Table 1 shows the
options for limiting the precision of your filter.

Fixed-Point
Response

Floating-Point
Response

You can view the
frequency or the
coefficients.

Select whether you wish
to view fixed-point signals,
floating-point signals, or
both.
28 Altera Corporation

FIR Compiler MegaCore Function User Guide Getting Started

Getting Started

3

Figure 6 shows an example of removing bits from the MSB and LSB.

Figure 6. Removing Bits from the MSB & LSB

10. Make your selections and choose Next. See Figure 7.

Table 1. Options for Limiting Precision

Bit
Range

Option Result

MSB Truncate In truncation, the filter disregards specified bits. See
Figure 6.

Saturate In saturation, if the filtered output is greater than the
maximum positive or negative value able to be represented,
the output is forced (or saturated) to the maximum positive
or negative value.

LSB Truncate Same process as for MSB.

Round The output is rounded away from zero.

D15
D14
D13
D12
D11
D10
D9
D8
.
.
D0

D9
D8
.
.
D0

Bits Removed from MSB

Full
Precision

Limited
Precision

D15
D14
.
.
.
.
D4
D3
D2
D1
D0

D11
D10
.
.
.
D1
D0

Bits Removed from LSB

Full
Precision

Limited
Precision

D15
D14
D13
D12
.
.
.
D3
D2
D1
D0

D10
D9
.
.
.
D1
D0

Bits Removed from both MSB & LSB

Full
Precision

Limited
Precision
Altera Corporation 29

Getting Started FIR Compiler MegaCore Function User Guide
Figure 7. Specify the Filter Precision

11. You can use the wizard for decimation and interpolation, which change the
effective rate of the filter. You can choose whether to use interpolation or
decimation, and indicate a factor for each. See Figure 8. Click Next after
making your selections.

Figure 8. Decimation & Interpolation
30 Altera Corporation

FIR Compiler MegaCore Function User Guide Getting Started

Getting Started

3

12. Indicate the architecture of the filter, for example, whether it is parallel or
serial, any pipelining desired, and the number of input channels. The default
value is parallel. Table 2 describes some of the trade-offs for the different
architecture options.

The wizard automatically calculates the resources the filter will use in the
Resource Usage box. It provides the estimated size in EABs and/or logic
cells and the number of clock cycles required to perform the FIR
computation. The latency, i.e., the number of clock cycles before the output
is available, is shown in the MAX+PLUS II Report File (.rpt) after design
compilation. See Figure 9. Click Next when you are finished.

Table 2. Architecture Trade-Offs

Option Area Speed (Data Throughput)

Parallel Uses a large area. Creates a fast filter: 60 to 140 MSPS
throughput with pipelining.

Serial Uses a smaller area. Requires multiple clock cycles for a
single computation.

Pipelining Creates a high-performance
filter with only a small area
increase.

Increases throughput by two to four
times with additional latency.
Altera Corporation 31

Getting Started FIR Compiler MegaCore Function User Guide
Figure 9. Specify the Filter Architecture

13. Specify the file formats and clock period for the simulation output files you
wish to generate and click Next. The wizard generates all file formats by
default. See Figure 10.

When using APEX 20K or
FLEX 10K devices, choose the
Implement Logic in Dual Port
EAB/ESB option for the
smallest possible area.
For FLEX 6000 devices, choose
not to implement logic in
ESBs/EABs.

The default is parallel. Choose
the serial option if serial data
is available.

The wizard automatically
displays the estimated
resources and number of
clock cycles required to
perform the FIR calculation.
32 Altera Corporation

FIR Compiler MegaCore Function User Guide Getting Started

Getting Started

3

Figure 10. Choose the Output File Types

14. Click Finish to accept your selections and generate the new megafunction
variation.

Once you have created a megafunction variation, you can integrate it into your
custom design. After you have finished your design, you are ready to instantiate
it in your system design and compile it.

1 For the best results, you should use the Fast logic synthesis style when
compiling your design in the MAX+PLUS II software.

Model Your System Using MATLAB Simulink

The MATLAB software performs complex mathematical computations in an
interactive environment. Many DSP designers use the MATLAB environment to
generate FIR filter coefficients and to simulate their DSP systems. You can also
use the software to evaluate the effects of channels and to analyze signals. The
Simulink software is a MATLAB add-on product and provides a graphical
interface that allows you to model, analyze, and simulate your system quickly.

To begin, perform the steps below.

1. Run the MATLAB software.

2. In the MATLAB Command Window, change to the working directory for
your project.

3. Run Simulink by typing Simulink r at the prompt. The Simulink
Library Browser opens.
Altera Corporation 33

Getting Started FIR Compiler MegaCore Function User Guide
4. Create a new model by clicking the page icon in the Simulink Library
Browser or by choosing New (File menu) in the MATLAB Command
Window.

5. Drag and drop blocks into your new model according to your system
requirements.

6. Simulate your model.

Drag & Drop the FIR Compiler Models into Your Simulink Model

System verification is an important part of filter design. The FIR compiler
generates output files that work seamlessly with third-party system verification
tools, including MATLAB/Simulink Model Files and S functions. After you
create your FIR filter in the MAX+PLUS II software, you can use the models to
test the function in-system.

You can use the FIR compiler megafunction together with the MATLAB and
Simulink software to design, implement, and simulate your system. The
megafunction imports coefficients generated using MATLAB and outputs
MATLAB/Simulink-compatible models for system verification.

f For more information on MATLAB and Simulink, refer to the Math Works web
site at http://www.mathworks.com.

Altera provides sample Simulink models with the FIR compiler function that you
can use to preview the operation of the function in-system. Additionally, the FIR
compiler wizard generates output files for use with the MATLAB and Simulink
software. See Table 3 for a description of the files provided with and generated by
the FIR compiler.
34 Altera Corporation

FIR Compiler MegaCore Function User Guide Getting Started

Getting Started

3

To model the wizard-generated files in MATLAB/Simulink, perform the steps
below.

1. Copy the Simulink files (with the extension(s) .mdl and/or .m) into your
MATLAB working directory.

2. Run the MATLAB software.

3. In the MATLAB Command Window, change to the directory in which you
saved the wizard-generated files.

4. Open your system model.

5. Open the Model File for the filter (i.e., <filename>_simulink.mdl) and drag
and drop the block into your system model.

Table 3. Wizard-Generated MATLAB/Simulink Files

File Description

<function name>_simulink.m An ASCII text file called an S-function. This file is a text-based description,
or model, of the filter’s functionality. The FIR compiler automatically
generates S-functions that are clock-cycle accurate representations of the
filter operation. You should not modify these files.

<function name>_simulink.mdl Simulink Model File (.mdl) that provides a functional model of a system.
Model Files include scope models that represent stimulus occuring in the
system. You should create your own model to simulate a system using your
custom version of the FIR compiler.

The Simulink Model File incorporates S-functions in .m format. You should
save both the .mdl and .m files together in your Simulink working directory.
Altera provides a sample Simulink Model File with the FIR compiler
function, which shows an example of how the FIR compiler operates in-
system.

<function name>_qplot.m A file that graphically plots the FIR compiler-generated scaled and rounded
coefficients. You can use the plot to view a time display (in clock cycles), a
frequency display, and the effects of random noise.
Altera Corporation 35

Getting Started FIR Compiler MegaCore Function User Guide
6. Adjust your model as needed to work with the FIR compiler model. Altera
provides the elements described in Table 4 with the FIR compiler that you
can drop into your design.

7. After you finish building your model, simulate it to see the effects of the
filter in-system.

Altera provides a sample Simulink model with the FIR compiler. It shows a
system with pulse generators, a parallel to serial converter, a serial FIR filter, and
the Altera sampler connected to a scope. See Figure 11.

Table 4. Simulink Files Provided with the FIR Compiler

Element Filename Description

Serial to parallel converter ser2par.m Converts a serial data stream to a parallel stream.

Parallel to serial converter par2ser.m Converts a parallel data stream to a serial one.

Altera sampler altera_sampler.m This function holds the output of the filter for viewing. Output
data is always valid.
36 Altera Corporation

FIR Compiler MegaCore Function User Guide Getting Started

Getting Started

3

Figure 11. Simulink Testbed

During simulation, the scope outputs the plot shown in Figure 12.
Altera Corporation 37

Getting Started FIR Compiler MegaCore Function User Guide
Figure 12. Scope Plot of Testbed Results

Implement the System

When you are finished simulating your system in Simulink, you are ready to
implement it. You can use the design files generated by the FIR compiler wizard
in your design. The wizard outputs an AHDL Text Design File (.tdf) and a
Symbol File (.sym). You can use the MAX+PLUS II software, Quartus software,
or other EDA tools to create your design.

Simulate Using VHDL & Verilog HDL Models

The FIR compiler wizard generates VHDL and Verilog HDL simulation models.
You can use these models to perform simulations of your system using third-party
EDA tools.

Compile & Place & Route the Design

The following steps explain how to compile and simulate your design in the
MAX+PLUS II software.

1. In the MAX+PLUS II Compiler, turn on Functional SNF Extractor
(Processing menu).

2. Click Start to compile your design.
38 Altera Corporation

FIR Compiler MegaCore Function User Guide Getting Started

Getting Started

3

3. Run the MAX+PLUS II Simulator. The vector file created by the
MegaWizard Plug-In Manager for your custom FIR compiler function is
loaded automatically. Click Start to begin simulation.

4. Once simulation has completed, click the Open SCF button to view the
waveform for the design.

After you have verified that your design is functionally correct, you are ready to
perform system verification.

Perform Synthesis Compilation & Post-Routing Simulation

As a standard feature, Altera’s MAX+PLUS II software works seamlessly with
tools from all EDA vendors, including Cadence, Exemplar Logic, Mentor
Graphics, Synopsys, Synplicity, and Viewlogic. After you have licensed the
MegaCore function, you can generate EDIF, VHDL, Verilog HDL, and Standard
Delay output files from the MAX+PLUS II software and use them with your
existing EDA tools to perform functional modeling and post-route simulation of
your design.

The following sections describe the design flow to compile and simulate your
custom MegaCore design with a third-party EDA tool. To synthesize your design
in a third-party EDA tool and perform post-route simulation, perform the
following steps:

1. Create your custom design instantiating a FIR compiler MegaCore function.

2. Synthesize the design using your third-party EDA tool. Your EDA tool
should treat the MegaCore instantiation as a black box by either setting
attributes or ignoring the instantiation.

3. After compilation, generate a hierarchical EDIF netlist file in your third-
party EDA tool.

4. Open your EDIF file in the MAX+PLUS II software.

5. Set your EDIF file as the current project in the MAX+PLUS II software.

6. Choose EDIF Netlist Reader Settings (Interfaces menu).

7. In the EDIF Netlist Reader Settings dialog box, select the vendor for your
EDIF netlist file in the Vendor drop-down list box and click OK.

8. Make logic option and/or place-and-route assignments for your custom
logic using the commands in the Assign menu.
Altera Corporation 39

Getting Started FIR Compiler MegaCore Function User Guide
1 For best results, you should use the Fast logic synthesis style in the
Global Project Logic Synthesis dialog box (Assign menu).

9. In the MAX+PLUS II Compiler, make sure Functional SNF Extractor
(Processing menu) is turned off.

10. Turn on the Verilog Netlist Writer or VHDL Netlist Writer command
(Interfaces menu), depending on the type of output file you want to use in
your third-party simulator. Set the netlist writer settings as needed.

11. Compile your design. The MAX+PLUS II Compiler synthesizes and
performs place-and-route on your design, and generates output and
programming files.

12. Import your MAX+PLUS II-generated output files (.edo, .vho, .vo, or .sdo)
into your third-party EDA tool for post-route, device-level, and system-level
simulation.

f For more information on setting compiler options in your third-party EDA tool,
refer to the MAX+PLUS II ACCESS Key Guidelines.

Configuring a Device

After you have compiled and analyzed your design, you are ready to configure
your targeted Altera FLEX device. If you are evaluating the MegaCore function
with the OpenCore feature, you must license the function before you can generate
configuration files.

Example 1: I/Q
Modulator

When you install the FIR compiler function, the installation program creates the
directory \reference_design\iq_modulation. This directory contains the
reference design files for an I/Q modulator application. The system parameters
are shown in Table 5.
40 Altera Corporation

FIR Compiler MegaCore Function User Guide Getting Started

Getting Started

3

Figure 13 shows a block diagram of the system.

Figure 13. Block Diagram of QAM Example

The two FIR filters are implemented in a single instance of the FIR compiler
megafunction. The function runs at twice the system clock speed. Figure 14
shows a schematic of the system. You can change the parameters of the reference
design by editing the FIR compiler variation. For example, you can double-click
on the symbols in the top_modulation.gdf file in the Graphic Editor to open the
variation for editing.

Table 5. I/Q Modulator Specifications

Function Parameter Value

Whole system Data rate 1.25 MHz

Type 16 quadrature amplitude modulation

FIR compiler specifications Root-raised cosine – alpha 0.25

Cut-off frequency 625 KHz

Taps 67

Numerically controlled
oscillator (NCO)
specifications

Frequency resolution 1 Hz +/– 50 Hz

Amplitude resolution 8 bits

FIR
Filter

FIR
Filter

NCO

I

Q

Altera Corporation 41

Getting Started FIR Compiler MegaCore Function User Guide
Figure 14. QAM Example Schematic

Filter Design
Tips

This section provides some tips for using the FIR compiler in your system.

■ To prevent high-pass filters from rolling off near Nyquist, choose an odd
number of taps.

■ You can import coefficients from the MATLAB software into the FIR
compiler via a text file. Simply save your coefficients as fixed or floating-
point numbers to an ASCII file, one coefficient per line. See Figure 6 on
page 13 for a sample text file.

■ To make a QPSK, QAM, or PSK modulator or demodulator using the FIR
compiler, create a multi-channel filter by indicating two or more channels on
page 7 of the wizard.

DFF
i[3..0]

1x_clock

data[3..0]

 clock

q[3..0]

dff4

DFF
q[3..0] data[3..0]

 clock

q[3..0]

dff4

i_q_val

sel

miq
data1_[3..0]

data0_[3..0]
result[3..0] xin[3..0]

sstart

clock

q[23..0]

q_valid

sout

reset

2x_clock

filtout[23..0]

fir_root_raised_cosine

DFF
data[7..0]

 clock

enable
q[7..0]

d_dff

DFF
data[7..0]

 clock

enable
q[7..0]

d_dff2x_clock

2x_clock

q_filt[7..0]Cosine Multiplication

cos_in[7..0]

i_filt[7..0]Cosine Multiplication

sin_in[7..0]

Modulation
Adder

i_mod[15..0]

q_mod[15..0]
modulation_out[15..0]
42 Altera Corporation

FIR Compiler MegaCore Function User Guide Getting Started

Getting Started

3

■ If you have used all available EABs in your target FLEX 10K device and
most of the device resources are unused, you can still make another filter by
combining a logic cell implementation with an EAB/ESB implementation.
Combining logic cells and EABs/ESBs allows you to create the maximum
number of FIR filters on a single device.

■ To make the smallest possible filter, use a serial implementation and FLEX
10KE EABs or APEX 20K ESBs. To make the fastest possible filter, use a
parallel implementation. In both cases, you should choose the Fast project
logic synthesis style when compiling in the MAX+PLUS II software.

■ With FIR compiler, the only reason you need to cascade a filter is to make a
filter across multiple devices. Figure 15 shows a cascaded filter.

Figure 15. Cascaded Filter

■ A comb filter is a filter that has repetitive notches. You can make a comb
filter by first making a single-notch filter, and then using subsampling. The
process of subsampling reflects or mirrors the notches in the frequency
domain at all frequencies above Nyquist.

■ When importing floating-point coefficients, you should apply a scaling
factor to generate fixed-point integer numbers. If the scaling (or gain) factor
is insufficient, a coefficient is rounded towards the nearest integer, which
will be zero. Therefore, if you do not scale the coefficients, you may have a
filter with many zeros.

■ To make an infinite impulse response (IIR) filter using the FIR compiler
function, add the FIR compiler output to the IIR input and feed the result
back into the FIR filter. The output for the resulting IIR filter should be taken
right after the addition of the input and the output from the FIR filter.

xin yout

xin youtxout
Altera Corporation 43

Getting Started FIR Compiler MegaCore Function User Guide
■ The fastest filters are fully parallel pipelined filters that generate an output
for every clock cycle. Additionally, you should use the Fast logic synthesis
style in the MAX+PLUS II software to use the carry and cascade chains built
into the FLEX architecture, resulting in a smaller as well as a faster filter.

■ To generate the most area efficient filter, create a serial multi-channel filter
using FLEX 10K EABs or APEX ESBs. Additionally, for the best results
you should use the Fast logic synthesis style in the Global Project Logic
Synthesis dialog box (Assign menu) before compiling in the MAX+PLUS
II software.
44 Altera Corporation

	Contents
	FIR Compiler MegaCore Function User Guide
	About this User Guide
	How to Contact Altera
	Typographic Conventions

	Introduction
	Altera MegaCore Functions
	Digital Signal Processing Functions
	OpenCore Feature

	Altera Devices
	Software Tools

	Specifications
	Features
	MegaWizard Plug-Ins
	EDA Interfaces

	General Description
	Signals
	MegaWizard Plug-In
	Functional Description
	Number Systems & Fixed-Point Precision
	Generating or Importing Coefficients
	Coefficient Scaling
	Symmetrical Architecture Selection

	Parallel Structures
	Serial Structures
	Multi-Channel Structures
	Interpolation & Decimation
	Serial Interpolation Waveforms
	Parallel Interpolation Waveforms
	Serial Decimation Waveforms
	Parallel Decimation Waveform

	Pipelining
	Simulation Output Files

	Performance

	Getting Started
	Design Walkthrough
	Download & Install the FIR Compiler Function
	Obtaining the FIR Compiler MegaCore Function
	Installing the FIR Compiler Files

	Generate a FIR Filter
	Model Your System Using MATLAB Simulink
	Drag & Drop the FIR Compiler Models into Your Simulink Model
	Implement the System
	Simulate Using VHDL & Verilog HDL Models
	Compile & Place & Route the Design
	Perform Synthesis Compilation & Post-Routing Simulation
	Configuring a Device

	Example 1: I/Q Modulator
	Filter Design Tips

