

PCI MegaCore Function
User Guide

Version 1.0
December 1999

PCI MegaCore Function User Guide
December 1999 A-UG-PCI-01

Altera, BitBlaster, ByteBlaster, ByteBlasterMV, FLEX, FLEX 10K, MegaWizard, MAX, MAX+PLUS, MAX+PLUS II, MegaCore, OpenCore, and specific
device designations are trademarks and/or service marks of Altera Corporation in the United States and/or other countries. Product elements and
mnemonics used by Altera Corporation are protected by copyright and/or trademark laws.

Altera Corporation acknowledges the trademarks of other organizations for their respective products or services mentioned in this document.

Altera reserves the right to make changes, without notice, in the devices or the device specifications identified in this document. Altera advises its
customers to obtain the latest version of device specifications to verify, before placing orders, that the information being relied upon by the customer
is current. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty. Testing
and other quality control techniques are used to the extent Altera deems such testing necessary to support this warranty. Unless mandated by
government requirements, specific testing of all parameters of each device is not necessarily performed. The megafunctions described in this catalog
are not designed nor tested by Altera, and Altera does not warrant their performance or fitness for a particular purpose, or non-infringement of any
patent, copyright, or other intellectual property rights. In the absence of written agreement to the contrary, Altera assumes no liability for Altera
applications assistance, customer’s product design, or infringement of patents or copyrights of third parties by or arising from use of semiconductor
devices described herein. Nor does Altera warrant non-infringement of any patent, copyright, or other intellectual property right covering or relating
to any combination, machine, or process in which such semiconductor devices might be or are used.

Altera’s products are not authorized for use as critical components in life support devices or systems without the express written approval of the
president of Altera Corporation. As used herein:

1. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose
failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a
significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of
the life support device or system, or to affect its safety or effectiveness.

Products mentioned in this document may be covered by one or more of the following U.S. patents: 5,821,787: 5,821,771; 5,815,726; 5,815,024; 5,812,479;
5,812,450; 5,809,281; 5,805,516; 5,802,540; 5,801,541; 5,796,267; 5,793,246; 5,790,469; 5,787,009; 5,771,264; 5,768,562; 5,768,372; 5,767,734; 5,764,583;
5,764,569; 5,764,080; 5,764,079; 5,761,099; 5,760,624; 5,757,207; 5,757,070; 5,744,991; 5,744,383; 5,740,110; 5,732,020; 5,729,495; 5,717,901; 5,705,939;
5,699,020; 5,699,312; 5,696,455; 5,693,540; 5,694,058; 5,691,653; 5,689,195; 5,668,771; 5,680,061; 5,672,985; 5,670,895; 5,659,717; 5,650,734; 5,649,163;
5,642,262; 5,642,082; 5,633,830; 5,631,576; 5,621,312; 5,614,840; 5,612,642; 5,608,337; 5,606,276; 5,606,266; 5,604,453; 5,598,109; 5,598,108; 5,592,106;
5,592,102; 5,590,305; 5,583,749; 5,581,501; 5,574,893; 5,572,717; 5,572,148; 5,572,067; 5,570,040; 5,567,177; 5,565,793; 5,563,592; 5,561,757; 5,557,217;
5,555,214; 5,550,842; 5,550,782; 5,548,552; 5,548,228; 5,543,732; 5,543,730; 5,541,530; 5,537,295; 5,537,057; 5,525,917; 5,525,827; 5,523,706; 5,523,247;
5,517,186; 5,498,975; 5,495,182; 5,493,526; 5,493,519; 5,490,266; 5,488,586; 5,487,143; 5,486,775; 5,485,103; 5,485,102; 5,483,178; 5,481,486; 5,477,474;
5,473,266; 5,463,328, 5,444,394; 5,438,295; 5,436,575; 5,436,574; 5,434,514; 5,432,467; 5,414,312; 5,399,922; 5,384,499; 5,376,844; 5,375,086; 5,371,422;
5,369,314; 5,359,243; 5,359,242; 5,353,248; 5,352,940; 5,309,046; 5,350,954; 5,349,255; 5,341,308; 5,341,048; 5,341,044; 5,329,487; 5,317,212; 5,317,210;
5,315,172; 5,301,416; 5,294,975; 5,285,153; 5,280,203; 5,274,581; 5,272,368; 5,268,598; 5,266,037; 5,260,611; 5,260,610; 5,258,668; 5,247,478; 5,247,477;
5,243,233; 5,241,224; 5,237,219; 5,220,533; 5,220,214; 5,200,920; 5,187,392; 5,166,604; 5,162,680; 5,144,167; 5,138,576; 5,128,565; 5,121,006;
5,111,423; 5,097,208; 5,091,661; 5,066,873; 5,045,772; 4,969,121; 4,930,107; 4,930,098; 4,930,097; 4,912,342; 4,903,223; 4,899,070; 4,899,067;
4,871,930; 4,864,161; 4,831,573; 4,785,423; 4,774,421; 4,713,792; 4,677,318; 4,617,479; 4,609,986; 4,020,469; and certain foreign patents.

Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and
copyrights.

Copyright © 1999 Altera Corporation. All rights reserved.

Printed on Recycled Paper.

®

About this User Guide

December 1 999

User Guide
Contents

This user guide should be used in conjunction with the Altera® pci_mt64 ,
pci_t64 , pci_mt32 , and pci_t32 functions. This user guide describes
each MegaCoreTM function’s specifications and how to use the functions
in your designs. The information in this user guide is current as of the
printing date, but megafunction specifications are subject to change. For
the most current information, refer to the Altera IP MegaStoreTM
world-wide web site at http://www.altera.com/IPmegastore.

For additional details on the functions, including availability, pricing, and
delivery terms, contact your local Altera sales representative.

How to Contact Altera

For additional information about Altera products, consult the sources
shown in Table 1.

Table 1. Contact Information

Information Type Access U.S. & Canada All Other Locations

Literature Altera Express (800) 5-ALTERA (408) 544-7850

Altera Literature Services (888) 3-ALTERA
lit_req@altera.com

(408) 544-7144
lit_req@altera.com

Non-Technical Customer Service Telephone Hotline (800) SOS-EPLD (408) 544-7000

Fax (408) 544-8186 (408) 544-7606

Technical Support Telephone Hotline (800) 800-EPLD
(6:00 a.m. to 6:00 p.m.
Pacific Time)

(408) 544-7000
(7:30 a.m. to 5:30 p.m.
Pacific Time)

Fax (408) 544-6401 (408) 544-6401

Electronic Mail support@altera.com
pci@altera.com
dsp@altera.com
telecom@altera.com

support@altera.com
pci@altera.com
dsp@altera.com
telecom@altera.com

FTP Site ftp.altera.com ftp.altera.com

General Product Information Telephone (408) 544-7104 (408) 544-7104

World-Wide Web http://www.altera.com http://www.altera.com
Altera Corporation iii

About this Catalog

Typographic
Conventions

The PCI MegaCore Function User Guide uses the typographic
conventions shown in Table 2.

Table 2. PCI MegaCore Function User Guide Conventions

Visual Cue Meaning

Bold Type with Initial
Capital Letter s

Command names and dialog box titles are shown in bold, initial capital letters.
Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold type.
Examples: fMAX, \maxplus2 directory, d: drive, chiptrip.gdf file.

Bold Italic Type with
Initial Capital Letters

Book titles are shown in bold italic type with initial capital letters. Example: PCI
MegaCore Function User Guide.

Italic Type with Initial
Capital Letters

Document titles, checkbox options, and options in dialog boxes are shown in italic type
with initial capital letters. Examples: AN 75 (High-Speed Board Design), the Check
Outputs option, the Directories box in the Open dialog box.

Italic type Internal timing parameters and variables are shown in italic type. Examples: tPIA, n + 1.
Variable names are enclosed in angle brackets (< >) and shown in italic type. Example:
<file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of MAX+PLUS II Help topics are
shown in quotation marks. Example: “Configuring a FLEX 10K or FLEX 8000 Device
with the BitBlaster™ Download Cable.”

Courier type Reserved signal and port names are shown in uppercase Courier type. Examples:
DATA1, TDI , INPUT.

User-defined signal and port names are shown in lowercase Courier type. Examples:
my_data , ram_input .

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\max2work\tutorial\chiptrip.gdf . Also, sections of an actual
file, such as a Report File, references to parts of files (e.g., the AHDL keyword
SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier.

1., 2., 3., and a., b., c.,... Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ Bullets are used in a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

9 The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.
iv Altera Corporation

®

Altera Corporation v

Contents

December 1 999, ver. 1.0

Getting Started

...1
Before You Begin...3
Quartus Walk-Through..6
MAX+PLUS II Walk-Through Overview..12
Using Third-Party EDA Tools...18

MegaCore Overview

...25
Features ..27
General Description..28
Compliance Summary..33
PCI Bus Signals..35
Parameters..49
Functional Description ...54

Specifications

...59
PCI Bus Commands..61
Configuration Registers ...62
Target Mode Operation..78
Master Mode Operation...119
64-Bit Addressing, Dual Address Cycle (DAC) ...155

Notes:

Getting Star ted

Contents

Altera Corporation 1

December 1999

®
 Getting Started

 1

Before You Begin...3
 Obtaining MegaCore Functions...3
 Installing the MegaCore Files...4
 MegaCore Directory Structure...5
Quartus Walk-Through..6
 Design Entry ...7
 Run the set_constraint Utility...8
 Compilation & Functional Simulation..9
 Timing Analysis ...11
 Configuring a Device...11
MAX+PLUS II Walk-Through Overview..12
 Design Entry ...13
 Functional Compilation/Simulation...14
 Run the set_constraint Utility...15
 Timing Compilation & Analysis..16
 Configuring a Device...17
Using Third-Party EDA Tools...18
 Generating VHDL & Verilog HDL Functional Models from the Quartus Software19
 Synthesis Compilation & Post-Routing Simulation with the Quartus Software................................19
 Generating VHDL & Verilog HDL Functional Models with the MAX+PLUS II Software...............21
 Synthesis Compilation & Post-Routing Simulation with the MAX+PLUS II Software.....................22

Notes:

®

Getting Star ted

December 1999, ver. 1

 Getting Started

 1

Altera peripheral component interconnect (PCI) MegaCoreTM functions
provide solutions for integrating 32-bit and 64-bit PCI peripheral devices,
including network adapters, graphic accelerator boards, and embedded
control modules. The functions are optimized for Altera® APEXTM and
FLEX® devices, greatly enhancing your productivity by allowing you to
focus efforts on the custom logic surrounding the PCI interface. The PCI
MegaCore functions are fully tested to meet the requirements of the PCI
Special Interest Group (SIG) PCI Local Bus Specification, Revision 2.2
and Compliance Checklist, Revision 2.2.

This section describes how to obtain Altera PCI MegaCore functions,
explains how to install them on your PC or UNIX workstation, and walks
you through the process of implementing the function in a design. You
can test-drive MegaCore functions using Altera’s OpenCoreTM feature to
simulate the functions within your custom logic. When you are ready to
license a function, contact your local Altera sales representative.

Before You
Begin

Before you can start using Altera PCI MegaCore functions, you must
obtain the MegaCore files and install them on your PC or UNIX
workstation. The following instructions describe this process and explain
the directory structure for the functions.

Obtaining MegaCore Functions

If you have Internet access, you can download MegaCore functions from
Altera’s web site at http://www.altera.com. Follow the instructions below
to obtain the MegaCore functions via the Internet. If you do not have
Internet access, you can obtain the MegaCore functions from your local
Altera representative.

1. Run your web browser (e.g., Netscape Navigator or Microsoft
Internet Explorer).

2. Open the URL http://www.altera.com/IPmegastore.
Altera Corporation 3

Getting Star ted
3. In the IP MegaSearch Keywords field, type PCI .

4. Click the appropriate link for your desired megafunction.

5. Click the download icon and follow the on-line instructions to
download the function and save it to your hard disk.

Installing the MegaCore Files

Depending on your platform, use the following instructions:

Windows NT 3.51

For Windows NT 3.51, follow the instructions below:

1. Open the Program Manager.

2. Click Run (File menu).

3. Type <path name>\<filename>.exe , where <path name> is the
location of the downloaded MegaCore function and <filename> is the
filename of the function.

4. Click OK. The MegaCore Installer dialog box appears. Follow the
on-line instructions to finish installation.

Windows 95/98 & Windows NT 4.0

For Windows 95/98 and Windows NT 4.0, follow the instructions below:

1. Click Run (Start menu).

2. Type <path name>\<filename>.exe , where <path name> is the
location of the downloaded MegaCore function and <filename> is the
filename of the function.

3. Click OK. The MegaCore Installer dialog box appears. Follow the
on-line instructions to finish installation.

UNIX

At a UNIX command prompt, change to the directory in which you saved
the downloaded MegaCore function and type the following commands:

uncompress <filename>.tar.Z 9
t ar xvf <filename>.tar 9
4 Altera Corporation

Getting Star ted

 Getting Started

 1

MegaCore Directory Structure

Altera PCI MegaCore function files are organized into several directories;
the top-level directory is \megacore (see Table 1).

1 The MegaCore directory structure may contain several
MegaCore products. Additionally, Altera updates MegaCore
files from time-to-time. Therefore, Altera recommends that you
do not save your project-specific files in the MegaCore directory
structure.

Table 1. PCI MegaCore Directories (Part 1 of 2)

Directory Description

\bin Contains the set_constraint utility that generates constraint files for the Altera
software to incorporate your custom design hierarchy. For the Quartus
software, the Compiler Settings File (.csf) and Entity Settings File (.esf) are
generated. For the MAX+PLUS II software, the Assignment & Configuration
File (.acf) is generated. The generated files contain all necessary assignments
to ensure that all PCI timing requirements are met.

\lib Contains encrypted lower-level design files. After installing the MegaCore
function, you should set a user library in the Altera software that points to this
directory. This library allows you to access all of the necessary MegaCore files.

\<pci function> Contains the MegaCore function files.

\<pci function>\APEX Contains the MegaCore function files specific to Altera APEX devices. For
more information, refer to the readme file in this directory.

\<pci function>\APEX\csf The \csf directory contains CSFs and ESFs for targeting Altera APEX devices.
These constraint files contain all necessary assignments to meet PCI timing
requirements. By using the set_constraint utility, you can annotate the
assignments in one of these CSF/ESF sets for your project. For more
information, refer to the readme file in this directory.

\<pci function>\APEX\examples The \examples directory has subdirectories containing examples for APEX
device/package combinations. Each subdirectory contains a Block Design File
(.bdf), a CSF, and an ESF. The \examples directory also contains the \simtop
subdirectory, which contains a BDF and Simulator Settings File (.ssf) that can
be used to perform compilation and functional simulation of the PCI MegaCore
function. For more information, refer to the readme file in the \examples
directory.

\<pci core>\APEX\sim The \vwf directory contains Vector Waveform Files (.vwf) that show different
PCI protocol transactions that can be used to verify the functionality of the
Altera PCI MegaCore function. For more information, refer to the readme file
in this directory.

\<pci core>\doc Contains documentation for the MegaCore function.
Altera Corporation 5

Getting Star ted
Quartus
Walk-Through

This section describes the PCI design flow using an Altera PCI MegaCore
function and the Quartus development system (see Figure 1).

Figure 1. Example PCI Design Flow with the Quartus Software

\<pci core>>\FLEX Contains the MegaCore function files specific to Altera FLEX devices. For
more information, refer to the readme file in this directory.

\<pci core>\FLEX\acf The \acf directory contains ACFs for targeting Altera FLEX devices. These
constraint files contain all necessary assignments to meet your PCI timing
requirements. By using the set_constraint utility, you can annotate the
assignments in one of these ACFs for your project. For more information, refer
to the readme file in this directory.

\<pci core>\FLEX\examples The \examples directory has subdirectories containing examples for FLEX
device/package combinations. Each subdirectory contains a Graphic Design
File (.gdf) and an ACF. The \examples directory also contains the \sim_top
subdirectory, which contains a GDF and an ACF that can be used to perform
functional compilation and simulation of the PCI MegaCore function. For more
information, refer to the readme file in this directory.

\<pci core>\FLEX\sim The \scf directory contains Simulator Channel Files (.scf) that show different
PCI protocol transactions that can be used to verify the functionality of the
Altera PCI MegaCore function. For more information, refer to the readme file
in this directory.

Table 1. PCI MegaCore Directories (Part 2 of 2)

Directory Description

Create a
Design File

Create a CSF & ESF using
the set_constraint utility

Perform Compilation &
Functional Simulation

Use Timing Analyzer to
Verify Timing

License the Function &
Configure the Devices
6 Altera Corporation

Getting Star ted

 Getting Started

 1

The following instructions assume that:

■ You are using an Altera MegaCore function.
■ All files are located in the default directory, c:\megacore. If the files

are installed in a different directory on your system, substitute the
appropriate path name.

■ You are using a PC; UNIX users should alter the steps as appropriate.
■ You are familiar with the Quartus software.
■ Quartus version 1999.10 or higher is installed in the default location

(i.e., c:\quartus).
■ You are using the OpenCore feature to test-drive the function or you

have licensed the function.

1 You can use Altera’s OpenCore feature to compile and simulate
PCI MegaCore functions, allowing you to evaluate the functions
before deciding to license them. However, you must obtain a
license from Altera before you can generate programming files.

The sample design process uses the following steps:

1. Create a BDF that instantiates the PCI MegaCore function.

2. Run the set_constraint utility to create a CSF and ESF that contain
the necessary assignments for meeting the targeted device’s PCI
timing requirements.

3. Perform a compilation and run functional simulations to evaluate
and verify the functionality.

4. Examine the timing analysis results to verify that the PCI timing
specifications are met.

5. If you have licensed the MegaCore function, configure a targeted
Altera APEX device with the completed design.

Design Entry

The following steps explain how to create a BDF that instantiates an Altera
PCI MegaCore function.

1 Refer to Quartus Help for detailed instructions on creating and
editing block diagrams.

1. Run the Quartus software.
Altera Corporation 7

Getting Star ted
2. Create a new BDF named pci_top.bdf using the schematic shown in
the APEX\examples\sim_top directory as an example. You may
skip this step by saving the APEX\examples\sim_top\pci_top.bdf
as a new design.

3. Using the Quartus software, save your BDF into a new directory
(e.g., c:\altr_app). You will be prompted to create a new project with
this file. Choose Yes to create a new project.

4. The Quartus New Project wizard will open. Select the present
working directory and your new BDF as the project name and top-
level design entity. If necessary, change any of the default settings in
this dialog box and choose Next.

5. Specify the user library for the Altera PCI MegaCore function as
c:\megacore\lib. Add additional design files for your project as
necessary and choose Finish.

After you have entered your design, you are ready to annotate PCI-
specific assignments to your project using the set_constraint utility.

Run the set_constraint Utility

The set_constraint utility, located in the c:\megacore\bin directory, is
used to generate a CSF and an ESF that contain the placement and
configuration assignments to meet the PCI timing specifications. For more
information on the set_constraint utility, refer to the documentation in
the c:\megacore\bin directory.

Generate the files pci_top.csf and pci_top.esf by performing the
following steps (these steps use the Altera pci_mt64 MegaCore function
as an example):

1. Close your project in the Quartus software.

2. Run the set_constraint utility by typing the following command at a
DOS command prompt:

c:\megacore\bin\ set_constraint
8 Altera Corporation

Getting Star ted

 Getting Started

 1

3. You are prompted with several questions. Type the following after
each question. (The bold text is the prompt text.)

Enter the Chip Name:

pci_top 9

Enter the Hierarchical Name for the PCI MegaCore Function:

pci_mt64: YY

Where:
YY is the instance name for the MegaCore function. In a BDF, it is the
name in the lower left-hand corner of the PCI MegaCore symbol.

Type the Path and Name of the Input CSF or ACF:

c:\megacore\pci_mt64\APEX\csf\20K400EF672_66.csf 9

Type the Path of the Output CSF:
(e.g., c:\altr_app)

c:\altr_app 9

1 For a listing of the supported Altera device CSFs, refer to the
readme file in the \megacore\pci_mt64\doc directory.

4. After you have generated your CSF and ESF, you are ready to
perform compilation to synthesize and place and route your design.

Compilation & Functional Simulation

The following steps explain how to compile and functionally simulate
your design.

The default parameter settings of the Altera PCI MegaCore functions
instantiate one base address register (BAR). The number of BARs that are
instantiated and the size of each BAR’s memory affects the amount of
logic that is generated for your design. If the NUMBER_OF_BARS parameter
is set to less than 6, the logic for the unused BARs will not be generated.
Altera Corporation 9

Getting Star ted
Each MegaCore function’s simulation files are generated using all 6 BARs,
allowing you to further evaluate the functional capabilities of the Altera
PCI MegaCore functions. When evaluating the MegaCore function using
the functional simulation files contained in the \APEX\sim\vwf
directory, set the NUMBER_OF_BARS parameter to a decimal value of 6 and
set the individual BAR values to those of
\APEX\examples\sim_top\pci_top.bdf. To change the parameter
settings for the MegaCore function, double-click the symbol. You can also
single-click the symbol, choose Properties (Edit menu), and choose the
Parameters tab.

1 When changing a parameter value, only change the number (i.e.,
leave the hexadecimal indicator H and quotation marks). If you
delete these characters, you will receive a compilation error. In
addition, when setting register values, the Quartus software may
issue several warning messages indicating that one or more
registers are stuck at ground. These warning messages can be
ignored.

1. Open your project in the Quartus software and choose the Compile
Mode command (Processing menu).

2. Choose Start Compile (Processing menu) to compile your design.

3. When compilation completes, change to Simulate Mode (Processing
menu) to functionally simulate your design.

4. In the Quartus Simulator Settings dialog box, choose the Mode tab
and select Functional. Click Apply.

5. Choose the Time/Vectors tab and specify c:\megacore\<PCI
MegaCore function>\APEX\sim\vwf\<target or master
transactions>.vwf as the source of vector stimuli and choose Apply.

6. Choose Run Simulation (Processing menu) to simulate your design
and view the simulation results. The different simulation files show
the behavior of the PCI and local-side signals for different types of
transactions.

After you verify that your design is functionally correct, you can use the
Quartus timing analysis results to verify that all of the PCI signals in your
design meet the PCI timing specifications.
10 Altera Corporation

Getting Star ted

 Getting Started

 1

Timing Analysis

The following steps explain how to verify the timing results for your
design.

1. Choose the Compile Mode command (Processing menu).

2. Open the Compilation Report (Processing menu) and expand the
Timing Analysis section.

3. The Quartus software lets you perform the following five types of
timing analysis:

■ fMAX: The fMAX results report the maximum clock frequency
and identify the longest delay paths between registers.

■ tSU: The tSU results report the setup times of the registers.
■ tH: The tH results report the hold times of the registers.
■ tCO: The tCO results report the clock-to-output delays of the

registers.
■ tPD: The tPD results report the combinatorial pin-to-pin delays.

You are now ready to configure your targeted Altera APEX device.

Configuring a Device

After you have compiled and analyzed your design, you are ready to
configure your targeted Altera APEX device. If you are evaluating the PCI
MegaCore function with the OpenCore feature, you must license the PCI
MegaCore function before you can generate configuration files. Altera
provides three types of hardware to configure APEX devices.

■ The Altera Stand-Alone Programmer (ASAP2) includes an LP6 Logic
Programmer card and a Master Programming Unit (MPU). You
should use the PLMJ1213 programming adapter with the MPU to
program a serial configuration device, which loads the configuration
data to the APEX device during power-up. A Programmer Object File
(.pof) is used to program the configuration device. The Altera Stand-
Alone Programmer is typically used in the production stage of the
design flow.

■ The MasterBlasterTM communications cable is a standard PC serial or
USB port hardware interface. An SRAM Object File (.sof) is used to
configure the APEX device. The MasterBlaster cable is typically used
in the prototyping stage of the design flow.

■ The ByteBlasterMVTM parallel port download cable provides a
hardware interface to a standard parallel port. The SOF is used to
configure the APEX device. The ByteBlasterMV cable is typically
used in the prototyping stage.
Altera Corporation 11

Getting Star ted
f For more information, refer to the ByteBlasterMV Parallel Port Download
Cable Data Sheet and MasterBlaster Serial/USB Communications Cable Data
Sheet.

Perform the following steps to setup the Quartus configuration interface.
For more information, refer to Quartus Help.

1. Open the Programmer.

2. Click the Setup button.

3. In the Hardware Setup dialog box, select your programming
hardware in the Hardware Type box and click OK.

4. Click the Add File button and select your programming filename.

5. Choose the programming mode (JTAG or passive serial). If choosing
JTAG, check the Program/Configure box.

6. Click Start to configure the APEX device or EPC2 device using the
ByteBlasterMV or MasterBlaster cables.

MAX+PLUS II
Walk-Through
Overview

This section describes the PCI design flow using an Altera PCI MegaCore
function and the MAX+PLUS II development system (see Figure 2).

Figure 2. Example PCI Design Flow with the MAX+PLUS II Software

Create a
Design File

Perform Functional
Compilation & Simulation

Create an ACF using the
set_constraint Utility

Perform Timing
Compilation & Analysis

License the Function &
Configure the Devices
12 Altera Corporation

Getting Star ted

 Getting Started

 1

The following instructions assume that:

■ You are using an Altera MegaCore function.
■ All files are located in the default directory, c:\megacore. If the files

are installed in a different directory on your system, substitute the
appropriate path name.

■ You are using a PC; UNIX users should alter the steps as appropriate.
■ You are familiar with the MAX+PLUS II software.
■ MAX+PLUS II version 9.22 or higher is installed in the default

location (i.e., c:\maxplus2).
■ You are using the OpenCore feature to test-drive the function or you

have licensed the function.

1 You can use Altera’s OpenCore feature to compile and simulate
PCI MegaCore functions, allowing you to evaluate the functions
before deciding to license them. However, you must obtain a
license from Altera before you can generate programming files.

The sample design process uses the following steps:

1. Create a GDF that instantiates the PCI MegaCore function.

2. Perform functional compilation and simulation to evaluate and
verify the functionality.

3. Run the set_constraint utility to create an ACF that contains the
necessary assignments for meeting the targeted device’s PCI timing
requirements.

4. Perform timing compilation and analysis to verify that the PCI
timing specifications are met.

5. If you have licensed the MegaCore function, configure a targeted
Altera FLEX device with the completed design.

Design Entry

The following steps explain how to create a GDF that instantiates an
Altera MegaCore function.

1 Refer to MAX+PLUS II Help for detailed instructions on how to
use the Graphic Editor.

1. Run the MAX+PLUS II software.
Altera Corporation 13

Getting Star ted
2. Specify user libraries for the MegaCore function. Choose User
Libraries (Options menu) and specify the directory
c:\megacore\lib.

3. Create a directory to hold your design file, e.g., c:\altr_app.

4. Create a new GDF named pci_top.gdf and save it to your new
directory (e.g., c:\altr_app\pci_top.gdf).

5. Choose Project > Set Project to Current File (File menu) and specify
the pci_top.gdf file as the current project.

6. Enter the schematic shown in the pci_top.gdf file in the
\examples\sim_top directory. You may skip this step by copying
the schematic in the pci_top.gdf file into your pci_top.gdf file in
your working directory.

After you have entered your design, you are ready to perform functional
simulation to evaluate and verify the functionality.

Functional Compilation/Simulation

The following steps explain how to functionally compile and simulate
your design.

1. In the MAX+PLUS II Compiler, turn on Functional SNF Extractor
(Processing menu).

2. Click Start to compile your design.

3. In the MAX+PLUS II Simulator, choose Inputs/Outputs (File Menu),
specify c:\megacore\<PCI MegaCore function>\sim\scf\<target or
master transactions>.scf in the Input box, and click OK.

4. Click Start to simulate your design.

5. Click Open SCF to view the simulation file. The different simulation
files show the behavior of the PCI and local-side signals for different
types of transactions.

After you have verified that your design is functionally correct, you are
ready to synthesize and place-and-route your design. However, you still
need to generate an ACF to ensure that all of the PCI signals in your
design meet the PCI timing specifications.
14 Altera Corporation

Getting Star ted

 Getting Started

 1

Run the set_constraint Utility

The set_constraint utility, located in the c:\megacore\bin directory, is
used to generate an ACF that contains the placement and configuration
assignments to meet the PCI timing specifications. For more information
on the set_constraint utility, refer to the documentation in the
c:\megacore\bin directory.

In the previous section, the NUMBER_OF_BARS parameter is set to a decimal
value of 6 because the BAR0 through BAR5 parameter settings are based
upon the functional simulations in the \sim\scf directory. This setting
allows you to evaluate the functionality of the PCI MegaCore function.
The number of BARs that are instantiated and the size of the memory for
each BAR instantiated affects the amount of logic that is generated for
your design. If the NUMBER_OF_BARS parameter is set to a value less than
6, the logic for the unused BARs will not be generated.

Generate the file pci_top.acf by performing the following steps (these
steps use the Altera pci_mt64 MegaCore function as an example):

1. Open pci_top.gdf. Set the following parameters:
NUMBER_OF_BARS = 1 , BAR0 = "H"FFF00000"" , and
TARGET_DEVICE = " EPF10K100EFC484" . Double-click the
Parameters Field of the PCI symbol. The Edit Ports/Parameters
dialog box opens.

1 When changing a parameter value, only change the number (i.e.,
leave the hexadecimal indicator H and quotation marks). If you
delete these characters, you will receive a compilation error.
Additionally, when setting register values, the MAX+PLUS II
software may issue several warning messages indicating that
one or more registers are stuck at ground. These warning
messages can be ignored.

2. Run the set_constraint utility by typing the following command at a
DOS command prompt:

c:\megacore\bin\ set_constraint 9

You are prompted with several questions. Type the following after
each question. (The bold text is the prompt text.)

Enter the Chip Name:

pci_top 9
Altera Corporation 15

Getting Star ted
Enter the Hierarchical Name for the PCI MegaCore Function:

pci_mt64: YY 9

Where:
YY is the instance name for the MegaCore function. In a GDF, it is the
number in the lower left-hand corner of the PCI MegaCore symbol.

Type the Path and Name of the Input CSF or ACF:

c:\megacore\pci_mt64\acf\10K100EFC484.acf 9

Type the Path of the Output ACF:
(e.g., c:\altr_app)

c:\altr_app 9

1 For a listing of the supported Altera device CSFs, refer to the
readme file in the \megacore\pci_mt64\doc directory.

3. After you have generated your ACF, you are ready to perform
timing compilation to synthesize and place and route your design.

Timing Compilation & Analysis

The following steps explain how to perform timing compilation and
analysis.

1. Choose Project > Set Project to Current File (File menu).

2. In the Compiler, turn off the Functional SNF Extractor command
(Processing menu).

3. Click Start to begin compilation.
16 Altera Corporation

Getting Star ted

 Getting Started

 1

4. After a successful compilation, open the Timing Analyzer. There are
three forms of timing analysis you can perform on your design:

■ In the Timing Analyzer, choose Registered Performance
(Analysis menu). The Registered Performance Display calculates
the maximum clock frequency and identifies the longest delay
paths between registers.

■ In the Timing Analyzer, choose Delay Matrix (Analysis menu).
The Delay Matrix Display calculates combinatorial delays, e.g.,
tCO and tPD.

■ In the Timing Analyzer, choose Setup/Hold Matrix (Analysis
menu). The Setup/Hold Matrix Display calculates the setup and
hold times of the registers.

You are now ready to configure your targeted Altera FLEX device.

Configuring a Device

After you have compiled and analyzed your design, you are ready to
configure your targeted Altera FLEX device. If you are evaluating the PCI
MegaCore function with the OpenCore feature, you must license the PCI
MegaCore function before you can generate configuration files. Altera
provides four types of hardware to configure FLEX devices:

■ The Altera Stand-Alone Programmer (ASAP2) includes an LP6 Logic
Programmer card and a Master Programming Unit (MPU). You
should use a PLMJ1213 programming adapter with the MPU to
program a serial configuration device, which loads the configuration
data to the FLEX device during power-up. A Programmer Object File
(.pof) is used to program the configuration device. The Altera Stand-
Alone Programmer is typically used in the production stage of the
design flow.

■ The MasterBlaster communications cable is a standard PC serial or
USB port hardware interface. An SRAM Object File (.sof) is used to
configure the FLEX device. The MasterBlaster cable is typically used
in the prototyping stage of the design flow.

■ The BitBlaster serial download cable is a hardware interface to a
standard PC or UNIX workstation RS-232 port. An SRAM Object File
(.sof) is used to configure the FLEX device. The BitBlaster cable is
typically used in the prototyping stage of the design flow.

■ The ByteBlaster and ByteBlasterMV parallel port download cables
provide a hardware interface to a standard parallel port. (The
ByteBlaster cable is obsolete and is replaced by the ByteBlasterMV
cable.) The SOF is used to configure the FLEX device. The ByteBlaster
and ByteBlasterMV cables are typically used in the prototyping stage.
Altera Corporation 17

Getting Star ted
f For more information, refer to the BitBlaster Serial Download Cable Data
Sheet, ByteBlaster Parallel Port Download Cable Data Sheet, ByteBlasterMV
Parallel Port Download Cable Data Sheet, and MasterBlaster Serial/USB
Communications Cable Data Sheet.

Perform the following steps to set up the MAX+PLUS II configuration
interface. For more information, refer to MAX+PLUS II Help.

1. Open the Programmer.

2. Choose Hardware Setup (Options menu).

3. In the Hardware Setup dialog box, select your programming
hardware in the Hardware Type box and click OK.

4. Choose Select Programming File (File menu) and select your
programming filename.

5. Click Program to program a serial configuration device, or click
Configure if you are using the BitBlaster, ByteBlaster,
ByteBlasterMV, or MasterBlaster cable to configure a FLEX device.

Using Third-
Party EDA Tools

As a standard feature, Altera’s Quartus and MAX+PLUS II software
works seamlessly with tools from all EDA vendors, including Cadence,
Exemplar Logic, Mentor Graphics, Synopsys, Synplicity, and Viewlogic.
After you have licensed the MegaCore function, you can generate EDIF,
VHDL, Verilog HDL, and SDO files from the Altera software and use
them with your existing EDA tools to perform functional modeling and
post-route simulation of your design.

To simplify the design flow between Altera software and other EDA tools,
Altera has developed the Quartus NativeLink Guidelines for use with the
Quartus software, and the Altera Commitment to Cooperative
Engineering Solutions (ACCESS) Key Guidelines for use with the
MAX+PLUS II software. These guidelines provide complete instructions
on how to create, compile, and simulate your design with tools from
leading EDA vendors. The guidelines are part of Altera’s ongoing efforts
to give you state-of-the-art tools that fit into your design flow, and to
enhance your productivity for even the highest-density devices. These
guidelines are available on the software installation CD-ROM and on the
Altera web site at http://www.altera.com.

The following sections describe how to generate a VHDL or Verilog HDL
functional model, and describe the design flow to compile and simulate
your custom Altera PCI MegaCore design with a third-party EDA tool.
18 Altera Corporation

Getting Star ted

 Getting Started

 1

Generating VHDL & Verilog HDL Functional Models from the
Quartus Software

To generate a VHDL or Verilog HDL functional model from the Quartus
software, perform the following steps:

1. Create a new project in Quartus using a pci_top.bdf file located in
any of the APEX device/package example subdirectories in the
\APEX\examples directory.

2. Choose the third-party EDA tool that you will use for simulation
through the EDA Tool Settings dialog box (Project menu).

3. After selecting a simulation tool, you may choose to change the
default settings by choosing the Settings tab.

4. After a successful compilation, Quartus will generate a pci_top.vo
functional Verilog HDL model or pci_top.vho functional VHDL
model of your PCI MegaCore design. Quartus will also generate a
pci_top_v.sdo or pci_top_vhd.sdo file containing the timing
information.

5. Compile the pci_top.vo or pci_top.vho output files in your third-
party simulator to perform functional simulation using Verilog HDL
or VHDL.

To use the Quartus NativeLink feature to automatically start your
simulation environment, review Quartus Help and the Quartus
NativeLink Guidelines on simulating Verilog HDL and VHDL
output files for the EDA tool of your choice.

Synthesis Compilation & Post-Routing Simulation with the
Quartus Software

To synthesize your design in a third-party EDA tool and perform
post-route simulation in the Quartus software, perform the following
steps:

1. Create your custom design instantiating a PCI MegaCore function.

2. Synthesize the design using your third-party EDA tool. Your EDA
tool should treat the PCI MegaCore instantiation as a black box by
either setting attributes or ignoring the instantiation.

For more information on setting compiler options in your third-party
EDA tool, refer to the Quartus NativeLink Guidelines.
Altera Corporation 19

Getting Star ted
3. After compilation, generate an output netlist file targeting the APEX
device family in your third-party EDA tool.

4. Run the set_constraint utility to generate a CSF and ESF for your
targeted APEX device. Refer to “Run the set_constraint Utility” on
page 8 for more information.

5. Create a new project in Quartus from your EDIF file using the New
Project wizard. Add your design file, including the custom
instantiation of the PCI MegaCore function, to the current project.
Add the PCI \lib directory to your User Libraries for the project.

6. Choose EDA Tool Settings (Project menu).

7. In the EDA Tool Settings dialog box, select the EDA tool for your
EDIF netlist from the Design Entry/Synthesis Tool drop-down list
box. Change the default tool setting through the Settings box as
necessary.

8. In the EDA Tool Settings dialog box, select the EDA tool for your
simulation from the Simulation Tool drop-down list box. Change
the default tool settings through the Settings box as necessary.

9. Make logic option and/or place-and-route assignments for your
custom logic using the Assignment Organizer (Tools menu).

10. Compile your design. The Quartus Compiler synthesizes and
performs place-and-route on your design, and generates output and
programming files.

11. Import your Quartus-generated output files (.edo, .vho, .vo, or .sdo)
into your third-party EDA tool for post-route device-level and
system-level simulation.

To use the Quartus NativeLink feature to automatically start your EDA
tools for synthesis and simulation, review Quartus Help and the Quartus
NativeLink Guidelines to setup your project for the EDA tools of your
choice.
20 Altera Corporation

Getting Star ted

 Getting Started

 1

Generating VHDL & Verilog HDL Functional Models with the
MAX+PLUS II Software

To generate a VHDL or Verilog HDL functional model, perform the
following steps:

1. In the MAX+PLUS II software, open a pci_top.gdf file located in any
of the FLEX device/package example subdirectories in the
\megacore\<Altera PCI MegaCore>\FLEX\examples directory.

2. In the Compiler, ensure that the Functional SNF Extractor command
(Processing menu) is turned off.

3. Turn on the Verilog Netlist Writer or VHDL Netlist Writer
command (Interfaces menu), depending on the type of output file
you want to use in your third-party simulator.

4. Choose Verilog Netlist Writer Settings (Interface menu) if you
turned on Verilog Netlist Writer.

5. In the Verilog Netlist Writer Settings dialog box, select either SDF
Output File [.sdo] Ver 2.1 or SDF Output File [.sdo] Ver.1.0 and
click OK. Selecting one of these options causes the MAX+PLUS II
software to generate the files pci_top.vo, pci_top.sdo, and
alt_max2.vo. The pci_top.vo file is the functional model of your PCI
MegaCore design, the pci_top.sdo file contains the timing
information, and the alt_max2.vo file contains the functional models
of any Altera macrofunctions or primitives.

6. Choose VHDL Netlist Writer Settings (Interface menu) if you
turned on VHDL Netlist Writer.

7. In the VHDL Netlist Writer Settings dialog box, select either SDF
Output File [.sdo] Ver 2.1 (VITAL) or SDF Output File [.sdo] Ver. 1.0 and
click OK. Choosing one of these options causes the MAX+PLUS II
software to generate the files pci_top.vho and pci_top.sdo. The
pci_top.vho file is the functional model of your PCI MegaCore
design, and the pci_top.sdo file contains the timing information.

8. Compile the pci_top.vo or pci_top.vho output files in your third-
party simulator to perform functional simulation using Verilog HDL
or VHDL.
Altera Corporation 21

Getting Star ted
Synthesis Compilation & Post-Routing Simulation with the
MAX+PLUS II Software

To synthesize your design in a third-party EDA tool and perform
post-route simulation in the MAX+PLUS II software, perform the
following steps:

1. Create your custom design instantiating a PCI MegaCore function.

2. Synthesize the design using your third-party EDA tool. Your EDA
tool should treat the PCI MegaCore instantiation as a black box by
either setting attributes or ignoring the instantiation.

1 For more information on setting compiler options in your
third-party EDA tool, refer to the MAX+PLUS II ACCESS
Key Guidelines.

3. After compilation, generate a hierarchical EDIF netlist file in your
third-party EDA tool.

4. Open your EDIF file in the MAX+PLUS II software.

5. Run the set_constraint utility to generate an ACF for your targeted
FLEX device. Refer to “Run the set_constraint Utility” on page 15 for
more information.

6. Set your EDIF file as the current project in the MAX+PLUS II
software.

7. Choose EDIF Netlist Reader Settings (Interfaces menu).

8. In the EDIF Netlist Reader Settings dialog box, select the vendor for
your EDIF netlist file in the Vendor drop-down list box and click
OK.

9. Make logic option and/or place-and-route assignments for your
custom logic using the commands in the Assign menu.

10. In the MAX+PLUS II Compiler, make sure Functional SNF Extractor
(Processing menu) is turned off.

11. Turn on the Verilog Netlist Writer or VHDL Netlist Writer
command (Interfaces menu), depending on the type of output file
you want to use in your third-party simulator. Set the netlist writer
settings as described in step 5 in “VHDL & Verilog HDL Functional
Modeling.”
22 Altera Corporation

Getting Star ted

 Getting Started

 1

12. Compile your design. The MAX+PLUS II Compiler synthesizes and
performs place-and-route on your design, and generates output and
programming files.

13. Import your MAX+PLUS II-generated output files (.edo, .vho, .vo, or
.sdo) into your third-party EDA tool for post-route, device-level, and
system-level simulation.
Altera Corporation 23

Notes:

MegaCore Over view
Contents

Altera Corporation 25

December 1 999

®

 M
egaCore

2

 Overview

Features ..27
General Description..28
Compliance Summary..33
PCI Bus Signals..35
 Target Local-Side Signals..42
 Master Local-Side Signals ...46
Parameters..49
Functional Description ...54
 Target Device Signals & Signal Assertion ..54
 Master Device Signals & Signal Assertion ...57

Notes:

®

MegaCore Over view

December 1999 , ver. 1

 M
egaCore

2

 Overview

Features... This section describes the features of the following PCI MegaCore™
functions: pci_mt64 , pci_mt32 , pci_t64 , and pci_t32 . These functions
are parameterized MegaCore functions implementing peripheral
component interconnect (PCI) interfaces.

■ Flexible general-purpose interfaces that can be customized for
specific peripheral requirements

■ Dramatically shortens design cycles
■ Fully compliant with the PCI Special Interest Group (PCI SIG) PCI

Local Bus Specification, Revision 2.2 timing and functional
requirements

■ Extensively verified using industry-proven Phoenix Technology test
bench

■ Extensively hardware tested using the following hardware and
software (see “Compliance Summary” on page 33 for details)
– HP E2928A PCI Bus Analyzer and Exerciser
– HP E2920 Computer Verification Tools, PCI series
– Altera’s intellectual property (IP) development board

■ Optimized for the APEXTM 20K, FLEX® 10K, and FLEX 6000
architectures

■ 66-MHz compliant with APEX 20KE-1 and FLEX 10KE-1 devices
■ No-risk OpenCoreTM feature allows designers to instantiate and

simulate designs in the Quartus and MAX+PLUS II software prior to
purchase

■ Supports most PCI commands, including: configuration read/write,
memory read/write, I/O read/write, memory read multiple (MRM),
memory read line (MRL), and memory write and invalidate (MWI)

■ PCI target features (applies to pci_mt64 , pci_mt32 , pci_t64 , and
pci_t32):
– Capabilities list pointer support
– Parity error detection
– Up to six base address registers (BARs) with adjustable memory

size and type
– Expansion ROM BAR support
– Local side can request a target abort, retry, or disconnect
– Local-side interrupt request

■ Configuration registers:
– Parameterized registers: device ID, vendor ID, class code,

revision ID, BAR0 through BAR5, subsystem ID, subsystem
vendor ID, maximum latency, minimum grant, capabilities list
pointer, expansion ROM BAR
Altera Corporation 27

MegaCore Over view
...and More
Features

– Parameterized default or preset base address (available for all
six) and expansion ROM base address

– Non-parameterized registers: command, status, header type,
latency timer, cache line size, interrupt pin, interrupt line

■ 64-bit PCI master only features (applies to pci_mt64):
– Initiates 64-bit addressing, using dual-address cycle (DAC)
– Initiates 64-bit memory transactions
– Dynamically negotiates 64-bit transactions and automatically

multiplexes data on the local 64-bit data bus
■ 64-bit PCI target only features (applies to pci_t64 and pci_mt64):

– 64-bit addressing capable
– Automatically responds to 32- or 64-bit transactions

General
Description

The PCI MegaCore functions covered in this document are hardware-
tested, high-performance, flexible implementations of PCI interfaces.
These functions handle the complex PCI protocol and stringent timing
requirements internally, and their backend interface is designed for easy
integration. Therefore, designers can focus their engineering efforts on
value-added custom development, significantly reducing time-to-market.

Optimized for Altera® APEX 20K, FLEX 10K, and FLEX 6000 device
families, the PCI functions support configuration, I/O, and memory
transactions. With the high density of Altera’s devices, designers have
ample resources for custom local logic after implementing the PCI
interface. The high performance of Altera’s devices also enables these
functions to support unlimited cycles of zero-wait-state memory-burst
transactions. These functions can run at either 33-MHz or 66-MHz PCI bus
clock speeds, thus achieving from 32-Mbps throughput in a 32-bit,
33-MHz PCI bus system up to 528-Mbps throughput in a 64-bit, 66-MHz
PCI bus system.

In the pci_mt6 4 and pci_mt32 functions, the master and target interface
can operate independently, allowing maximum throughput and efficient
usage of the PCI bus. For instance, while the target interface is accepting
zero-wait state burst write data, the local logic may simultaneously
request PCI bus mastership, thus minimizing latency.

To ensure timing and protocol compliance, PCI MegaCore functions have
been vigorously hardware tested. See “Compliance Summary” on page 33
for more information on the hardware tests performed.
28 Altera Corporation

MegaCore Over view

 M
egaCore

2

 Overview

As parameterized functions, pci_mt64 , pci_mt32 , pci_t64 , and
pci_t32 have configuration registers that can be modified upon
instantiation. These features provide scalability, adaptability, and
efficient silicon implementation. As a result, the same MegaCore
functions can be used in multiple PCI projects with different
requirements. For example, these functions offer up to six BARs for
multiple local-side devices. However, some applications require only one
contiguous memory range. PCI designers can choose to instantiate only
one BAR, which reduces logic cell consumption. After designers define
the parameter values, the MAX+PLUS II and Quartus software
automatically and efficiently modifies the design and implements the
logic.

This user guide should be used in conjunction with the latest PCI
specification, published by the PCI Special Interest Group (SIG). Users
should be fairly familiar with the PCI standard before using these
functions. Figures 1 through 4 show the block diagrams for pci_mt64 ,
pci_mt32 , pci_t 64, and pci_t 32, respectively. Refer to these figures for
signal names and directions for the individual functions.

The functions consist of several blocks:

■ PCI bus configuration register space. This block implements all of the
configuration registers required by the PCI Local Bus Specification,
Revision 2.2. You can set these registers to your system requirements
by setting the parameters provided.

■ Parity checking and generation. This block is responsible for parity
checking and generation. It also asserts parity error signals and
required status register bits.

■ Target interface control logic. This block controls the operation of the
corresponding MegaCore function on the PCI bus in target mode.

■ Master interface control logic. This block controls the PCI bus.
Operation of the corresponding PCI MegaCore function in master
mode. This block is only implemented in the pci_mt64 and
pci_mt32 functions.

■ Local target control. This block controls the local side interface
operation in target mode.

■ Local master control. This block controls the local side interface
operation in master mode. This block is implemented only in the
pci_mt64 and pci_mt32 functions.
Altera Corporation 29

MegaCore Over view
■ Local address/data/command/byte enables. This block multiplexes and
registers all the address, data, command, and byte enable signals to
the local side interface.

Figure 1. pci_mt64 Functional Block Diagram

PCI Address/
Data Buffer

Parity Checker &
Generator

cache[7..0]

par

perrn
serrn

framen

irdyn
trdyn

devseln

stopn

gntn
reqn

intan

ad[63..0]
cben[7..0]

clk
rstn

idsel

pci_mt64

l_dato[63..0]
l_adro[63..0]
l_beno[7..0]
l_cmdo[3..0]

l_ldat_ackn

lt_rdyn
lt_discn
lt_abortn
lirqn
lt_framen
lt_ackn
lt_dxfrn
lt_tsr[11..0]

l_adi[63..0]
l_cbeni[7..0]

lm_req32n

lm_lastn
lm_rdyn

lm_adr_ackn

lm_tsr[9..0]

req64n

ack64n

par64

cmd_reg[5..0]
stat_reg[5..0]

lm_req64n

lm_dxfrn

l_hdat_ackn

Local Target
Control

Local Address/
Data/Command/

Byte Enable

Local Master
Control

PCI Target
Control

PCI Master
Control

Parameterized
Configuration

Registers

lm_ackn
30 Altera Corporation

MegaCore Over view

 M
egaCore

2

 Overview

Figure 2. pci_mt32 Functional Block Diagram

PCI Address/
Data Buffer

Parity Checker &
Generator

cache[7..0]

par

perrn
serrn

framen

irdyn
trdyn

devseln

stopn

gntn
reqn

intan

ad[31..0]
cben[3..0]

clk
rstn

idsel

pci_mt32

l_dato[31..0]
l_adro[31..0]
l_beno[3..0]
l_cmdo[3..0]

lt_rdyn
lt_discn
lt_abortn
lirqn
lt_framen
lt_ackn
lt_dxfrn
lt_tsr[11..0]

l_adi[31..0]
l_cbeni[3..0]

lm_req32n

lm_lastn
lm_rdyn

lm_adr_ackn

lm_tsr[9..0]

par64

cmd_reg[5..0]
stat_reg[5..0]

lm_dxfrn

Local Target
Control

Local Address/
Data/Command/

Byte Enable

Local Master
Control

PCI Target
Control

PCI Master
Control

Parameterized
Configuration

Registers

lm_ackn
Altera Corporation 31

MegaCore Over view

Figure 3. pci_t64 Functional Block Diagram

PCI Address/
Data Buffer

Parity Checker &
Generator

par

perrn
serrn

framen

irdyn
trdyn

devseln

stopn

intan

ad[63..0]
cben[7..0]

clk
rstn

idsel

pci_t64

l_dato[63..0]
l_adro[63..0]
l_beno[7..0]
l_cmdo[3..0]

l_ldat_ackn

lt_rdyn
lt_discn
lt_abortn
lirqn
lt_framen
lt_ackn
lt_dxfrn
lt_tsr[11..0]

l_adi[63..0]
l_cbeni[7..0]

req64n

ack64n

par64

cmd_reg[5..0]
stat_reg[5..0]

l_hdat_ackn

Local Target
Control

Local Address/
Data/Command/

Byte Enable

PCI Target
Control

Parameterized
Configuration

Registers
32 Altera Corporation

MegaCore Over view

 M
egaCore

2

 Overview

Figure 4. pci_t32 Functional Block Diagram

Compliance
Summary

The pci_mt64 , pci_mt32 , pci_t64 , and pci_t32 functions are
compliant with the requirements specified in the PCI SIG PCI Local Bus
Specification, Revision 2.2 and Compliance Checklist, Revision 2.2. The
function is shipped with sample Quartus Vector Waveform Files (.vwf)
and MAX+PLUS II Simulator Channel Files (.scf), which can be used to
validate the functions. Consult the readme files provided in the
APEX\sim for a complete list and description for the included Quartus
files, and the FLEX\sim directory for a complete list and description for
the included MAX+PLUS II files.

To ensure PCI compliance, Altera has performed extensive validation of
the PCI MegaCore functions. Validation includes both simulation and
hardware testing.

PCI Address/
Data Buffer

Parity Checker &
Generator

par

perrn
serrn

framen

irdyn
trdyn

devseln

stopn

intan

ad[31..0]
cben[3..0]

clk
rstn

idsel

pci_t32

l_dato[31..0]
l_adro[31..0]
l_beno[3..0]
l_cmdo[3..0]

lt_rdyn
lt_discn
lt_abortn
lirqn
lt_framen
lt_ackn
lt_dxfrn
lt_tsr[11..0]

l_adi[31..0]
l_cbeni[3..0]

cmd_reg[5..0]
stat_reg[5..0]

Local Target
Control

Local Address/
Data/Command/

Byte Enable

PCI Target
Control

Parameterized
Configuration

Registers
Altera Corporation 33

MegaCore Over view
The following simulations are covered by the validation suite for the PCI
MegaCore functions:

■ PCI SIG checklist simulations
■ Applicable operating rules in PCI specification appendix C,

including:
– Basic protocol
– Signal stability
– Master and target signals
– Data phases
– Arbitration
– Latency
– Exclusive access
– Device selection
– Parity

■ Local-side interface functionality
■ Corner cases of the PCI and local-side interface, such as random wait

state insertion

In addition to simulation, Altera performed extensive hardware testing
on the functions to ensure robustness and PCI compliance. The test
platforms included the HP E2928A PCI Bus Exerciser and Analyzer, the
Altera FLEX 10KE PCI development board with an EPF10K100EFC484-1
device configured with the MegaCore function and a reference design,
and PCI bus agents such as the host bridge, Ethernet network adapter,
and video card. The hardware testing ensures that the PCI MegaCore
functions operate flawlessly under the most stringent conditions.

During hardware testing with the HP E2928A PCI Bus Exerciser and
Analyzer, various tests are performed to guarantee robustness and strict
compliance. These tests include:

■ Memory read/write
■ I/O read/write tests
■ Configuration read/write tests

The tests generate random transaction type and parameters at the PCI and
local sides. The HP E2928A PCI Bus Exerciser and Analyzer simulates
random behavior on the PCI bus by randomizing transactions with
variable parameters such as:

■ Bus commands
■ Burst length
■ Data types
■ Wait states
■ Terminations
■ Error conditions
34 Altera Corporation

MegaCore Over view

 M
egaCore

2

 Overview

The local side also emulates the variety of conditions where the PCI
MegaCore function under test is used by randomizing the wait states and
terminations. During the tests, the HP E2928A PCI Bus Exerciser and
Analyzer also acts as a PCI protocol and data integrity checker as well as
a logic analyzer to aid in debugging. This testing ensures that the
functions operate under the most stringent conditions in your system. For
more information on the HP E2928A PCI Bus Exerciser and Analyzer, see
the Hewlett Packard web site at http://www.hp.com.

PCI Bus Signals The following PCI signals are used by the pci_mt64 , pci_mt32 , pci_t64 ,
and pci_t32 functions:

■ Input—Standard input-only signal.
■ Output—Standard output-only signal.
■ Bidirectional—Tri-state input/output signal.
■ Sustained tri-state (STS)—Signal that is driven by one agent at a time

(e.g., device or host operating on the PCI bus). An agent that drives a
sustained tri-state pin low must actively drive it high for one clock
cycle before tri-stating it. Another agent cannot drive a sustained
tri-state signal any sooner than one clock cycle after it is released by
the previous agent.

■ Open-drain—Signal that is wire-ORed with other agents. The signaling
agent asserts the open-drain signal, and a weak pull-up resistor
deasserts the open-drain signal. The pull-up resistor may require two
or three PCI bus clock cycles to restore the open-drain signal to its
inactive state.

Table 1 summarizes the PCI bus signals that provide the interface
between the PCI MegaCore functions and the PCI bus.

Table 1. PCI Interface Signals (Part 1 of 4)

Name Type Polarity Description

clk Input – Clock. The clk input provides the reference signal for all other
PCI interface signals, except rstn and intan .

rstn Input Low Reset. The rstn input initializes the PCI interface circuitry and
can be asserted asynchronously to the PCI bus clk edge.
When active, the PCI output signals are tri-stated and the
open-drain signals, such as serrn , float.

gntn Input Low Grant. The gntn input indicates to the PCI bus master device
that it has control of the PCI bus. Every master device has a
pair of arbitration lines (gntn and reqn) that connect directly
to the arbiter.
Altera Corporation 35

MegaCore Over view
reqn Output Low Request. The reqn output indicates to the arbiter that the PCI
bus master wants to gain control of the PCI bus to perform a
transaction.

ad[63..0] Tri-State – Address/data bus. The ad[63..0] bus is a time-multiplexed
address/data bus; each bus transaction consists of an address
phase followed by one or more data phases. The data phases
occur when irdyn and trdyn are both asserted. In the case
of a 32-bit data phase, only the ad[31..0] bus holds valid
data. For pci_mt32 and pci_t32 , only ad[31..0] is
implemented.

cben[7..0] Tri-State Low Command/byte enable. The cben[7..0] bus is a time-
multiplexed command/byte enable bus. During the address
phase, this bus indicates the command; during the data phase,
this bus indicates byte enables. For pci_mt32 and pci_t32 ,
only cben[3..0] is implemented.

par Tri-State – Parity. The par signal is even parity across the 32 least
significant address/data bits and four least significant
command/byte enable bits. In other words, the number of 1s on
ad[31..0] , cben[3..0] , and par equal an even number.
The parity of a data phase is presented on the bus on the clock
following the data phase.

par64 Tri-State – Parity 64. The par64 signal is even parity across the 32 most
significant address/data bits and the four most significant
command/byte enable bits. In other words, the number of 1s on
ad[63..32], cben[7..4] , and par64 equal an even
number. The parity of a data phase is presented on the bus on
the clock following the data phase. This signal is not
implemented in the pci_mt32 and pci_t32 functions.

idsel Input High Initialization device select. The idsel input is a chip select for
configuration transactions.

framen (1) STS Low Frame. The framen signal is an output from the current bus
master that indicates the beginning and duration of a bus
operation. When framen is initially asserted, the address and
command signals are present on the ad[63..0] and
cben[7.. 0] buses (ad[31..0] and cben[3..0] only for
32-bit functions). The framen signal remains asserted during
the data operation and is deasserted to identify the end of a
transaction.

Table 1. PCI Interface Signals (Part 2 of 4)

Name Type Polarity Description
36 Altera Corporation

MegaCore Over view

 M
egaCore

2

 Overview

req64n (1) STS Low Request 64-bit transfer. The req64n signal is an output from
the current bus master and indicates that the master is
requesting a 64-bit transaction. req64n has the same timing
as framen . This signal is not implemented in pci_mt32 and
pci_t32 .

irdyn (1) STS Low Initiator ready. The irdyn signal is an output from a bus
master to its target and indicates that the bus master can
complete the current data transaction. In a write transaction,
irdyn indicates that the address bus has valid data. In a read
transaction, irdyn indicates that the master is ready to accept
data.

devseln (1) STS Low Device select. Target asserts devseln to indicate that the
target has decoded its own address and accepts the
transaction.

ack64n (1) STS Low Acknowledge 64-bit transfer. The target asserts ack64n to
indicate that the target can transfer data using 64 bits. The
ack64n has the same timing as devseln . This signal is not
implemented in pci_mt32 and pci_t32 .

trdyn (1) STS Low Target ready. The trdyn signal is a target output, indicating
that the target can complete the current data transaction. In a
read operation, trdyn indicates that the target is providing
valid data on the address bus. In a write operation, trdyn
indicates that the target is ready to accept data.

stopn (1) STS Low Stop. The stopn signal is a target device request that
indicates to the bus master to terminate the current transaction.
The stopn signal is used in conjunction with trdyn and
devseln to indicate the type of termination initiated by the
target.

Table 1. PCI Interface Signals (Part 3 of 4)

Name Type Polarity Description
Altera Corporation 37

MegaCore Over view
Note:
(1) In the MegaCore function symbols, the signals are separated into two components: input and output. For example,

framen has the input framen_in and the output framen_out . This separation of signals allows the use of devices
that do not meet set-up times to implement a PCI interface. Driving the input part of one or more of these signals
to a dedicated input pin and the output part to a regular I/O pin, allows devices that cannot meet set-up times to
meet them. For more information on these devices, refer to the readme file provided with the MegaCore function.

perrn STS Low Parity error. The perrn signal indicates a data parity error. The
perrn signal is asserted one clock following the par and
par64 signals or two clocks following a data phase with a
parity error. The PCI functions assert the perrn signal if a
parity error is detected on the par or par64 signals and the
perrn bit (bit 6) in the command register is set. The par64
signal is only evaluated during 64-bit transactions in pci_mt64
and pci_t64 functions. In pci_mt32 and pci_t32 , only par
is evaluated.

serrn Open-Drain Low System error. The serrn signal indicates system error and
address parity error. The PCI functions assert serrn if a parity
error is detected during an address phase and the serrn
enable bit (bit 8) in the command register is set.

intan Open-Drain Low Interrupt A. The intan signal is an active-low interrupt to the
host and must be used for any single-function device requiring
an interrupt capability. The PCI MegaCore functions assert
intan only when the local side asserts the lirqn signal.

Table 1. PCI Interface Signals (Part 4 of 4)

Name Type Polarity Description
38 Altera Corporation

MegaCore Over view

 M
egaCore

2

 Overview

Local Address, Data, Command & Byte Enable Signals

Table 2 summarizes the PCI local interface signals for the address, data,
command, and byte enable signals.

Table 2. PCI Local Address, Data, Command & Byte Enable Signals (Part 1 of 4)

Name Type Polarity Description

l_ adi[63..0] Input – Local address/data input. This bus is a local-side time
multiplexed address/data bus. During master transactions, the
local side must provide the address on l_adi[63..0] when
lm_adr_ackn is asserted. For 32-bit addressing, only the
l_adi[31..0] signals are valid during the address phase.

The l_adi[63..0] bus is driven active by the local-side
device during PCI bus-initiated target read transactions or
local-side initiated master write transactions. This bus changes
operation depending on the function you are using and the type
of transaction considered. For pci_mt32 and pci_t32 , only
l_adi[31..0] is implemented and only 32-bit transactions
are supported.

For the pci_mt64 and pci_t64 functions, the entire
l_adi[63..0] bus is used to transfer data from the local side
during 64-bit and 32-bit target read and 64-bit master write
transactions. For the pci_mt64 and pci_mt32 functions, only
the l_adi[31..0] bus is used to transfer data from the local
side during 32-bit read transactions.
Altera Corporation 39

MegaCore Over view
l_c beni[7. .0] Input – Local command/byte enable input. This bus is a local-side time
multiplexed command/byte enable bus. During master
transactions, the local side must provide the command on
l_cbeni[3..0] when lm_adr_ackn is asserted. For 64-bit
addressing, the local side must provide the dual address cycle
(DAC) command (B"1101") on l_cbeni[3..0] and the
transaction command on l_cbeni[7..4] when
lm_adr_ackn is asserted. The local side drives the command
with the same encoding as specified in the PCI Local Bus
Specification, Revision 2.2.

The l_cbeni[7..0] bus is driven by the local-side device
during master transactions. The local-master device drives
byte enables on this bus during master transactions. The local
master device must provide the byte-enable value on
l_cbeni[7..0] during the next clock after lm_adr_ackn is
asserted. The PCI MegaCore functions drive the byte-enable
value from the local side to the PCI side and maintain the same
byte-enable value for the entire transaction. In pci_mt32 , only
l_cbeni[3..0] is implemented. Additionally, in pci_mt64 ,
only l_cbeni[3..0] is used when a 32-bit master transaction
is initiated.

l_adro[63. .0] Output – Local address output. The l_adro[63..0] bus is driven by
the PCI MegaCore functions during target read or write
transactions. The PCI transaction address is valid on the local
side until the target transaction is in turn-around phase on the
PCI bus. The pci_mt32 and pci_t32 functions only
implement l_adro[31..0] . During dual address
transactions in the pci_mt64 and pci_t64 functions, the
l_adro[63..32] bus is driven with a valid address. DAC is
indicated by sampling the lt_tsr[11] status signal set. For
more information on the local target status signals, refer to
Table 4.

Table 2. PCI Local Address, Data, Command & Byte Enable Signals (Part 2 of 4)

Name Type Polarity Description
40 Altera Corporation

MegaCore Over view

 M
egaCore

2

 Overview

l_dato[63..0] Output – Local data output. The l_dato[63..0] bus is driven active
during PCI bus-initiated target write transactions or local side-
initiated master read transactions. The functionality of this bus
changes depending on the function you are using and the
transaction being considered. The pci_mt32 and pci_t32
functions implement only l_dato[31..0] because they do
not support 64-bit transactions. The operation in pci_mt64
and pci_t64 is dependent on the type of transaction being
considered. During 64-bit target write transactions and master
read transactions, the data is transferred on the entire
l_dato[63..0] bus. During 32-bit master read transactions,
the data is transferred only on l_dato[31..0] . During 32-bit
target write transactions, the data is transferred on both the
l_dato[31..0] and l_dato[63..32] buses and,
depending on the transaction address, the pci_mt64 or
pci_t64 function will either assert l_ldat_ackn or
l_hdat_ackn to indicate whether the low or high DWORD is
valid.

l_beno[7..0] Output – Local byte enable output. The l_beno[7..0] bus is driven by
the PCI function during target transactions. This bus holds the
byte enable value during data transfers. The functionality of
this bus is different depending on the function you are using
and the transaction being considered. The pci_mt32 and
pci_t32 functions implement only l_beno[3..0] because
they do not support 64-bit transactions. The operation in
pci_mt64 and pci_t64 is dependent on the type of
transaction being considered. During 64-bit target write
transactions and master read transactions, the byte enables
are transferred on the entire l_beno[7..0] bus. During
32-bit master read transactions, the byte enables are
transferred only on l_beno[3..0] . During 32-bit target write
transactions, the byte enables are transferred on both the
l_beno[3..0] and l_beno[7..4] buses and, depending
on the transaction address, the pci_mt64 or pci_t64
function will either assert l_ldat_ackn or l_hdat_ackn to
indicate whether the low or high byte enable nibble is valid.

l_cmdo[3..0] Output – Local command output. The l_cmdo[3..0] bus is driven by
the PCI MegaCore functions during target transactions. It has
the bus command and the same timing as the
l_adro[31..0] bus. The command is encoded as presented
on the PCI bus.

Table 2. PCI Local Address, Data, Command & Byte Enable Signals (Part 3 of 4)

Name Type Polarity Description
Altera Corporation 41

MegaCore Over view
Target Local-Side Signals

Table 3 summarizes the target interface signals that provide the interface
between the MegaCore function to the local-side peripheral device(s)
during target transactions.

l_ldat_ackn Output Low Local low data acknowledge. The l_ldat_ackn output is
used during target write and master read transactions. When
asserted, it indicates that the next data transfer is on the least
significant DWORD of the l_dato[63..0] bus. In other
words, when l_ldat_ackn is asserted, valid data is
presented on the l_dato[31..0] bus. The signals lm_ackn
or lt_ackn must be used to qualify valid data. This signal is
not implemented in the pci_mt32 and pci_t32 functions.

l_hdat_ackn Output Low Local high data acknowledge. The l_hdat_ackn output is
used during target write and master read transactions. When
asserted, it indicates that the next data transfer is on the most
significant DWORD of the l _dato[63..0] bus. In other
words, when l_hdat_ackn is asserted, valid data is
presented on l _dato[63..32] . The signals lm_ackn or
lt_ackn must be used to qualify valid data. This signal is not
implemented in the pci_mt32 and pci_t32 functions.

Table 2. PCI Local Address, Data, Command & Byte Enable Signals (Part 4 of 4)

Name Type Polarity Description

Table 3. Target Signals Connecting to the Local Side (Part 1 of 3)

Name Type Polarity Description

lt_abortn Input Low Local target abort request. The local side should assert this
signal requesting the PCI MegaCore function to issue a target
abort to the PCI master. The local side should request an abort
when it has encountered a fatal error and cannot complete the
current transaction.
42 Altera Corporation

MegaCore Over view

 M
egaCore

2

 Overview

lt_discn Input Low Local target disconnect request. The lt_discn input requests
the PCI MegaCore function to issue a retry or a disconnect. The
PCI MegaCore function issues a retry or disconnect depending
on when the signal is asserted during a transaction.

1 The PCI bus specification requires that a PCI target
issues a disconnect whenever the transaction exceeds
its memory space. When using PCI MegaCore
functions, the local side is responsible for asserting
lt_discn if the transaction crosses its memory
space.

lt_rdyn Input Low Local target ready. The local side asserts lt_rdyn to indicate
a valid data input during target read, or ready to accept data
input during a target write. During a target read, lt_rdyn
de-assertion suspends the current transfer (i.e., a wait state is
inserted by the local side). During a target write, an inactive
lt_rdyn signal directs the PCI MegaCore function to insert
wait states on the PCI bus. The only time the function inserts
wait states during a burst is when lt_rdyn inserts wait states
on the local side.

1 lt_rdyn is sampled one clock before actual data is
transferred on the local side.

lt_framen Output Low Local target frame request. The lt_framen output is asserted
while the PCI MegaCore function is requesting access to the
local side. It is asserted one clock before the function asserts
devseln , and it is released after the last data phase of the
transaction is transferred to/from the local side.

lt_ackn Output Low Local target acknowledge. The PCI function asserts lt_ackn
to indicate valid data output during a target write, or ready to
accept data during a target read. During a target read, an
inactive lt_ackn indicates that the function is not ready to
accept data and local logic should hold off the bursting
operation. During a target write, lt_ackn de-assertion
suspends the current transfer (i.e., a wait state is inserted by
the PCI master). The l t_ackn signal is only inactive during a
burst when the PCI bus master inserts wait states.

lt_dxfrn Output Low Local target data transfer. The PCI MegaCore function asserts
the lt_dxfrn signal when a data transfer on the local side is
successful during a target transaction.

Table 3. Target Signals Connecting to the Local Side (Part 2 of 3)

Name Type Polarity Description
Altera Corporation 43

MegaCore Over view
Table 4 shows definitions for the local target transaction status register
outputs.

lt_tsr[11. .0] Output – Local target transaction status register. The lt_tsr[11. .0]
bus carries several signals which can be monitored for the
transaction status. See Table 4.

lirqn Input Low Local interrupt request. The local-side peripheral device
asserts lirqn to signal a PCI bus interrupt. Asserting this
signal forces the PCI MegaCore function to assert the intan
signal for as long as the lirqn signal is asserted.

cache[7..0] Output – Cache registers output. The cache[7..0] bus is the same as
the configuration space cache register. The local-side logic
uses this signal to provide support for cache commands.

cmd_reg[5..0] Output – Command register output. The cmd_reg[5..0] bus drives
the important signals of the configuration space command
register to the local side. See Table 5.

stat_reg[5..0] Output – Status register output. The stat_reg[5..0] bus drives the
important signals of the configuration space status register to
the local side. See Table 6.

Table 3. Target Signals Connecting to the Local Side (Part 3 of 3)

Name Type Polarity Description

Table 4. Local Target Transaction Status Register Bit Definition

Bit Number Bit Name Description

5..0 bar_hit[5..0] Base address register hit. Asserting bar_hit[5..0] indicates that
the PCI address matches that of a base address register and the
PCI MegaCore function has claimed the transaction. Each bit in the
bar_hit[5..0] bus is used for the corresponding base address
register (e.g., bar_hit[0] is used for BAR0). The
bar_hit[5..0] bus has the same timing as the lt_framen
signal. When a 64-bit base address register is used, both
bar_hit [0] and bar_hit[1] are asserted to indicate that
pci_mt64 and pci_t64 have claimed the transaction.

6 exp_rom_hit Expansion ROM register hit. The PCI MegaCore function asserts
this signal when the transaction address matches the address in the
expansion ROM BAR.

7 trans64 64-bit target transaction. pci_mt64 and pci_t64 assert this signal
when the current transaction is 64 bits. If a transaction is active and
this signal is low, the current transaction is 32 bits. This bit is
reserved for pci_mt32 and pci_t32 .
44 Altera Corporation

MegaCore Over view

 M
egaCore

2

 Overview

Table 5 shows definitions for the configuration output bus bits.

Table 6 shows definitions for the local target transaction status register
bits.

8 targ_access Target access. The PCI MegaCore functions assert this signal when
PCI target access is in progress.

9 burst_trans Burst transaction. When asserted, this signal indicates that the
current target transaction is a burst. This signal is asserted if the PCI
MegaCore functions detects both framen and irdyn signals
asserted at the same time during the first data phase.

10 pxfr PCI transfer. This signal is asserted to indicate that there was a
successful data transfer on the PCI side during the previous clock
cycle.

11 dac Dual address cycle. When asserted, this signal indicates that the
current transaction is using a dual address cycle.

Table 4. Local Target Transaction Status Register Bit Definition

Bit Number Bit Name Description

Table 5. Configuration Output Bus Bit Definition

Bit Number Bit Name Description

0 io_ena I/O accesses enable. Bit 0 of the command register.

1 mem_ema Memory access enable. Bit 1 of the command register

2 mstr_ena Master enable. Bit 2 of the command register. This signal is
reserved for pci_t64 and pci_t32 .

3 mwi_ena Memory write and invalidate enable. Bit 4 of the command register.

4 perr_ena Parity error response enable. Command register bit 6.

5 serr_ena System error response enable. Command register bit 8.

Table 6. Local Target Transaction Status Register Bit Definition

Bit Number Bit Name Description

0 perr_rep Parity error reported, Status register bit 8.

1 tabort_sig Target abort signaled. Status register bit 11.

2 tabort_rcvd Target abort received. Status register bit 12.

3 mabort_rcvd Master abort received. Status register bit 13.

4 serr_sig Signaled system error. Status register bit 14.

5 perr_det Parity error detected. Status register bit 15.
Altera Corporation 45

MegaCore Over view
Master Local-Side Signals

Table 7 summarizes the pci_mt64 and pci_mt32 master interface signals
that provide the interface between the PCI MegaCore function and the
local-side peripheral device(s) during master transactions.

Table 7. PCI Master Signals Interfacing to the Local Side (Part 1 of 2)

Name Type Polarity Description

lm_req 32n Input Low Local master request 32-bit data transaction. The local side
asserts this signal to request ownership of the PCI bus for a
32-bit master transaction. To request a master transaction, it is
sufficient for the local-side device to assert lm_req32n for one
clock cycle. When requesting a 32-bit transaction, only
l_dati[31..0] for a master write transaction or
l_dato[31..0] for a master read transaction is valid.

lm_req64n Input Low Local master request 64-bit data transaction. The local side
asserts this signal to request ownership of the PCI bus for a
64-bit master transaction. To request a master transaction, it is
sufficient for the local side device to assert lm_req64n for one
clock. When requesting a 64-bit data transaction, pci_mt64
requests a 64-bit PCI transaction. When the target does not
assert its ack64n signal, the transaction will be
32 bits. In a 64-bit master write transaction where the target
does not assert its ack64n signal, pci_mt64 automatically
accepts 64-bit data on the local side and multiplexes the data
appropriately to 32 bits on the PCI side. When the local side
requests 64-bit PCI transactions, it must ensure that the
address is at a quad WORD boundary. This signal is not
implemented in pci_mt32 .

lm_lastn Input Low Local master last. This signal is driven by the local side to
request that the pci_mt64 or pci_mt32 master interface
ends the current transaction. When the local side asserts this
signal, the MegaCore master interface deasserts framen as
soon as possible and asserts irdyn to indicate that the last
data phase has begun. The local side can assert this signal for
one clock any time during the master transaction.
46 Altera Corporation

MegaCore Over view

 M
egaCore

2

 Overview

lm_rdyn Input Low Local master ready. The local side asserts the lm_rdyn signal
to indicate a valid data input during a master write, or ready to
accept data during a master read. During a master write, the
lm_rdyn signal de-assertion suspends the current transfer
(i.e., wait state is inserted by the local side). During a master
read, an inactive lm_rdyn signal directs pci_mt64 or
pci_mt32 to insert wait states on the PCI bus. The only time
pci_mt64 or pci_mt32 inserts wait states during a burst is
when the lm_rdyn signal inserts wait states on the local side.

1 The lm_rdyn signal is sampled one clock before
actual data is transferred on the local side.

lm_adr_ackn Output Low Local master address acknowledge. pci_mt64 or pci_mt32
asserts the lm_adr_ackn signal to the local side to
acknowledge the requested master transaction. During the
same clock cycle when lm_adr_ackn is asserted low, the
local side must provide the transaction address on the
l_ad i [31..0] bus and the transaction command on the
l_cmdi[3..0] bus. The local side cannot delay pci_mt64
or pci_mt32 by registering the address on the
l_ad i [31..0] bus.

lm_ackn Output Low Local master acknowledge. pci_mt64 or pci_mt32 asserts
the lm_ackn signal to indicate valid data output during a
master read, or ready to accept data during a master write.
During a master write, an inactive lm_ackn signal indicates
that pci_mt64 or pci_mt32 is not ready to accept data, and
local logic should hold off the bursting operation. During a
master read, the lm_ackn signal de-assertion suspends the
current transfer (i.e., a wait state is inserted by the PCI target).
The only time the lm_ackn signal goes inactive during a burst
is when the PCI bus target inserts wait states.

lm_dxfrn Output Low Local master data transfer. pci_mt64 or pci_mt32 asserts
this signal when a data transfer on the local side is successful
during a master transaction.

lm_tsr[9..0] Output – Local master transaction status register bus. These signals
inform the local interface the progress of the transaction. See
Table 8 for a detailed description of the bits in this bus.

Table 7. PCI Master Signals Interfacing to the Local Side (Part 2 of 2)

Name Type Polarity Description
Altera Corporation 47

MegaCore Over view
Table 8 shows definitions for the local master transaction status register
outputs.

Table 8. pci_mt64 & pci_mt32 Local Master Transaction Status Register Bit Definition

Bit Number Bit Name Description

0 req Request. This signal indicates that the pci_mt64 or pci_mt32 function
is requesting mastership of the PCI bus (i.e., it is asserting its reqn signal).

1 gnt Grant. This signal is active after the pci_mt64 or pci_mt32 function has
detected that gntn is asserted.

2 adr_phase Address phase. This signal is active during a PCI address phase where
pci_mt64 or pci_mt32 is the bus master.

3 dat_xfr Data transfer. This signal is active while the pci_mt64 or pci_mt32
function is in data transfer mode. The signal is active after the address
phase and remains active until the turn-around state begins.

4 lat_exp Latency timer expired. This signal indicates that pci_mt64 or pci_mt32
terminated the master transaction because the latency timer counter
expired.

5 retry Retry detected. This signal indicates that the pci_mt64 or pci_mt32
function terminated the master transaction because the target issued a
retry. Per the PCI specification, a transaction that ended in a retry must be
retried at a later time.

6 disc_wod Disconnect without data detected. This signal indicates that the pci_mt64
or pci_mt32 signal terminated the master transaction because the target
issued a disconnect without data.

7 disc_wd Disconnect with data detected. This signal indicates that pci_mt64 or
pci_mt32 terminated the master transaction because the target issued a
disconnect with data.

8 dat_phase Data phase. This signal indicates that a successful data transfer has
occurred on the PCI side in the prior clock cycle. This signal can be used
by the local side to keep track of how much data was actually transferred
on the PCI side.

9 trans64 64-bit transaction. This signal indicates that the target claiming the
transaction has asserted its ack64n signal. Because pci_mt32 does not
request 64-bit transactions, this signal is reserved.
48 Altera Corporation

MegaCore Over view

 M
egaCore

2

 Overview

Parameters Table 9 shows a list and description of the parameters for the pci_mt64 ,
pci_mt32 , pci_t64 , and pci_t32 MegaCore functions.

Table 9. PCI MegaCore Function Parameters (Part 1 of 4)

Name Format Default Value Description

BAR0 (1) Hexadecimal H"FFF00000" Base address register zero. When a 64-bit
base address register is used, BAR0 contains
the lower 32-bit address. For more
information, refer to “Base Address
Registers” on page 70.

BAR1 (1) Hexadecimal H"FFF00000" Base address register one. When a 64-bit
base address register is used, BAR1 contains
the upper 32-bit address. For more
information, refer to “Base Address
Registers” on page 70.

BAR2 (1) Hexadecimal H"FFF00000" Base address register two.

BAR3 (1) Hexadecimal H"FFF00000" Base address register three.

BAR4 (1) Hexadecimal H"FFF00000" Base address register four.

BAR5 (1) Hexadecimal H"FFF00000" Base address register five.

HARDWIRE_BARn Hexadecimal H"FF000000" Hardwire base address register. n
corresponds to the base address register
number and can be from 0 to 5.
HARDWIRE_BARn is a 32-bit hexadecimal
value that permanently sets the value stored
in the corresponding BAR. This parameter is
ignored if the corresponding
HARDWIRE_BARn_ENA bit is not set to 1.
When the corresponding
HARDWIRE_BARn_ENA bits are set to 1, the
function returns the value in
HARDWIRE_BARn during a configuration
read. To detect a base address register hit,
the function compares the incoming address
to the upper bits of the HARDWIRE_BARn
parameter. The corresponding BARn
parameter is still used to define the
programmable setting of the individual BAR
such as address space type and number of
decoded bits.
Altera Corporation 49

MegaCore Over view
HARDWIRE_EXP_ROM Hexadecimal H"FF000000" Hardwire expansion ROM BAR.
HARDWIRE_EXP_ROM is the default
expansion ROM base address. This
parameter is ignored when
HARDWIRE_EXP_ROM_ENA is set to 0. When
HARDWIRE_EXP_ROM_ENA is set to 1, the
function returns the value in
HARDWIRE_EXP_ROM during a configuration
read. To detect base address hits for the
expansion ROM, the functions compare the
input address to the upper bits of
HARDWIRE_EXP_ROM.
HARDWIRE_EXP_ROM_ENA must be set to
enable expansion ROM support, and the
HARDWIRE_EXP_ROM parameter setting
defines the number of decoded bits.

CAP_PTR Hexadecimal H"40" Capabilities list pointer register. This 8-bit
value sets the capabilities list pointer register.

CIS_PTR Hexadecimal H"00000000" CardBus CIS pointer. The CIS_PTR sets the
value stored in the CIS pointer register. The
CIS pointer register indicates where the CIS
header is located. For more information, refer
to the PCMCIA Specification, version 2.2. The
functions ignore this parameter if CIS_PTR is
not set to 0. In other words, if the
CIS_PTR_ENA bit is set to 1, the functions
return the value in CIS_PTR during a
configuration read to the CIS pointer register.
The function returns H"00000000" during a
configuration read to CIS when
CIS_PTR_ENA is set to 0.

INTERRUPT_PIN_REG Hexadecimal H"01" Interrupt pin register. This parameter
indicates the value of the interrupt pin register
in the configuration space address location
3DH. This parameter can be set to two
possible values: H"00" to indicate that no
interrupt support is needed, or H"01" to
implement intan . When the parameter is set
to H"00" , intan will be stuck at VCC and the
l_irqn local interrupt request input pin will
not be required.

Table 9. PCI MegaCore Function Parameters (Part 2 of 4)

Name Format Default Value Description
50 Altera Corporation

MegaCore Over view

 M
egaCore

2

 Overview

ENABLE_BITS Hexadecimal H"00000000" Feature enable bits. This parameter is a 32-bit
hexadecimal value which controls whether
various features are enabled or disabled. The
bit definition of this parameter is shown in
Table 10.

CLASS_CODE Hexadecimal H"FF0000" Class code register. This parameter is a 24-bit
hexadecimal value that sets the class code
register in the configuration space. The value
entered for this parameter must be a valid PCI
SIG-assigned class code register value.

DEVICE_ID Hexadecimal H"0004" Device ID register. This parameter is a 16-bit
hexadecimal value that sets the device ID
register in the configuration space. Any value
can be entered for this parameter.

EXP_ROM_BAR String H"FF000000" Expansion ROM. This value controls the
number of bits in the expansion ROM BAR
that are read/write and will be decoded during
a memory transaction.

INTERNAL_ARBITER
(2)

String "NO" This parameter allows reqn and gntn to be
used in internal arbiter logic without requiring
external device pins. If an APEX or a FLEX
device is used to implement the pci_mt64 or
pci_mt32 MegaCore functions and is also
used to implement a PCI bus arbiter, the
reqn signal should feed internal logic and
gntn should be driven by internal logic
without using actual device pins. If this
parameter is set to "YES," the tri-state buffer
on the reqn signal is removed, allowing an
arbiter to be implemented without using
device pins for the reqn and gntn signals.

MAX_LATENCY (2) Hexadecimal H"00" Maximum latency register. This parameter is
an 8-bit hexadecimal value that sets the
maximum latency register in the configuration
space. This parameter must be set according
to the guidelines in the PCI specification.

Table 9. PCI MegaCore Function Parameters (Part 3 of 4)

Name Format Default Value Description
Altera Corporation 51

MegaCore Over view
MIN_GRANT (2) Hexadecimal H"00" Minimum grant register. This parameter is an
8-bit hexadecimal value that sets the
minimum grant register in the PCI
configuration space. This parameter must be
set according to the guidelines in the PCI
specification.

NUMBER_OF_BARS Decimal 1 Number of base address registers. Only the
logic that is required to implement the number
of BARs specified by this parameter is used—
i.e., BARs that are not used do not take up
additional logic resources. The PCI
MegaCore function sequentially instantiates
the number of BARs specified by this
parameter starting with BAR0.

REVISIO N_ID Hexadecimal H"01" Revision ID register. This parameter is an
8-bit hexadecimal value that sets the revision
ID register in the PCI configuration space.

PCI_66MHZ_CAPABLE Hexadecimal "YES" PCI 66-MHz capable. When set to "YES" ,
this parameter sets bit 5 of the status register
to enable 66-MHz operation.

SUBSYSTEM_ID Hexadecimal H"0000" Subsystem ID register. This parameter is a
16-bit hexadecimal value that sets the
subsystem ID register in the PCI configuration
space. Any value can be entered for this
parameter.

SUBSYSTEM_VEND_IDHexadecimal H"0000" Subsystem vendor ID register. This
parameter is a 16-bit hexadecimal value that
sets the subsystem vendor ID register in the
PCI configuration space. The value for this
parameter must be a valid PCI
SIG-assigned vender ID number.

TARGET_DEVICE (2) String "EPF10K100EFC484" This parameter should be set to your targeted
Altera FLEX device for logic and performance
optimization.

VEND_ID Hexadecimal H"1172" Device vendor ID register. This parameter is
a 16-bit hexadecimal value that sets the
vendor ID register in the PCI configuration
space. The value for this parameter can be
the Altera vendor ID (1172 Hex) or any other
PCI SIG-assigned vendor ID number.

Table 9. PCI MegaCore Function Parameters (Part 4 of 4)

Name Format Default Value Description
52 Altera Corporation

MegaCore Over view

 M
egaCore

2

 Overview

Notes to table:
(1) The BAR0 through BAR5 parameters control the options of the corresponding BAR instantiated in the PCI

MegaCore function. Use BAR0 through BAR5 for I/O and 32-bit memory space. However, if you use a 64-bit BAR
in pci_mt64 or pci_t64 , you must use BAR0 and BAR1. Consequently, BAR2 through BAR5 can still be used for
I/O and 32-bit memory space.

(2) For a listing of the supported devices in the Altera APEX 20K, FLEX 10K, and FLEX 6000 families, refer to the
readme file of the PCI MegaCore function.

Table 10 shows the bit definition for ENABLE_BITS.

Table 10. Bit Definition of the ENABLE_BITS Parameter

Bit
Number

Bit Name Default
Value

Definition

5..0 HARDWIRE_BARn_ENA B"000000" Hardwire BAR enable. This bit indicates that the user wants
to use a default base address at power-up. n corresponds
to the BAR number and can be from 0 to 5.

6 HARDWIRE_EXP_ROM_ENA 0 Hardwire expansion ROM bar enable. This bit indicates
that the user wants to use a default expansion ROM base
address at power-up.

7 EXP_ROM_ENA 0 Expansion ROM enable. This bit enables the capability for
the expansion ROM base address register. If this bit is set
to 1, the function uses the value stored in EXP_ROM_BAR to
set the size and number of bits decoded in the expansion
ROM BAR. Otherwise, the expansion ROM BAR is read
only and the function returns H"0000000" when the
expansion ROM BAR is read.

8 CAP_LIST_ENA 0 Capabilites list enable. This bit determines if the
capabilities list will be enabled in the configuration space.
When this bit is set to 1, it sets the capabilities list bit (bit 4)
of the status register and sets the capabilities register to the
value of CAP_PTR.

9 CIS_PTR_ENA 0 CardBus CIS pointer enable. This bit enables the CardBus
CIS pointer register. When this bit is set to 0, the function
returns H"00000000" during a configuration read to the
CIS_PTR register.

10 INTERRUPT_ACK_ENA 0 Interrupt acknowledge enable. This bit enables support for
the interrupt-acknowledge command. When set to 0, the
function ignores the interrupt acknowledge command.
When set to 1, the function responds to the interrupt
acknowledge command. The function treats the interrupt
acknowledge command as a regular target memory read.
The local side must implement the necessary logic to
respond to the interrupt controller.

11 Reserved 0 Reserved.
Altera Corporation 53

MegaCore Over view
Functional
Description

This section provides a general overview of pci_mt64 , pci_mt32 ,
pci_t64 , and pci_t32 functionality. It describes the operation and
assertion of master and target signals.

Target Device Signals & Signal Assertion

Figure 5 illustrates the signal directions for a PCI device connecting to the
PCI bus in target mode. These signals apply to the pci_mt64 , pci_t64 ,
pci_mt32 , and pci_t32 functions when they are operating in target
mode. The signals are grouped by functionality, and signal directions are
illustrated from the perspective of the MegaCore function operating as a
target on the PCI bus. The 64-bit extension signals, including req64n ,
ack64n , par64 , ad[63..32] , and cben[7..4] , are not implemented in
the pci_mt32 and pci_t32 functions.

12 INTERNAL_ARBITER_ENA 0 This bit allows reqn and gntn to be used in internal arbiter
logic without requiring external device pins. If an APEX or
a FLEX device is used to implement the function and is also
used to implement a PCI bus arbiter, the reqn signal
should feed internal logic and gntn should be drivien by
internal logic without using actual device pins. If this bit is
set to 1, the tri-state buffer on the reqn signal is removed,
allowing an arbiter to be implemented without using device
pins for the reqn and gntn signals.

31..13 Reserved 0 Reserved.

Table 10. Bit Definition of the ENABLE_BITS Parameter

Bit
Number

Bit Name Default
Value

Definition
54 Altera Corporation

MegaCore Over view

 M
egaCore

2

 Overview

Figure 5. Target Device Signals

A 32-bit target sequence begins when the PCI master device asserts
framen and drives the address and the command on the PCI bus. If the
address matches one of the BARs in the MegaCore function, it asserts
devseln to claim the transaction. The master then asserts irdyn to
indicate to the target device that:

■ For a read operation, the master device can complete a data transfer.
■ For a write operation, valid data is on the ad[31..0] bus.

The MegaCore function drives the control signals devseln , trdyn , and
stopn to indicate one of the following conditions to the PCI master:

■ The MegaCore function has decoded a valid address for one of its
BARs and it accepts the transactions (assert devseln).

■ The MegaCore function is ready for the data transfer (assert trdyn).
When both trdyn and irdyn are active, a data word is clocked from
the sending to the receiving device.

■ The master device should retry the current transaction.
■ The master device should stop the current transaction.
■ The master device should abort the current transaction.

Target Device

clk
rstn

idsel
req64n
framen

irdyn
trdyn
stopn

devseln
ack64n

par64
par

ad[63..0]
cben[7..0]

perrn
serrn

intan

System
Signals

Interface
Control
Signals

Address,
Data &

Command
Signals

Error
Reporting
Signals

Interrupt
Request
Signal
Altera Corporation 55

MegaCore Over view
Table 11 shows the control signal combinations possible on the PCI bus
during a PCI transaction. The MegaCore function processes the PCI signal
assertion from the local side. Therefore, the MegaCore function only
drives the control signals per the PCI Local Bus Specification,
Revision 2.2. The local-side application can force retry, disconnect, abort,
successful data transfer, and target wait state cycles to appear on the PCI
bus by driving the lt_rdyn , lt_discn , and lt_abortn signals to certain
values. See “Target Transaction Terminations” on page 110 for more
details.

The pci_mt64 and pci_ mt 32 functions accept either 32-bit transactions or
64-bit transactions on the PCI side. In both cases, the functions behave as
64-bit agents on the local side. A 64-bit transaction differs from a 32-bit
transaction as follows:

■ In addition to asserting the framen signal, the PCI master asserts the
req64n signal during the address phase informing the target device
that it is requesting a 64-bit transaction.

■ When the target device accepts the 64-bit transaction, it asserts
ack64n in addition to devseln to inform the master device that it is
accepting the 64-bit transaction.

■ In a 64-bit transaction, the req64n signal behaves the same as the
framen signal, and the ack64n signal behaves the same as devseln .
During data phases, data is driven over the ad[63..0] bus and byte
enables are driven over the cben[7..0] bus. Additionally, parity for
ad[63..32] and cben[7..4] is presented over the par64n signal.

Notes:
(1) A retry occurs before the first data phase.
(2) A device must assert the devseln signal for at least one clock before it signals an abort.

Table 11. Control Signal Combination Transfer

Type devseln trdyn stopn irdyn

Claim transaction Assert Don’t care Don’t care Don’t care

Retry (1) Assert De-Assert Assert Don’t care

Disconnect with data Assert Assert Assert Don’t care

Disconnect without data Assert De-assert Assert Don’t care

Abort (2) De-assert De-assert Assert Don’t care

Successful transfer Assert Assert De-assert Assert

Target wait state Assert De-assert De-assert Assert

Master wait state Assert Assert De-assert De-assert
56 Altera Corporation

MegaCore Over view

 M
egaCore

2

 Overview

The pci_mt64 , pci_t64 , pci_mt32 , and pci_t32 functions support
unlimited burst access cycles. Therefore, they can achieve a throughput
from 132 Mbps (for 32-bit, 33-MHz transactions) up to 528 Mbps (for
64-bit, 66-MHz transactions). However, the PCI Local Bus Specification,
Revision 2.2 does not recommend bursting beyond 16 data cycles because
of the latency of other devices that share the bus. Designers should be
aware of the trade-off between bandwidth and increased latency.

Master Device Signals & Signal Assertion

Figure 6 illustrates the PCI-compliant master device signals that connect
to the PCI bus. The signals are grouped by functionality, and signal
directions are illustrated from the perspective of the PCI MegaCore
function operating as a master on the PCI bus. Figure 6 shows all master
signals; the 64-bit extension signals, including req64n , ack64n , par64 ,
ad[63..32] , and cben[7..0] , are not implemented in the pci_mt32
function.

Figure 6. Master Device Signals

A 32-bit master sequence begins when the local side asserts lm_reqn32n
to request mastership of the PCI bus. The PCI MegaCore function then
asserts reqn to request ownership of the PCI bus. After receiving gntn
from the PCI bus arbiter and after the bus idle state is detected, the
function initiates the address phase by asserting framen , driving the PCI
address on ad[31..0] , and driving the bus command on cben[3..0] for
one clock cycle.

 Master Device

clk
rstn

idsel
req64n
framen

irdyn
trdyn
stopn

devseln
ack64n

par64
par

ad[63..0]
cben[7..0]

perrn
serrn

intan

System
Signals

Interface
Control
Signals

Address,
Data &

Command
Signals

Interrupt
Request
Signal

gntn
reqn

Arbitration
Signals

Error
Reporting
Signals
Altera Corporation 57

MegaCore Over view
1 For 64-bit addressing, the master generates a DAC. On the first
address phase, the pci_mt64 function drives the lower 32-bit
PCI address on ad[31..0] , the upper 32-bit PCI address on
ad[63..32] , the DAC command on cben[3..0] , and the
transaction command on cben[7..4] . On the second address
phase, the pci_mt64 function drives the upper 32-bit PCI
address on ad[63..0] and the transaction command on
cben[7..0] .

When the pci_mt64 or pci_mt32 function is ready to present or accept
data on the bus, it asserts irdyn . At this point, the PCI master logic
monitors the control signals driven by the target device. A target device is
determined by the decoding of the address and command signals
presented on the PCI bus during the address phase of the transaction. The
target device drives the control signals devseln , trdyn , and stopn to
indicate one of the following conditions:

■ The data transaction has been decoded and accepted.
■ The target device is ready for the data operation. When both trdyn

and irdyn are active, a data word is clocked from the sending to the
receiving device.

■ The master device should retry the current transaction.
■ The master device should stop the current transaction.
■ The master device should abort the current transaction.

Table 11 on page 56 shows the possible control signal combinations on the
PCI bus during a transaction. The PCI function signals that it is ready to
present or accept data on the bus by asserting irdyn . At this point, the
pci_mt64 master logic monitors the control signals driven by the target
device and asserts its control signals appropriately. The local-side
application can use the lm_tsr[9..0] signals to monitor the progress of
the transaction. The master transaction can be terminated normally or
abnormally. The local side signals a normal transaction termination by
asserting the lm_lastn signal. The abnormal termination can be signaled
by the target, master abort, or latency timer expiration. See “Abnormal
Master Transaction Termination” on page 154 for more details.

In addition to single-cycle and burst 32-bit transactions, the local side
master can request 64-bit transactions by asserting the lm_req64n signal.
In 64-bit transactions, the pci_mt64 function behaves the same a 32-bit
transaction except for asserting the req64n signal with the same timing as
the framen signal. Additionally, the pci_mt64 function treats the local
side as 64 bits when it requests 64-bit transactions and when the target
device accepts 64-bit transactions by asserting the ack64n signal. See
“Master Mode Operation” on page 119 for more information on 64-bit
master transactions.
58 Altera Corporation

Specifi cations
Contents

Altera Corporation 59

December 1 999

®

 Specifications

3

PCI Bus Commands..61
Configuration Registers ...62
 Device ID Register ...65
 Command Register ..65
 Status Register ..66
 Revision ID Register ..68
 Class Code Register ...68
 Cache Line Size Register ...69
 Latency Timer Register ...69
 Header Type Register..69
 Base Address Registers ...70
 Subsystem Vendor ID Register ..74
 Subsystem ID Register ..75
 Expansion ROM Base Address Register...75
 Capabilities Pointer..76
 Interrupt Line Register ..76
 Interrupt Pin Register ..76
 Minimum Grant Register..77
 Maximum Latency Register..77
Target Mode Operation..78
 64-Bit Target Read Transactions ..81
 32-Bit Target Read Transactions ..90
 64-Bit Target Write Transactions ...97
 32-Bit Target Write Transactions ...104
 Target Transaction Terminations...110
Master Mode Operation...119
 64-Bit Master Read Transactions ...122
 32-Bit Master Write Transactions...148
 Abnormal Master Transaction Termination ..154
64-Bit Addressing, Dual Address Cycle (DAC) ...155
 Target Mode Operation..156
 Master Mode Operation...158

Notes:

®

Specifi cations

December 1 999, ver. 1

 Specifications

3

This section describes the specifications of Altera’s PCI MegaCoreTM
functions, including the supported peripheral component interconnect
(PCI) bus commands and configuration registers and the clock cycle
sequence for both target and master read/write transactions.

PCI Bus
Commands

Table 1 shows the PCI bus commands that can be initiated or responded
to by Altera’s PCI MegaCore functions.

Notes:
(1) When bit 10 of the ENABLE_BITS parameter is set, the target accepts the interrupt

acknowledge command and aliases it as a memory read command.
(2) The memory read multiple and memory read line commands are treated as

memory reads. The memory write and invalidate command is treated as a memory
write. The local side sees the exact command on the l_c beni[3..0] bus with the
encoding shown in Table 1.

(3) This command is not supported by the pci_mt32 and pci_t32 MegaCore
functions.

Table 1. PCI Bus Command Support Summary

cben[3..0] Value Bus Command Cycle Master Target

0000 Interrupt acknowledge Ignored Yes (1)

0001 Special cycle Ignored Ignored

0010 I/O read Yes Yes

0011 I/O write Yes Yes

0100 Reserved Ignored Ignored

0101 Reserved Ignored Ignored

0110 Memory read Yes Yes

0111 Memory write Yes Yes

1000 Reserved Ignored Ignored

1001 Reserved Ignored Ignored

1010 Configuration read Yes Yes

1011 Configuration write Yes Yes

1100 Memory read multiple (2) Yes Yes

1101 Dual address cycle (DAC) Yes (3) Yes (3)

1110 Memory read line (2) Yes Yes

1111 Memory write and invalidate (2) Yes Yes
Altera Corporation 61

Specifi cations
During the address phase of a transaction, the cben[3..0] bus is used to
indicate the transaction type. See Table 1.

The PCI functions respond to standard memory read/write, cache
memory read/write, I/O read/write, and configuration read/write
commands. The bus commands are discussed in greater detail in “Target
Mode Operation” on page 78 and “Master Mode Operation” on page 119.

In master mode, the pci_mt64 and the pci_mt32 functions can initiate
transactions of standard memory read/write, cache memory read/write,
I/O read/write, and configuration read/write commands. Per the PCI
specification, the master must keep track of the number of words that are
transferred and can only end the transaction at cache line boundaries
during MRL and MWI commands. It is the responsibility of the local-side
interface to ensure that this requirement is not violated. Additionally, it is
the responsibility of the local-side interface to ensure that proper address
and byte enable combinations are used during I/O read/write cycles.

Configuration
Registers

Each logical PCI bus device includes a block of 64 configuration DWORDS
reserved for the implementation of its configuration registers. The format
of the first 16 DWORDS is defined by the PCI Special Interest Group
(PCI SIG) PCI Local Bus Specification, Revision 2.2 and the Compliance
Checklist, Revision 2.2. These specifications define two header formats,
type one and type zero. Header type one is used for PCI-to-PCI bridges;
header type zero is used for all other devices, including Altera’s PCI
functions.

Table 2 shows the defined 64-byte configuration space. The registers
within this range are used to identify the device, control PCI bus
functions, and provide PCI bus status. The shaded areas indicate registers
that are supported by Altera’s PCI functions.
62 Altera Corporation

Specifi cations

 Specifications

3

Table 3 summarizes the supported configuration registers address map.
Unused registers produce a zero when read, and they ignore a write
operation. Read/write refers to the status at runtime, i.e., from the
perspective of other PCI bus agents. Designers can set some of the read-
only registers when creating a custom PCI design by setting the
MegaCore function parameters. For example, the designer can change the
device ID register value from the default value by changing the
DEVICE_ID parameter in the Quartus or MAX+PLUS® II software. The
specified default state is defined as the state of the register when the PCI
bus is reset.

Table 2. PCI Bus Configuration Registers

Address Byte

3 2 1 0

00H Device ID Vendor ID

04H Status Register Command Register

08H Class Code Revision ID

0CH BIST Header Type Latency Timer Cache Line Size

10H Base Address Register 0

14H Base Address Register 1

18H Base Address Register 2

1CH Base Address Register 3

20H Base Address Register 4

24H Base Address Register 5

28H Card Bus CIS Pointer

2CH Subsystem ID Subsystem Vendor ID

30H Expansion ROM Base Address Register

34H Reserved Capabilities
Pointer

38H Reserved

3CH Maximum
Latency

Minimum Grant Interrupt Pin Interrupt Line
Altera Corporation 63

Specifi cations

Note:
(1) These registers are supported by the pci_mt64 and pci_mt32 functions only.

Vendor ID Register

Vendor ID is a 16-bit read-only register that identifies the manufacturer of
the device. The value of this register is assigned by the PCI SIG; the default
value of this register is the Altera® vendor ID value, which is 1172 Hex.
However, by setting the VEND_ID parameter, designers can change the
value of the vendor ID register to their PCI SIG-assigned vendor ID value.
See Table 4.

Table 3. Supported Configuration Registers Address Map

Address Offset
(Hex)

Range
Reserved

(Hex)

Bytes Used/
Reserved

Read/Write Mnemonic Register Name

00 00-01 2/2 Read ven_id Vendor ID

02 02-03 2/2 Read dev_id Device ID

04 04-05 2/2 Read/write comd Command

06 06-07 2/2 Read/write status Status

08 08-08 1/1 Read rev_id Revision ID

09 09-0B 3/3 Read class Class code

0C 0C-0C 1/1 Read/write cache Cache line size (1)

0D 0D-0D 1/1 Read/write lat_tmr Latency timer (1)

0E 0E-0E 1/1 Read header Header type

10 10-13 4/4 Read/write bar0 Base address register zero

14 14-17 4/4 Read/write bar1 Base address register one

18 18-1B 4/4 Read/write bar2 Base address register two

1C 1C-1F 4/4 Read/write bar3 Base address register three

20 20-23 4/4 Read/write bar4 Base address register four

24 24-27 4/4 Read/write bar5 Base address register five

28 28-2B 4/4 Read cardbus_ptr CardBus CIS pointer

2C 2C-2D 2/2 Read sub_ven_id Subsystem vendor ID

2E 2E-2F 2/2 Read sub_id Subsystem ID

30H 30-33 4/4 Read/write exp_rom_bar Expansion ROM BAR

34H 34-35 1/1 Read cap_ptr Capabilities pointer

3C 3C-3C 1/1 Read/write int_ln Interrupt line

3D 3D-3D 1/1 Read int_pin Interrupt pin

3E 3E-3E 1/1 Read min_gnt Minimum grant (1)

3F 3F-3F 1/1 Read max_lat Maximum latency (1)
64 Altera Corporation

Specifi cations

 Specifications

3

Device ID Register

Device ID is a 16-bit read-only register that identifies the device type. The
value of this register is assigned by the manufacturer. The default value of
the device ID register is 0 Hex. Designers can change the value of the
device ID register by setting the parameter DEVICE_ID. See Table 5.

Command Register

Command is a 16-bit read/write register that provides basic control over
the ability of the PCI function to respond to the PCI bus and/or access it.
See Table 6.

Table 4. Vendor ID Register Format

Data Bit Mnemonic Read/Write Definition

15..0 vendor_id Read PCI vendor ID

Table 5. Device ID Register Format

Data Bit Mnemonic Read/Write Definition

15..0 device_id Read Device ID
Altera Corporation 65

Specifi cations
Status Register

Status is a 16-bit register that provides the status of bus-related events.
Read transactions from the status register behave normally. However,
write transactions are different from typical write transactions because
bits in the status register can be cleared but not set. A bit in the status
register is cleared by writing a logic one to that bit. For example, writing
the value 4000 Hex to the status register clears bit 14 and leaves the rest
of the bits unchanged. The default value of the status register is 0400 Hex.
See Table 7.

Table 6. Command Register Format

Data
Bit

Mnemonic Read/Write Definition

0 io_ena Read/write I/O access enable. When high, io_ena lets thefunction respond to the PCI
bus I/O accesses as a target.

1 mem_ena Read/write Memory access enable. When high, mem_ena lets the function respond to
the PCI bus memory accesses as a target.

2 mstr_ena Read/write Master enable. When high, mstr_ena allows the function to acquire
mastership of the PCI bus.

3 Unused – –

4 mwi_ena Read/write Memory write and invalidate enable. This bit controls whether the master
may generate a MWI command. Although the function implements this bit,
it is ignored. The local side must ensure that the mwi_ena output is high
before it requests a master transaction using the MWI command.

5 Unused – –

6 perr_ena Read/write Parity error enable. When high, perr_ena enables the function to report
parity errors via the perrn output.

7 Unused – –

8 serr_ena Read/write System error enable. When high, serr_ena allows the function to report
address parity errors via the serrn output. However, to signal a system
error, the perr_ena bit must also be high.

15..9 Unused – –
66 Altera Corporation

Specifi cations

 Specifications

3

Table 7. Status Register Format (Part 1 of 2)

Data
Bit

Mnemonic Read/Write Definition

3..0 Unused – Reserved.

4 cap_list_ena Read Capabilities list enable. This bit is read only and is set by the user
by setting the CAP_LIST_ENA bit to 1. When set, this bit enables
the capabilities list pointer register at offset 34 Hex. See
“Capabilities Pointer” on page 76 for more details.

5 pci_66mhz_capable Read PCI 66-MHz capable. When set, pci_66mhz_capable
indicates that the PCI device is capable of running at 66 MHz.
The MegaCore function can run at either 66 MHz or
33 MHz depending on the device used. You can set this bit to
one by setting the PCI_66MHZ_CAPABLE parameter to "YES" .

7..6 Unused – Reserved.

8 dat_par_rep Read/write Reported data parity. When high, dat_par_rep indicates that
during a read transaction the function asserted the perrn output
as a master device, or that during a write transaction the perrn
output was asserted as a target device. This bit is high only when
the perr_ena bit (bit 6 of the command register) is also high.
This signal is driven to the local side on the stat_reg[0]
output.

10..9 devsel_tim Read Device select timing. The devsel_tim bits indicate target
access timing of the function via the devseln output. The PCI
MegaCore functions are designed to be slow target devices (i.e.,
devsel_tim = B"10").

11 tabort_sig Read/write Signaled target abort. This bit is set when a local peripheral
device terminates a transaction. The function automatically sets
this bit if it issued a target abort after the local side asserted
lt_abortn . This bit is driven to the local side on the
stat_reg[1] output.

12 tar_abrt_rec Read/write Target abort. When high, tar_abrt_rec indicates that the
function in master mode has detected a target abort from the
current target device. This bit is driven to the local side on the
stat_reg[2] output.

13 mstr_abrt Read/write Master abort. When high, mstr_abrt indicates that the function
in master mode has terminated the current transaction with a
master abort. This bit is driven to the local side on the
stat_reg[3] output.
Altera Corporation 67

Specifi cations
Revision ID Register

Revision ID is an 8-bit read-only register that identifies the revision
number of the device. The value of this register is assigned by the
manufacturer (e.g., Altera for the PCI functions). For Altera PCI
MegaCore functions, the default value of the revision ID register is the
revision number of the function. See Table 8. Designers can change the
value of the revision ID register by setting the REVISION_ID parameter.

Class Code Register

Class code is a 24-bit read-only register divided into three sub-registers:
base class, sub-class, and programming interface. Refer to the PCI Local
Bus Specification, Revision 2.2 for detailed bit information. The default
value of the class code register is FF0000 Hex. Designers can change the
value by setting the CLASS_CODE parameter. See Table 9.

14 serr_set Read/write Signaled system error. When high, serr_set indicates that the
function drove the serrn output active, i.e., an address phase
parity error has occurred. The function signals a system error
only if an address phase parity error was detected and
serr_ena was set. This signal is driven to the local side on the
stat_reg[4] output.

15 det_par_err Read/write Detected parity error. When high, det_par_err indicates that
the function detected either an address or data parity error. Even
if parity error reporting is disabled (via perr_ena), the function
sets the det_par_err bit. This signal is driven to the local side
on the stat_reg[5] output.

Table 7. Status Register Format (Part 2 of 2)

Data
Bit

Mnemonic Read/Write Definition

Table 8. Revision ID Register Format

Data Bit Mnemonic Read/Write Definition

7..0 rev_id Read PCI revision ID

Table 9. Class Code Register Format

Data Bit Mnemonic Read/Write Definition

23..0 class Read Class code
68 Altera Corporation

Specifi cations

 Specifications

3

Cache Line Size Register

The cache line size register specifies the system cache line size in
DWORDS. This read/write register is written by system software at
power-up. The value in this register is driven to the local side on the
cache[7..0] bus. The local side must use this value when using the
memory write and invalidate command in master mode. See Table 10.

1 This register is implemented in the pci_mt64 and pci_mt32
target functions only.

Latency Timer Register

The latency timer register is an 8-bit register with bits 2, 1, and 0 tied to
ground. The register defines the maximum amount of time, in PCI bus
clock cycles, that the PCI function can retain ownership of the PCI bus.
After initiating a transaction, the function decrements its latency timer by
one on the rising edge of each clock. The default value of the latency timer
register is 00 Hex. See Table 11.

1 This register is implemented in the pci_mt64 and pci_mt32
target functions only.

Header Type Register

Header type is an 8-bit read-only register that identifies the PCI function
as a single-function device. The default value of the header type register
is 00 Hex. See Table 12.

Table 10. Cache Line Size Register Format

Data Bit Mnemonic Read/Write Definition

7..0 cache Read/write Cache line size

Table 11. Latency Timer Register Format

Data Bit Mnemonic Read/Write Definition

2..0 lat_tmr Read Latency timer register

7..3 lat_tmr Read/write Latency timer register
Altera Corporation 69

Specifi cations
Base Address Registers

The PCI function supports up to six BARs. Each base address register
(BARn) has identical attributes. You can control the number of BARs that
are instantiated in the function by setting the parameter
NUMBER_OF_BARS. Depending on the value set by this parameter, one or
more of the BARs in the function is instantiated. The logic for the unused
BARs is reduced automatically by the Quartus and MAX+PLUS II
development tools when you compile the PCI function.

Each BAR has its own parameter BARn (where n is the BAR number).
Each BAR should be a 32-bit hexadecimal number, which selects a
combination of the following BAR options:

■ Type of address space reserved by the BAR
■ Location of the reserved memory
■ Sets the reserved memory as prefetchable or non-prefetchable
■ Size of memory or I/O address space reserved for the BAR

1 When compiling the PCI function, the MAX+PLUS II software
generates informational messages informing you of the number
and options of the BARs you have specified.

The BAR is formatted per the PCI Local Bus Specification, Revision 2.2.
Bit 0 of each BAR is read only, and is used to indicate whether the reserved
address space is memory or I/O. BARs that map to memory space must
hardwire bit 0 to 0, and BARs that map to I/O space must hardwire bit
0 to 1. Depending on the value of bit 0, the format of the BAR changes. You
can set the type of BAR you want to instantiate by setting the individual
bit 0 of the corresponding BARn parameter.

In a memory BAR, bits 2 and 1 indicate the location of the address space
in the memory map. You can control the location of each BAR address
space independently by setting the value of bit 2 and 1 in the
corresponding BARn parameter.

Bit 3 of a memory BAR controls whether the BAR is prefetchable. You can
control whether the BAR is prefetchable independently by setting the
value for bit 3 in the corresponding BARn parameter. See Table 13.

Table 12. Header Type Register Format

Data Bit Mnemonic Read/Write Definition

7..0 header Read PCI header type
70 Altera Corporation

Specifi cations

 Specifications

3

In addition to the type of space reserved by the BAR, the parameter value
BARn determines the number of read/write bits instantiated in the
corresponding BAR. The number of read/write bits in a BAR determines
the size of address space reserved (See Section 6.2.5 in the PCI Local Bus
Specification, Revision 2.2). You can indicate the number of read/write
bits instantiated in a BAR by the number of 1s in the corresponding BARn
value starting from bit 31. The BARn parameter should contain 1s from
bit 31 down to the required bit without any 0s in between. For example, a
value of "FF000000" Hex is a legal value for a BARn parameter, but the
value "FF700000" Hex is not, because bits 24 and 22 are 1s and bit 23 is 0.
As another example, if you set the BAR0 parameter to "FFC00008" , BAR0
would have the following options:

■ Memory BAR
■ Located anywhere in the 32-bit address space
■ Prefetchable
■ Reserved memory space = 2(32 – 10) = 4 Mbytes

Table 13. Memory BAR Format

Data
Bit

Mnemonic Read/Write Definition

0 mem_ind Read Memory indicator. The mem_ind bit indicates that the register maps into
memory address space. This bit must be set to 0 in the BARn parameter.

2..1 mem_type Read Memory type. The mem_type bits indicate the type of memory that can
be implemented in the function’s memory address space. Only the
following two possible values are valid for the PCI functions: locate
memory space in the 32-bit address space and locate memory space in
the 64-bit address space.

3 pre_fetch Read Memory prefetchable. The pre_fetch bit indicates whether the blocks
of memory are prefetchable by the host bridge.

31..4 bar Read/write Base address registers.
Altera Corporation 71

Specifi cations
Additionally, for high-end systems that require more than 4 Gbytes of
memory space, the pci_mt64 function supports 64-bit addressing. BAR0
and BAR1 are used for a 64-bit BAR. BAR0 contains the lower 32-bit BAR,
and BAR1 contains the upper 32-bit BAR. For BAR0, bit 0 must be set to 0
to indicate a memory space. Bits 2 and 1 must be set to B"10" respectively,
to indicate a memory space located anywhere in the 64-bit address space.
Also, bit 3 of a memory BAR controls whether the BAR is prefetchable.
Bits [31..4] of BAR0 are read/write registers that are used to indicate the
size of the memory, along with BAR1. For BAR1, the upper 24-bits [31..8]
are read-only bits and are tied to ground. However, in the parameters
field of the PCI symbol, the upper 24 bits [31..8] of BAR1 in a 64-bit BAR
must still be set to "FFFFFF" Hex. The 8 least significant bits [7..0] of BAR1
are read/write registers, and along with bits [31..4] of BAR0, they indicate
the size of the memory. For example, if you set the BAR1 parameter to
"FFFFFFFF" Hex and the BAR0 parameter to "0000000C" Hex, BAR1 and
BAR0 would have the following options:

1 If BAR1 is used as a 32-bit BAR, the upper 24 bits [31..8] are
read/write registers, along with bits [7..4]. The four least
significant bits [3..0] are read-only bits and are defined in
Table 13 on page 71.

■ Memory BAR
■ Located anywhere in the 64-bit address space
■ Prefetchable
■ Reserved memory space = 2(64 – 32) = 4 Gbytes.

1 Reserved memory space can also be calculated by the following
formula: 2(40 – 8) = 4 Gbytes, where 40 = actual available registers
and 8 = user assigned read/write register.

If BAR0 and BAR1 are used for a 64-bit memory base address register, the
NUMBER_OF_BARS parameter should be set to 2. The BAR5 through BAR2
parameters can still be used for 32-bit memory or I/O base address
registers in conjunction with a 64-bit BAR setting. If BAR5 through BAR2
are used with a 64-bit BAR setting, the NUMBER_OF_BARS parameter
should be set to 6.

Like a memory BAR, the corresponding BARn parameter can be used to
instantiate an I/O BAR in any of the six BARs available for the PCI
function. You can instantiate an I/O BAR by setting bit 0 of the
corresponding BARn parameter to 1 instead of 0.
72 Altera Corporation

Specifi cations

 Specifications

3

In an I/O BAR, bit 1 is always reserved and you should set it to 1. Like the
memory BAR, the read/write bits in the most significant part of the BAR
control the amount of address space reserved. You can indicate the
number of read/write bits you would like to instantiate in a BAR by
setting the appropriate bits to a 1 in the corresponding BARn parameter.
The PCI Local Bus Specification, Revision 2.2 prevents any single I/O
BAR from reserving more than 256 bytes of I/O space. See Table 14.

For example, if you set the BAR1 parameter to "FFFFFFC1" , BAR 1 would
have the following options:

■ I/O BAR
■ Reserved I/O space = 2 (32 – 26) = 64 bytes

In some applications, one or more BARs must be hardwired. The
MegaCore functions allow you to set default base addresses that can be
used to claim transactions without requiring the configuration of the
corresponding BARs. To implement this feature, set the appropriate
HARDWIRE_BARn_ENA bits to 1 in the ENABLE_BITS parameter as the
default base address (n corresponds to the BAR number and can be from
0 to 5). When using HARDWIRE_BARn, you must set the corresponding
BARn parameter appropriately to indicate the BAR settings, such as
address space type and number of decoded bits. When
HARDWIRE_BARn_ENA is set to 0, HARDWIRE_BARn is ignored.

1 When you use HARDWIRE_BARn, the corresponding BARs
become read-only. A configuration write to this BAR will
proceed normally. However, a configuration read of these
registers will return the value in the HARDWIRE_BARn parameter.

Table 14. I/O Base Address Register Format

Data
Bit

Mnemonic Read/Write Definition

0 io_ind Read I/O indicator. The io_ind bit indicates that the register maps into I/O
address space. This bit must be set to 1 in the BARn parameter.

1 Reserved – –

31..2 bar Read/write Base address registers.
Altera Corporation 73

Specifi cations
CardBus CIS Pointer Register

The card information structure (CIS) pointer register is a 32-bit read-only
register that points to the beginning of the CIS. This optional register is
used by devices that have the PCI and CardBus interfaces on the same
silicon. By default, the MegaCore functions do not support this register.
To enable support, set the CIS_PTR_ENA bit to 1 and the CIS_PTR bit to the
appropriate value. Table 15 shows this register’s format. For more
information on the CardBus CIS pointer register, refer to the PCMCIA
Specification, Version 2.10.

Subsystem Vendor ID Register

Subsystem vendor ID is a 16-bit read-only register that identifies add-in
cards from different vendors that have the same functionality. The value
of this register is assigned by the PCI SIG. See Table 16. The default value
of the subsystem vendor ID register is 0000 Hex. However, designers can
change the value by setting the SUBSYSTEM_VEND_ID parameter.

Table 15. CIS Pointer Register Format

Data Bit Mnemonic Read/Write Definition

0..2 adr_space_ind Read Address space indicator. The value of these bits indicates
that the CIS pointer register is pointing to one of the
following spaces: configuration space, memory space, or
expansion ROM space.

3..27 adr_offset Read Address space offset. This value gives the address space’s
offset indicated by the address space indicator.

31..28 rom_im Read ROM image. These bits are the uppermost bits of the
address space offset when the CIS pointer register is
pointing to an expansion ROM space.

Table 16. Subsystem Vendor ID Register Format

Data Bit Mnemonic Read/Write Definition

15..0 sub_vend_id Read PCI subsystem/vendor ID
74 Altera Corporation

Specifi cations

 Specifications

3

Subsystem ID Register

The subsystem ID register identifies the subsystem. The value of this
register is defined by the subsystem vendor, i.e., the designer. See
Table 17. The default value of the subsystem ID register is 0000 Hex.
However, designers can change the value by setting the SUBSYSTEM_ID
parameter.

Expansion ROM Base Address Register

The expansion ROM base address register contains a 32-bit hexadecimal
number that defines the base address and size information of the
expansion ROM. You can instantiate the expansion ROM BAR by setting
the bit EXP_ROM_ENA to 1. The expansion ROM BAR functions exactly like
a 32-bit BAR, except that the encoding of the bottom bits is different. Bit 0
in the register is a read/write and is used to indicate whether or not the
device accepts accesses to its expansion ROM. You can disable the
expansion ROM address space by setting bit 0 to 0. You can enable the
address decoding of the expansion ROM by setting bit 0 to 1. The upper
21 bits correspond to the upper 21 bits of the expansion ROM base
address. The amount of address space a device requests must not be
greater than 16 Mbytes. The expansion ROM BAR is formatted per the
PCI Local Bus Specification, Revision 2.2. See Table 18.

Table 17. Subsystem ID Register Format

Data Bit Mnemonic Read/Write Definition

15..0 sub_id Read PCI subsystem ID

Table 18. Expansion ROM Base Address Register Format

Data
Bit

Mnemonic Read/Write Definition

0 adr_ena Read/write Address decode enable. The adr_ena bit indicates whether or not the
device accepts accesses to its expansion ROM. You can disable the
expansion ROM address space by setting this bit to 0. You can enable the
address decoding of the expansion ROM by setting this bit to 1.

10..1 Reserved – –

31..11 bar Read/write Expansion ROM base address registers.
Altera Corporation 75

Specifi cations
Capabilities Pointer

The capabilities pointer register is an 8-bit read-only register. The value
set to the parameter CAP_PTR points to the first item in the list of
capabilities. For a list of the capability IDs, see appendix H in the PCI
Local Bus Specification, Revision 2.2. The address location of the pointer
must be 40 Hex or greater, and each capability must be within DWORD
boundaries. To enable the capabilities pointer register, the bit
CAP_LIST_ENA must be set to 1. See Table 19.

Interrupt Line Register

The interrupt line register is an 8-bit register that defines to which system
interrupt request line (on the system interrupt controller) the intan
output is routed. The interrupt line register is written by the system
software upon power-up; the default value is FF Hex. See Table 20.

Interrupt Pin Register

The interrupt pin register is an 8-bit read-only register that defines the PCI
function PCI bus interrupt request line to be intan . The default value of
the interrupt pin register is 01 Hex. See Table 21.

Table 19. Interrupt Line Register Format

Data Bit Mnemonic Read/Write Definition

7..0 cap_ptr Read/write Capabilities pointer register

Table 20. Interrupt Line Register Format

Data Bit Mnemonic Read/Write Definition

7..0 int_ln Read/write Interrupt line register

Table 21. Interrupt Pin Register Format

Data Bit Mnemonic Read/Write Definition

7..0 int_pin Read Interrupt pin register
76 Altera Corporation

Specifi cations

 Specifications

3

Minimum Grant Register

The minimum grant register is an 8-bit read-only register that defines the
length of time the function would like to retain mastership of the PCI bus.
The value set in this register indicates the required burst period length in
250-ns increments. Designers can set this register with the parameter
MIN_GRANT. See Table 22.

Maximum Latency Register

The maximum latency register is an 8-bit read-only register that defines
the frequency in which the function would like to gain access to the PCI
bus. See Table 23. Designers can set this register with the parameter
MAX_LAT.

Table 22. Minimum Grant Register Format

Data Bit Mnemonic Read/Write Definition

7..0 min_gnt Read Minimum grant register

Table 23. Maximum Latency Register Format

Data Bit Mnemonic Read/Write Definition

7..0 max_lat Read Maximum latency register
Altera Corporation 77

Specifi cations
Target Mode
Operation

This section describes all supported target transactions for the PCI
functions. Although this section includes waveform diagrams showing
typical PCI cycles in target mode for the pci_mt64 function, these
waveforms are also applicable for the pci_mt32 , pci_t64 , and pci_t32
functions. The pci_mt64 and pci_t64 MegaCore functions support both
32-bit and 64-bit transactions. Table 24 lists the PCI and local side signals
that apply for each PCI function.

Table 24. PCI MegaCore Function Signals (Part 1 of 2)

PCI Signals pci_mt64 pci_t64 pci_mt32 pci_t32

clk v v v v

rstn v v v v

gntn v v

reqn v v

ad[63..0] v v ad[31..0] ad[31..0]

cben[7..0] v v cben[3..0] cben[3..0]

par v v v v

par64 v v

idsel v v v v

framen v v v v

req64n v v

irdyn v v v v

devseln v v v v

ack64n v v

trdyn v v v v

stopn v v v v

perrn v v v v

serrn v v v v

intan v v v v

Local side signals

l_adi[63..0] v v l_adi[31..0] l_adi[31..0]

l_cbeni[7..0] v v l_cbeni[3..0]

l_adro[63..0] v v l_adro[31..0] l_adro[31..0]

l_dato[63..0] v v l_dato[31..0] l_dato[31..0]

l_beno[7..0] v v l_beno[3..0] l_beno[3..0]

l_cmdo[3..0] v v v v

l_ldat_ackn v v

l_hdat_ackn v v

Target local side v

lt_abortn v v v v
78 Altera Corporation

Specifi cations

 Specifications

3

The pci_mt64 and pci_t64 functions support the following 64-bit
memory transactions:

■ 64-bit memory single-cycle target read
■ 64-bit memory burst target read
■ 64-bit memory single-cycle target write
■ 64-bit memory burst target write

Each PCI function supports the following 32-bit transactions:

■ 32-bit memory single-cycle target read
■ 32-bit memory burst target read
■ I/O target read
■ Configuration target read
■ 32-bit memory single-cycle target write
■ 32-bit memory burst target write
■ I/O target write
■ Configuration target write

lt_discn v v v v

lt_rdyn v v v v

lt_framen v v v v

lt_ackn v v v v

lt_dxfrn v v v v

lt_tsr[11..0] v v v v

lirqn v v v v

cache[7..0] v v v v

cmd_reg[5..0] v v v v

stat_reg[5..0] v v v v

Master local side

lm_req32n v v

lm_req64n v

lm_lastn v v

lm_rdyn v v

lm_adr_ackn v v

lm_ackn v v

lm_dxfrn v v

lm_tsr[9..0] v v

Table 24. PCI MegaCore Function Signals (Part 2 of 2)

PCI Signals pci_mt64 pci_t64 pci_mt32 pci_t32
Altera Corporation 79

Specifi cations
1 The pci_mt64 and pci_t64 functions assume that the local side
is 64 bits during memory transactions and 32 bits during I/O
transactions. Therefore, these functions automatically read 64-bit
data on the local side and transfer the data to the PCI master, one
DWORD at a time, if the PCI bus is 32 bits wide.

A read or write transaction begins after a master device acquires
mastership of the PCI bus and asserts framen to indicate the beginning of
a bus transaction. If the transaction is a 64-bit transaction, the master
device asserts the req64n signal at the same time it asserts the framen
signal. The clock cycle, where the framen signal is asserted, is called the
address phase. During the address phase, the master device drives the
transaction address and command on ad[31..0] and cben[3..0] ,
respectively. When framen is asserted, the MegaCore function latches the
address and command signals on the first clock edge and starts the
address decode phase. If the transaction address matches the target, the
target asserts the devseln signal to claim the transaction. In the case of
64-bit transactions, the pci_mt64 and pci_t64 assert the ack64n signal
at the same time as the devseln signal indicating that it accepts the 64-bit
transaction. All PCI MegaCore functions implement slow decode (i.e., the
devseln and ack64n signals in the pci_mt64 and pci_t64 functions are
asserted three clock cycles after a valid address is presented on the PCI
bus). In all operations except configuration read/write, one of the
lt_tsr[5..0] signals is driven high, indicating the BAR range address
of the current transaction.

Configuration transactions are always single-cycle 32-bit transactions.
The MegaCore function has complete control over configuration
transactions and informs the local-side device of the progress and
command of the transaction. The MegaCore function asserts all control
signals, provides data in the case of a read, and receives data in the case of
a write without interaction from the local-side device.

Memory transactions can be single-cycle or burst. In target mode, the
MegaCore function supports an unlimited length of zero-wait-state
memory burst read or write. In a read transaction, data is transferred from
the local side to the PCI master. In a write transaction, data is transferred
from the PCI master to the local-side device. A memory transaction can be
terminated by either the PCI master or the local-side device. The local-side
device can terminate the memory transaction using one of three types of
terminations: retry, disconnect, or target abort. “Target Transaction
Terminations” on page 110 describes how to initiate the different types of
termination.
80 Altera Corporation

Specifi cations

 Specifications

3

1 The MegaCore function treats the memory read line and
memory read multiple commands as memory read. Similarly,
the function treats the memory write and invalidate command as
a memory write. The local-side application must implement any
special requirements required by these commands.

I/O transactions are always single-cycle 32-bit transactions. Therefore,
the MegaCore function handles them like single-cycle memory
commands. Any of the six BARs in the PCI functions can be configured to
reserve I/O space. See “Base Address Registers” on page 70 for more
information on how to configure a specific BAR to be an I/O BAR. Like
memory transactions, I/O transactions can be terminated normally by the
PCI master, or the local-side device can instruct the MegaCore function to
terminate the transactions with a retry or target abort. Because all I/O
transactions are single-cycle, terminating a transaction with a disconnect
does not apply.

64-Bit Target Read Transactions

In target mode, the pci_mt64 and pci_t64 functions support two types
of 64-bit read transactions:

■ Memory single-cycle read
■ Memory burst read

For both types of read transactions, the sequence of events is the same and
can be divided into the following steps:

1. The address phase occurs when the PCI master asserts framen and
req64n signals and drives the address and command on ad[31..0]
and cben[3..0] , correspondingly. Asserting the req64n signal
indicates to the target device that the master device is requesting a
64-bit data transaction.

2. Turn-around cycles on the ad[63..0] bus occur during the clock
immediately following the address phase. During the turn-around
cycles, the PCI master tri-states the ad[63. .0] bus, but drives
correct byte-enables on cben[7..0] for the first data phase. This
process is necessary because the PCI agent driving the ad[63..0]
bus changes during read cycles.

3. If the address of the transactions match one of the base address
registers, the pci_mt64 and pci_t64 functions turn on the drivers
for the ad[63..0] , devseln , ack64n , trdyn , and stopn signals. The
drivers for par and par64 are turned on in the following clock.
Altera Corporation 81

Specifi cations
4. The pci_mt64 and pci_t64 functions drive and assert devseln and
ack64n to indicate to the master device that it is accepting the 64-bit
transaction.

5. One or more data phases follow next, depending on the type of read
transaction.

64-Bit Single-Cycle Target Read Transaction

Figure 1 shows the waveform for a 64-bit single-cycle target read
transaction. This figure applies to all PCI MegaCore functions, except the
64-bit extension signals as noted for the pci_mt32 and pci_t32 functions.
82 Altera Corporation

Specifi cations

 Specifications

3

Figure 1. 64-Bit Single-Cycle Target Read Transaction

Note:
(1) These signals do not apply to pci_mt32 or pci_t32 for 32-bit target read transactions. For these transactions, the

signals should be ignored.

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_ackn

l_adi[31..0]

lt_dxfrn

clk

(1) l_adi[63..32]

l_beno[3..0]

(1) l_beno[7..4]

lt_tsr[11..0]

Adr

6

Adr-PAR

Z

Adr

6

Z

BE0_L

BE0_H

Z

000 181

D0_L

D0_H

D0-L-PAR

D0-H-PAR

BE0_L

BE0_H

000581

1 2 3 4 5 6 7 8 9 10

D0_L

D0_H

lt_rdyn
Altera Corporation 83

Specifi cations

Table 25 shows the sequence of events for a single-cycle target read
transaction.

Table 25. Single-Cycle Target Read Transaction (Part 1 of 2)

Clock
Cycle

Event

1 The PCI bus is idle.

2 The address phase occurs.

3 The MegaCore function latches the address and command, and decodes the address to check if it falls
within the range of one of its BARs. During clock 3, the master deasserts the f ramen and req64n
signals and asserts irdyn to indicate that only one data phase remains in the transaction. For a single-
cycle target read, this phase is the only data phase in the transaction. The MegaCore function begins
to decode the address during clock 3, and if the address falls in the range of one of its BARs, the
transaction is claimed.

The PCI master tri-states the ad[63..0] bus for the turn-around cycle.

4 If the MegaCore function detects an address hit in clock 3, several events occur during clock 4:

■ The MegaCore function informs the local-side device that it is going to claim the read transaction
by asserting one of the lt_tsr[5..0] signals and lt_framen . In Figure 1, lt_tsr[0] is
asserted indicating that a base address register zero hit.

■ The MegaCore function drives the transaction command on l_cmdo[3..0] and address on
l_adro[31..0] .

■ The MegaCore function turns on the drivers of devseln , ack64n , trdyn , and stopn , getting
ready to assert devseln and ack64n in clock 5.

■ lt_tsr[7] is asserted to indicate that the pending transaction is 64-bits.
■ lt_tsr[8] is asserted to indicate that the PCI side of the MegaCore function is busy.
■ lt_tsr[9] is not asserted indicating that the current transaction is single-cycle.

1 A burst transaction can be identified if both the irdyn and framen signals are asserted at
the same time during a transaction. The function asserts lt_tsr[9] if both irdyn and
framen are asserted during a valid target transaction. If lt_tsr[9] is not asserted during
a transaction, it indicates that irdyn and framen have not been detected or asserted during
the transaction. Typically this situation indicates that the current transaction is single-cycle.
However, this situation is not guaranteed because it is possible for the master to delay the
assertion of irdyn in the first data phase by up to 8 clocks. In other words, if lt_tsr[9] is
asserted during a valid target transaction, it indicates that the pending transaction is a burst,
but if lt_tsr[9] is not asserted it may or may not indicate that the transaction is single-
cycle.

5 The MegaCore function asserts devseln and ack64n to claim the transaction. The function also
drives lt_ackn to the local-side device to indicate that it is ready to accept data on l_ adi[63..0] .
The MegaCore function also enables the output drivers of the ad[63..0] bus to ensure that it is not
tri-stated for a long time while waiting for valid data. Although the local side asserts lt_rdyn during
clock 5, the data transfer does not occur until clock 6.
84 Altera Corporation

Specifi cations

 Specifications

3

1 The local-side device must ensure that PCI latency rules are not
violated while the MegaCore function waits for data. If the local-
side device is unable to meet the latency requirements, it must
assert lt_discn to request that the MegaCore function
terminate the transaction. The PCI target latency rules state that
the time to complete the first data phase must not be greater than
16 PCI clocks, and the subsequent data phases must not take
more than 8 PCI clock cycles to complete.

64-Bit Memory Burst Read Transaction

The sequence of events for a burst read transaction is the same as that of a
single-cycle read transaction. However, during a burst read transaction,
more data is transferred and both the local-side device and the PCI master
can insert waits states at any point during the transaction. Figure 2
illustrates a burst read transaction. This figure applies to all PCI
MegaCore functions, except the 64-bit extension signals as noted for the
pci_mt32 and pci_t32 functions.

6 lt_rdyn is asserted in clock 5, indicating that valid data is available on l_ adi[63..0] in
clock 6. The MegaCore function registers the data into its internal pipeline on the rising edge of
clock 7. The local side transfer is indicated by the lt_dxfrn signal. The lt_dxfrn signal is low during
the clock where a data transfer on the local side occurs.

7 The rising edge of clock 7 registers the valid data from l_ adi[63..0] and drives the data on the
ad[63..0] bus. At the same time, the MegaCore function asserts the trdyn signal to indicate that
there is valid data on the ad[63..0] bus.

8 The MegaCore function deasserts trdyn , devseln , and ack64n to end the transaction. To satisfy
the requirements for sustained tri-state buffers, the MegaCore function drives devseln , ack64n ,
trdyn , and stopn high during this clock cycle. Additionally, the MegaCore function tri-states the
ad[63..0] bus because the cycle is complete. The rising edge of clock 8 signals the end of the last
data phase because framen is deasserted and irdyn and trdyn are asserted. In clock 8, the
MegaCore function also informs the local side that no more data is required by deasserting
lt_framen , and lt_tsr[10] is asserted to indicate a successful data transfer on the PCI side during
the previous clock cycle.

9 The MegaCore function informs the local-side device that the transaction is complete by deasserting
the lt_tsr[11..0] signals. Additionally, the MegaCore function tri-states devseln , ack64n ,
trdyn , and stopn to begin the turn-around cycle on the PCI bus.

Table 25. Single-Cycle Target Read Transaction (Part 2 of 2)

Clock
Cycle

Event
Altera Corporation 85

Specifi cations
86 Altera Corporation

Figure 2. 64-Bit Zero Wait State Target Burst Read Transaction

Note:
(1) These signals do not apply to pci_mt32 or pci_t32 for 32-bit target read transactions. For these transactions, the

signals should be ignored.

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_ackn

l_adi[31..0]

lt_dxfrn

clk

(1) l_adi[63..32]

l_beno[3..0]

(1) l_beno[7..4]

lt_tsr[11..0]

Adr

6

Adr-PAR

Z

Adr

6

Z

BE_L

BE_H

Z

000 381 781

D0_L

D0_H

D0_L

D0_H

D0-L-PAR

D0-H-PAR

BE_L

BE_H

000

D1_L

D1_H

D2_L

D2_H

D3_L

D3_H

D4_L

D4_H

D1_L

D1_H

D2_L

D2_H

D3_L

D3_H

D1-L-PAR

D1-H-PAR

D2-L-PAR

D2-H-PAR

D3-L-PAR

D3-H-PAR

132 3 4 5 6 7 9 10 128 111

lt_rdyn

Specifi cations

 Specifications

3

Figure 2 shows a 64-bit zero wait state burst transaction with four data
phases. The local side transfers five quad words (QWORDs) in clocks 6
through 10. The PCI side transfers data in clocks 7 through 10. Because of
the zero wait state requirement of the MegaCore function, it reads ahead
from the local side. If the local side is not prefetchable (i.e., reading ahead
will result in lost or corrupt data), it must not accept burst read
transactions, and it should disconnect after the first QWORD transfer on
the local side. Additionally, Figure 2 shows the lt_tsr[9] signal asserted
in clock 4 because the master device has framen and irdyn signals
asserted, thus indicating a burst transaction.

Figure 3 shows the same transaction as in Figure 2 with the PCI bus
master asserting a wait state. Figure 3 applies to all PCI MegaCore
functions, except the 64-bit extension signals as noted for the pci_mt32
and pci_t32 functions. The PCI bus master asserts a wait state by
deasserting irdy n in clock 8. The effect of this wait state on the local side
is shown in clock 9 because lt_ackn is deasserted, and as a result
lt_dxfrn is also deasserted. This situation prevents further data from
being transferred on the local side because the internal pipeline of the
MegaCore function is full.
Altera Corporation 87

Specifi cations
Figure 3. 64-Bit Target Burst Read Transaction with PCI Master Wait State

Note:
(1) These signals do not apply to pci_mt32 or pci_t32 for 32-bit target read transactions. For these transactions, the

signals should be ignored.

Figure 4 shows the same transaction as shown in Figure 2 with the local
side asserting a wait state. The local side deasserts lt_rdyn in clock 6.
Deasserting lt_rdyn in clock 6 suspends the local side data transfer in
clock 7 by deasserting the lt_dxfrn signal. Because no data is transferred
in clock 7 from the local side, the function deasserts trdyn in clock 8 thus
inserting a PCI wait state.

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_rdyn

lt_ackn

l_adi[31..0]

lt_dxfrn

clk

(1) l_adi[63..32]

l_beno[3..0]

(1) l_beno[7..4]

lt_tsr[11..0]

Adr

6

Adr-PAR

Z

Adr

6

Z

BE_L

BE_H

Z

000 381

D0_L

D0_H

D0_L

D0_H

D0-L-PAR

D0-H-PAR

Z

Z

Z

Z

BE_L

BE_H

000781 381 781

D1_L

D1_H

D2_L

D2_H

D3_L

D3_H

D1_L

D1_H

D2_L

D2_H

D1-L-PAR

D1-H-PAR

D2-L-PAR

D2-H-PAR

2 3 4 5 6 7 9 10 128 11 131
88 Altera Corporation

Specifi cations

 Specifications

3

Figure 4. 64-Bit Target Burst Read Transaction with PCI with Local-Side Wait State

Note:
(1) These signals do not apply to the pci_mt32 or pci_t32 functions for target read transactions. For these transactions,

the signals should be ignored.

1 The local-side device must ensure that PCI latency rules are not
violated while the MegaCore function waits for data. If the local-
side device is unable to meet the latency requirements, it must
assert lt_discn to request that the MegaCore function
terminate the transaction. The PCI target latency rules state that
the time to complete the first data phase must not be greater than
16 PCI clocks, and the subsequent data phases must not take
more than 8 PCI clocks to complete.

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_rdyn

lt_ackn

l_adi[31..0]

lt_dxfrn

clk

(1) l_adi[63..32]

l_beno[3..0]

(1) l_beno[7..4]

lt_tsr[11..0]

Adr

6

Adr-PAR

Z

Adr

6

Z

BE_L

BE_H

Z

000

D0_L

D0_H

D0_L

D0_H

D0-L-PAR

D0-H-PAR

Z

Z

BE_L

BE_H

000381 781

D2_L

D2_H

D3_L

D3_H

D1_L

D1_H

D2_L

D2_H

D1-L-PAR

D1-H-PAR

D2-L-PAR

D2-H-PAR

2 3 4 5 6 7 9 10 128 11 131

D1_L

D1_H

381 781
Altera Corporation 89

Specifi cations

32-Bit Target Read Transactions

The PCI MegaCore functions respond to three types of 32-bit target read
transactions:

■ Memory read transactions
■ I/O read transactions
■ Configuration read transactions

32-Bit Memory Read Transactions

For all MegaCore functions, 32-bit memory read transactions are either
single-cycle or burst. For the pci_mt32 and pci_t32 functions, the
waveforms for 32-bit memory read transactions are described in Figures 1
through 4, excluding the 64-bit extension signals as noted. For 32-bit
memory read transactions, the pci_mt64 and pci_t64 functions always
assume a 64-bit local side. The pci_mt64 and pci_t64 functions
automatically read 64-bit data on the local side and transfer the data to the
PCI master, one DWORD at a time, if the PCI bus is 32 bits wide. In a
memory read cycle, pci_mt64 and pci_t64 assert both l_ldat_ackn
and l_hdat_ackn to indicate that data is transferred 64 bits at a time on
the local side. The pci_mt64 and pci_t64 functions decode whether the
low or high DWORD is addressed by the master, based on the starting
address of the transaction:

■ If the address of the transaction is a QWORD boundary
(ad[2..0] == B"000"), the first DWORD transferred to the PCI side
is the low DWORD, and pci_mt64 or pci_t64 assert both
l_ldat_ackn and l_hdat_ackn .

■ However, if the address of the transaction is not at QWORD
boundary (ad[2..0] == B"100"), the first DWORD transferred to
the PCI side is the high DWORD of the first 64-bit data phase. The low
DWORD of the first 64-bit data phase is not transferred to the PCI
side. For the following 64-bit data phases after the first, the low
DWORD is transferred first to the PCI side, followed by the high
DWORD.

Figure 5 shows a 32-bit single-cycle memory read transaction. This figure
applies to all PCI MegaCore functions, excluding the 64-bit extension
signals as noted for pci_mt32 and pci_t32 .
90 Altera Corporation

Specifi cations

 Specifications

3

The sequence of events in Figure 5 is exactly the same as in Figure 1,
except for the following cases:

■ During the address phase (clock 3), the master does not assert req64n
because the transaction is 32 bits.

■ The pci_mt64 or pci_t64 function does not assert ack64n when it
asserts devseln .

■ The local side is informed that the pending transaction is 32 bits
because lt_tsr[7] is not asserted while lt_framen is asserted.

Figure 5 shows that the local side transfers a full QWORD in clock 6.
However, the pci_mt64 and pci_t64 functions transfer only the least
significant DWORD to the PCI master but still drives the full 64-bit word
in clock 7. The pci_mt64 and pci_t64 functions also drive the correct
parity value on the par64 signal in clock 8.
Altera Corporation 91

Specifi cations
Figure 5. 32-Bit Single-Cycle Memory Read Transaction

Note:
(1) These signals do not apply to the pci_mt32 or pci_t32 functions for 32-bit target read transactions. For these

transactions, the signals should be ignored.

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_ackn

l_adi[31..0]

lt_dxfrn

clk

(1) l_adi[63..32]

l_beno[3..0]

(1) l_beno[7..4]

lt_tsr[11..0]

Adr

6

Adr-PAR

Z

Adr

6

BE0_L

Z

000 101

D0_L

D0_H

D0-L-PAR

D0-H-PAR

BE0_L

000501

1 2 3 4 5 6 7 8 9 10

D0_L

D0_H

lt_rdyn

BE0_H

BE0_H
92 Altera Corporation

Specifi cations

 Specifications

3

1 The pci_mt64 and the pci_t64 functions always transfer 64-bit
data on the local side. In a 32-bit single-cycle memory read
transaction, only the least significant DWORD is transferred to
the PCI master. Therefore, the local side is only required to
transfer the least significant DWORD in a 32-bit single-cycle
transaction. See Figure 5.

Figure 6 shows a 32-bit burst memory read transaction. This figure only
applies to the pci_mt64 and pci_t64 functions. For pci_mt32 and
pci_t32 , Figure 2 reflects the waveforms for a 32-bit burst read
transaction, excluding the 64-bit extension signals as noted. The events in
Figure 6 are the same as in Figure 2. The main difference between the two
is that a 64-bit transfer takes one clock on the local side, but requires two
clocks on the PCI side. Therefore, the function automatically asserts local
wait states in clocks 7 and 9 to temporarily suspend the local transfer
allowing sufficient time for the data to be transferred on the PCI side. In
Figure 6, lt_tsr[7] is not asserted and lt_tsr[9] is asserted indicating
that the transaction is a 32-bit burst. If the local side cannot handle 32-bit
burst transactions, it can disconnect after the first local transfer.
Altera Corporation 93

Specifi cations
Figure 6. 32-Bit Burst Memory Read Transaction

ad[31..0]

ad[63..32]

cben[3..0]

cben[7..4]

par

par64

framen

req64n

irdyn

devseln

ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_ackn

l_adi[31..0]

lt_dxfrn

clk

l_adi[63..32]

l_beno[3..0]

l_beno[7..4]

lt_tsr[11..0]

Adr

6

Adr-PAR

Z

Adr

6

Z

BE_L

Z

000 301 701

D0_L

D0_H

D0_L

D0_H

D0-L-PAR

D0-H-PAR

BE_L

000

D1_L

D1_H

D2_L

D2_H

D1_L

D1_H

D1-H-PAR

132 3 4 5 6 7 9 10 128 111

lt_rdyn

D0_H D1_H

D1-L-PAR D1-H-PARD0-H-PAR
94 Altera Corporation

Specifi cations

 Specifications

3

I/O Read Transaction

I/O read transactions by definition are 32 bits. Figure 7 shows a sample
I/O read transaction. This figure applies to all PCI MegaCore functions.
The sequence of events is the same as 32-bit single-cycle memory read
transactions. The main distinction between the two transactions is the
command on the lt_cmdo[3..0] bus. In Figure 7, lt_tsr[11..0]
indicates that the base address register that detected the address hit is
BAR1. Additionally, during an I/O transaction l_ldat_ackn and
l_hdat_ackn are not relevant.

Figure 7. I/O Read Transaction

ad[31..0]

cben[3..0]

par

framen

irdyn

devseln

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_ackn

l_adi[31..0]

lt_dxfrn

clk

l_beno[3..0]

lt_tsr[11..0]

Adr

2

Adr-PAR

Z

Adr

2

BE0_L

Z

000 102

D0_L

D0-L-PAR

BE0_L

000502

1 2 3 4 5 6 7 8 9 10

D0_L

lt_rdyn
Altera Corporation 95

Specifi cations
Configuration Read Transaction

Configuration read transactions are 32 bits. Configuration cycles are
automatically handled by the MegaCore functions and do not require
local side actions. Figure 8 shows a typical configuration read transaction.
This figure applies to all PCI MegaCore functions. The configuration read
transaction is similar to 32-bit single-cycle transactions, except for the
following terms:

■ During the address phase, idsel must be asserted
■ Because the configuration read does not require data from the local

side, the MegaCore functions assert t rdyn independent from the
lt_rdyn signal. This situation results in trdyn being asserted in
clock 6 instead of clock 7 as shown in Figure 4. The configuration read
cycle ends in clock 8.

Figure 8. Configuration Read Transaction

1 The local side cannot retry, disconnect, or abort configuration
cycles.

ad[31..0]

cben[3..0]

par

framen

irdyn

devseln

trdyn

stopn

clk

lt_tsr[11..0]

Adr

A

Adr-PAR

Z

BE0_L

Z

000 100

D0-L-PAR

000500

D0_L

idsel

1 2 3 4 5 6 7 8
96 Altera Corporation

Specifi cations

 Specifications

3

64-Bit Target Write Transactions

In target mode, the MegaCore function supports two types of 64-bit
memory write transactions.

■ Memory single-cycle write
■ Memory burst write

For both types of write transactions, the events follow the sequence
described below:

1. The address phase occurs when the PCI master asserts the framen
and req64n signals and drives the address and command on
ad[31..0] and cben[3..0] correspondingly. Asserting req64n
indicates to the target device that the master device is requesting a
64-bit data transaction.

2. If the address of the transaction matches one of the BARs, the
pci_mt64 or pci_t64 function turns on the drivers for ad[63..0] ,
devseln , ack64n , trdyn , and stopn . The drivers for par and par64
are turned on during the following clock.

3. The pci_mt64 or pci_t64 function asserts devseln and ack64n to
indicate to the master device that it is accepting the 64-bit
transaction.

4. One or more data phases follow next, depending on the type of write
transaction.

64-Bit Single-Cycle Target Write Transaction

Figure 9 shows the waveform for a 64-bit single-cycle target write
transaction. This figure applies to all PCI MegaCore functions, excluding
the 64-bit extension signals as noted for the pci_mt32 and pci_t32
functions.
Altera Corporation 97

Specifi cations
98 Altera Corporation

Figure 9. 64-Bit Single-Cycle Target Write Transaction

Note:
(1) These signals do not apply to the pci_mt32 or pci_t32 functions for 32-bit target write transactions. For these

transactions, the signals should be ignored.

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_rdyn

lt_ackn

l_dato[31..0]

lt_dxfrn

(1) l_ldat_ackn

(1) l_hdat_ackn

clk

(1) l_dato[63..32]

l_beno[3..0]

(1) l_beno[7..4]

lt_tsr[11..0]

Adr

7

Adr-PAR

Adr

7

BE0_L

BE0_H

000 181

D0_L

D0_H

D0_L

D0-L-PAR

BE0_L

BE0_H

000

D0_H

D0-H-PAR

1 2 3 4 5 6 7 8 9 10 11

581

Specifi cations

 Specifications

3

Table 26 shows the sequence of events for a single-cycle target write
transaction.

Table 26. 64-Bit Single-Cycle Target Write Transactions (Part 1 of 2)

Clock
Cycle

Event

1 The PCI bus is idle.

2 The address phase occurs.

3 The MegaCore function latches the address and command, and decodes the address to check if it
falls within the range of one of its BARs. During clock 3, the master deasserts the f ramen and
req64n signals and asserts irdyn to indicate that only one data phase remains in the transaction.
For a single-cycle target write, this phase is the only data phase in the transaction. The MegaCore
function uses clock 3 to decode the address, and if the address falls in the range of one of its BARs,
the transaction is claimed.

4 If the MegaCore function detects an address hit in clock 3, several events occur during clock 4:

■ The MegaCore function informs the local-side device that it is going to claim the write transaction
by asserting one of the lt_tsr[5..0] signals and lt_framen . In Figure 9, lt_tsr[0] is
asserted indicating that a base address register zero hit.

■ The MegaCore function drives the transaction command on l_cmdo[3..0] and address on
l_adro[31..0] .

■ The MegaCore function turns on the drivers of devseln , ack64n , trdyn , and stopn getting
ready to assert devseln and ack64n in clock 5.

■ lt_tsr[7] is asserted to indicate that the pending transaction is 64 bits.
■ lt_tsr[8] is asserted to indicate that the PCI side of the MegaCore function is busy.
■ lt_tsr[9] is not asserted indicating that the current transaction is a single-cycle.

A burst transaction can be identified if both the irdyn and framen signals are asserted at the same
time during a transaction. The MegaCore function asserts lt_tsr[9] if both irdyn and framen
are asserted during a valid target transaction. If lt_tsr[9] is not asserted during a transaction, it
indicates that irdyn and framen have not been detected or asserted during the transaction.
Typically this event indicates that the current transaction is single-cycle. However, this indication is
not guaranteed because it is possible for the master to delay the assertion of irdyn in the first data
phase by up to 8 clocks. In other words, if lt_tsr[9] is asserted during a valid target transaction,
it indicates that the pending transaction is a burst, but if the lt_tsr[9] is not asserted it may or may
not indicate that the transaction is single-cycle.

5 The MegaCore function asserts devseln to claim the transaction. Figure 9 also shows the local side
asserting lt_rdyn , indicating that it is ready to receive data from the MegaCore function in clock 6.

To allow the local side ample time to issue a retry for the write cycle, the MegaCore function does not
assert trdyn in the first data phase unless the local side asserts lt_rdyn . If the lt_rdyn signal is
not asserted in clock 5 (Figure 9), the MegaCore function delays the assertion of trdyn accordingly.

6 The MegaCore function asserts trdyn to inform the PCI master that it is ready to accept data.
Because irdyn is already asserted, this clock is the first and last data phase in this cycle.
Altera Corporation 99

Specifi cations
64-Bit Target Burst Write Transaction

The sequence of events in a burst write transaction is the same as for a
single-cycle write transaction. However, in a burst write transaction, more
data is transferred and both the local-side device and the PCI master can
insert wait-states.

Figure 10 shows a 64-bit zero wait state burst transaction with five data
phases. This figure applies to all PCI MegaCore functions, excluding the
64-bit extension signals as noted for the pci_mt32 and pci_t32 functions.
The PCI master writes five QWORDs to the MegaCore function during
clocks 6 through 10. The local side transfers the same data during clocks 7
through 11 correspondingly. Additionally, Figure 10 shows the
lt_tsr[9] signal asserted in clock 4 because the master device has the
framen and irdyn signals asserted, thus indicating a burst transaction.

7 The rising edge of clock 7 registers the valid data from ad[63..0] and drives the data on the
l_dato[63..0] bus, registers valid byte enables from cben[7..0] , and drives the byte enables
on l_beno[7..0] . At the same time, the MegaCore function asserts the lt_ackn signal to indicate
that there is valid data on the l_dato[63..0] bus and a valid byte enable on the l_beno[7..0]
bus. Because lt_rdyn is asserted during clock 6, and lt_ackn is asserted in clock 7, data will be
transferred in clock 7. l t_dxfrn is asserted in clock 7 to signify a local-side transfer. lt_tsr[10]
is asserted to indicate a successful data transfer on the PCI side during the previous clock cycle. The
MegaCore function also deasserts trdyn , devseln , and ack64n to end the transaction. To satisfy
the requirements for sustained tri-state buffers, the MegaCore function drives devseln , ack64n ,
trdyn , and stopn high during this clock cycle.

8 The MegaCore function resets all lt_tsr[11..0] signals because the PCI side has completed the
transaction. The MegaCore function also tri-states its control signals.

9 The MegaCore function deasserts lt_framen indicating to the local side that no additional data is
in the internal pipeline.

Table 26. 64-Bit Single-Cycle Target Write Transactions (Part 2 of 2)

Clock
Cycle

Event
100 Altera Corporation

Specifi cations

 Specifications

3

Figure 10. 64-Bit Zero Wait State Target Burst Write Transaction

Note:
(1) These signals do not apply to the pci_mt32 or pci_t32 functions for target write transactions. For these

transactions, the signals should be ignored.

Figure 11 shows the same transaction as in Figure 10 with the PCI bus
master asserting a wait-state. It applies to all PCI functions, except the
64-bit extension signals as noted for pci_mt32 and pci_t32 . The PCI bus
master asserts a wait state by deasserting the irdyn signal in clock 7. The
effect of this wait state on the local side is shown in clock 8 with lt_ackn
deasserted, and as a result lt_dxfrn is also deasserted. This transaction
prevents data from being transferred to the local side in clock 8 because
the internal pipeline of the function does not have valid data.

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_rdyn

lt_ackn

l_dato[31..0]

lt_dxfrn

(1) l_ldat_ackn

(1) l_hdat_ackn

clk

(1) l_dato[63..32]

l_beno[3..0]

(1) l_beno[7..4]

lt_tsr[11..0]

Adr

7

Adr-PAR

Adr

7

BE0_L

BE0_H

000 381 781

D0_L

D0_H

D0_L

D0-L-PAR

D0-H-PAR

BE0_L

BE0_H

000

D1_L

D1_H

D2_L

D2_H

D3_L

D3_H

D1_L

D1_H

D2_L

D2_H

D3_L

D3_H

D1-L-PAR

D1-H-PAR

D2-L-PAR

D2-H-PAR

D3-L-PAR

D3-H-PAR

D0_H

D4_L

D4_H

D4-L-PAR

D4-H-PAR

2 3 4 5 6 7 9 10 128 111 13 14

D4_L

D4_H

BE1_L

BE1_H

BE2_L

BE2_H

BE3_L

BE3_H

BE4_L

BE4_H

BE1_L

BE1_H

BE2_L

BE2_H

BE3_L

BE3_H

BE4_L

BE4_H
Altera Corporation 101

Specifi cations
Figure 11. 64-Bit Target Burst Write Transaction with PCI Master Wait State

Note:
(1) These signals do not apply to the pci_mt32 or pci_t32 functions for 32-bit target transactions. For these

transactions, the signals should be ignored.

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_rdyn

lt_ackn

l_dato[31..0]

lt_dxfrn

(1) l_ldat_ackn

(1) l_hdat_ackn

clk

(1) l_dato[63..32]

l_beno[3..0]

(1) l_beno[7..4]

lt_tsr[11..0]

Adr

7

Adr-PAR

Adr

7

BE_L

BE_H

000 381

D0_L

D0_H

D0_L

D0-L-PAR

D0-H-PAR

BE0_L

BE0_H

000781 381

D1_L

D1_H

D2_L

D2_H

D3_L

D3_H

D1_L

D1_H

D2_L

D2_H

D3_L

D3_H

D1-L-PAR

D1-H-PAR

D2-L-PAR

D2-H-PAR

D3-L-PAR

D3-H-PAR

D0_H

2 3 4 5 6 7 9 10 128 111 13 14

781
102 Altera Corporation

Specifi cations

 Specifications

3

Figure 12 shows the same transaction as in Figure 10 with the local side
asserting a wait-state. It applies to all PCI functions, except the 64-bit
extension signals as noted for pci_mt32 and pci_t32 . The local side
deasserts lt_rdyn in clock 7. The function shows that deasserting
lt_rdyn in clock 7 suspends the local side data transfer in clock 8 by
deasserting the lt_ dxfrn signal. Because the local side is unable to accept
additional data in clock 8, the function deasserts trdyn in clock 8 as well,
preventing PCI data from being transferred from the master device.

Figure 12. 64-Bit Target Burst Write Transaction with Local-Side Wait State

Note:
(1) These signals do not apply to the pci_mt32 or pci_t32 functions for 32-bit target write transactions. For these

transactions, the signals should be ignored.

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_rdyn

lt_ackn

l_dato[31..0]

lt_dxfrn

(1) l_ldat_ackn

(1) l_hdat_ackn

clk

(1) l_dato[63..32]

l_beno[3..0]

(1) l_beno[7..4]

lt_tsr[11..0]

Adr

7

Adr-PAR

Adr

7

BE_L

BE_H

000 381

D0_L

D0_H

D0_L

D0-L-PAR

D0-H-PAR

BE_L

BE_H

000781

D1_L

D1_H

D2_L

D2_H

D3_L

D3_H

D1_L

D1_H

D2_L

D2_H

D3_L

D3_H

D1-L-PAR

D1-H-PAR

D2-L-PAR

D2-H-PAR

D3-L-PAR

D3-H-PAR

D0_H

2 3 4 5 6 7 9 10 128 111 13 14

781381
Altera Corporation 103

Specifi cations
104 Altera Corporation

1 The local-side device must ensure that PCI latency rules are not
violated while the MegaCore function waits to transfer data. If
the local-side device is unable to meet the latency requirements,
it must assert lt_discn to request that the MegaCore function
terminate the transaction. The PCI target latency rules state that
the time to complete the first data phase must not be greater than
16 PCI clocks, and the subsequent data phases must not take
more than 8 PCI clocks to complete.

32-Bit Target Write Transactions

The PCI MegaCore functions respond to three types of 32-bit target write
transactions

■ Memory write transaction
■ I/O write transaction
■ Configuration write transaction

The following sections explain the variations of each type in more detail.

32-Bit Memory Write Transaction

For all MegaCore functions, 32-bit memory write transactions are either
single-cycle or burst. For the pci_mt32 and pci_t32 functions, the
waveforms for 32-bit memory write transactions are described in
Figures 9 through 12, excluding the 64-bit extension signals as noted. For
32-bit memory transactions, the pci_mt64 or pci_t64 functions always
assume a 64-bit local side. The pci_mt64 and pci_t64 functions
automatically transfer 32-bit data from the PCI side and drive that data to
both the l_dato[31..0] and l_dato[63..32] buses. The pci_mt64 and
pci_t64 functions also indicate which DWORD the local side is
transferring by asserting either l_ldat_ackn to indicate that the low
DWORD is valid (ad[31..0]) or l_hdat_ackn to indicate that the high
DWORD is valid (ad[63..32]). The pci_mt64 and pci_t64 functions
decodes whether the low or high DWORD is addressed by the master,
based on the starting address of the transaction. If the address of the
transaction is a QWORD boundary (ad[2..0] == B"000"), the first
DWORD transferred is considered the low DWORD and pci_mt64 or
pci_t64 asserts l_ldat_ackn accordingly; if the address of the
transaction is not at QWORD boundary (ad[2..0] == B"100"), the first
DWORD transferred is considered to be the high DWORD and the
pci_mt64 or pci_t64 function asserts l_hdat_ackn accordingly.

Figure 13 shows a 32-bit single-cycle memory write transaction. This
figure applies to all PCI MegaCore functions, excluding the 64-bit
extension signals as noted for the pci_mt32 and pci_t32 functions. The
sequence of events in Figure 13 is exactly the same as in Figure 9, except
for the following:

Specifi cations

 Specifications

3

■ During the address phase (clock 3) the master does not assert req64n
because the transaction is 32 bits.

■ The MegaCore function does not assert ack64n when it asserts
devseln .

■ The local side is informed that the pending transaction is 32 bits
because the lt_tsr[7] is not asserted while lt_framen is asserted
in clock 4.
Altera Corporation 105

Specifi cations
Figure 13. 32-Bit Single-Cycle Memory Write Transaction

Note:
(1) These signals do not apply to the pci_mt32 or pci_t32 functions for 32-bit target write transactions. For these

transactions, the signals should be ignored.

In Figure 13, the local-side transfer occurs in clock 7 because lt_dxfrn is
asserted during that clock. At the same time, l_ldat_ackn is asserted to
indicate that the low DWORD is valid. This event occurs because the
address used in the example is at QWORD boundary.

ad[31..0]

cben[3..0]

par

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_rdyn

lt_ackn

l_dato[31..0]

lt_dxfrn

(1) l_ldat_ackn

(1) l_hdat_ackn

clk

(1) l_dato[63..32]

l_beno[3..0]

(1) l_beno[7..4]

lt_tsr[11..0]

Adr

7

Adr-PAR

Adr

7

BE0_L

000 101

D0_L

D0_L

D0-L-PAR

BE0_L

000

1 2 3 4 5 6 7 8 9 10 11

501
106 Altera Corporation

Specifi cations

 Specifications

3

Figure 14 shows a 32-bit burst memory write transaction; the events are
the same for Figure 10. Figure 14 only applies to the pci_mt64 and
pci_t64 functions. For the pci_mt32 and pci_t32 functions, Figure 10
reflects the waveforms for a 32-bit burst memory write transaction,
excluding the 64-bit extension signals as noted. The main difference
between the two figures is that l_ldat_ackn and l_hdat_ackn toggle to
indicate which DWORD is valid on the local side. In Figure 14, the high
DWORD is transferred first because the address used is not a QWORD
boundary. This situation occurs because l_hdat_ackn is asserted during
clock 6 and continues to be asserted until the first DWORD is transferred
on the local side during clock 7. The local side is informed that the
pending transaction is a 32-bit burst because lt_tsr[7] is not asserted
and lt_tsr[9] is asserted. If the local side cannot handle 32-bit burst
transactions, it can disconnect after the first local transfer.

Figure 14. 32-Bit Burst Memory Write Transaction

ad[31..0]

cben[3..0]

par

framen

req64n

irdyn

devseln

ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_rdyn

lt_ackn

l_dato[31..0]

lt_dxfrn

l_ldat_ackn

l_hdat_ackn

clk

l_dato[63..32]

l_beno[3..0]

l_beno[7..4]

lt_tsr[11..0]

Adr

7

Adr-PAR

Adr

7

BE_L

000 301 701

D0_L

D0_L

D0-L-PAR

BE_L

BE_L

000

D3_L D4_L

D1_L D4_L

D1-L-PAR D4-L-PAR

2 3 4 5 6 7 9 10 128 111 13 14

D2_L D3_L

D3-L-PARD2-L-PAR

D1_L D2_L

D0_L D3_L D4_LD1_L D2_L
Altera Corporation 107

Specifi cations
I/O Write Transaction

I/O write transactions by definition are 32 bits. Figure 15 shows a sample
I/O write transaction. This figure applies for PCI MegaCore functions.
The sequence of events is the same as 32-bit single-cycle memory write
transactions. The main distinction between the two transactions is the
command on the lt_cmdo[3..0] bus.

Figure 15. I/O Write Transaction

ad[31..0]

cben[3..0]

par

framen

irdyn

devseln

(1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_rdyn

lt_ackn

l_dato[31..0]

lt_dxfrn

clk

l_beno[3..0]

lt_tsr[11..0]

Adr

3

Adr-PAR

Adr

3

BE0_L

000 102

D0_L

D0_L

D0-L-PAR

BE0_L

000

1 2 3 4 5 6 7 8 9 10 11

502
108 Altera Corporation

Specifi cations

 Specifications

3

Configuration Write Transaction

Configuration write transactions are 32 bits. Configuration cycles are
automatically handled by the MegaCore functions and do not require
local side actions. Figure 16 shows a typical configuration write
transaction. This figure applies for PCI MegaCore functions. The
configuration write transaction is similar to a 32-bit single-cycle
transaction, except for the following:

■ During the address phase, idsel must be asserted in a configuration
transaction

■ Because the configuration write does not require local side actions,
the MegaCore function asserts trdyn independent from the lt_rdyn
signal.

Figure 16. 32-Bit Configuration Write Transaction

1 The local side cannot retry, disconnect, or abort configuration
cycles.

ad[31..0]

cben[3..0]

par

framen

idsel

irdyn

devseln

trdyn

stopn

clk

lt_tsr[11..0]

Adr

B

Adr-PAR

BE0_L

D0_L

D0-L-PAR

1 2 3 4 5 6 7 8 9 10 11

000 100 000500
Altera Corporation 109

Specifi cations
Target Transaction Terminations

For all transactions except configuration transactions, the local-side
device can request a transaction to be terminated with one of several
termination schemes defined by the PCI Local Bus Specification,
Revision 2.2. The local-side device can use the lt_discn signal to request
a retry or disconnect. These termination types are considered graceful
terminations and are normally used by a target device to indicate that it is
not ready to receive or supply the requested data. A retry termination
forces the PCI master that initiated the transaction to retry the same
transaction at a later time. A disconnect, on the other hand, does not force
the PCI master to retry the same transaction.

The local-side device can also request a target abort, which indicates that
a catastrophic error has occurred in the device. This termination is
requested by asserting lt_abortn during a target transaction other than
a configuration transaction.

f For more details on these termination types, refer to the PCI Local Bus
Specification, Revision 2.2.

Retry

The local-side device can request a retry, for example, because the device
cannot meet the initial latency requirement or because there is a conflict
for an internal resource. A target device signals a retry by asserting
devseln and stopn , while deasserting trdyn before the first data phase.
The local-side device can request a retry as long as it did not supply or
request at least one data bit in a burst transaction. In a write transaction,
the local-side device may request a retry by asserting lt_discn as long as
it did not assert the lt_rdyn signal to indicate it is ready for a data
transfer. If lt_rdyn is asserted, it can result in the MegaCore function
asserting the trdyn signal on the PCI bus. Therefore, asserting lt_discn
forces a disconnect instead of a retry. In a read transaction, the local-side
device can request a retry as long as data has not been transferred to the
MegaCore function. Figure 17 applies to all PCI functions, excluding the
64-bit signals as noted for pci_mt32 and pci_t32 .
110 Altera Corporation

Specifi cations

 Specifications

3

Figure 17. Target Retry

Note:
(1) These signals do not apply to the pci_mt32 and pci_t32 functions and should be ignored.

ad[31..0]

 (1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

 (1) req64n

irdyn

devseln

 (1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_rdyn

lt_ackn

l_dato[31..0]

lt_dxfrn

(1) l_ldat_ackn

(1) l_hdat_ackn

clk

(1) l_dato[63..32]

l_beno[3..0]

(1) l_beno[7..4]

lt_tsr[11..0]

Adr

7

Adr-PAR

Adr

7

BE0_H

000 381

D0_L

D0-L-PAR

D0-H-PAR

BE_L

BE_H

000

D0_H

2 3 4 5 6 7 9 1081

D1-L

D1_H

lt_discn

BE1_L

BE1_H

D1-L-PAR

D1-H_PAR

BE0_L
Altera Corporation 111

Specifi cations

Disconnect

A PCI target can signal a disconnect by asserting stopn and devseln after
at least one data phase is complete. There are two types of disconnects:
disconnect with data and disconnect without data. In a disconnect with
data, trdyn is asserted while stopn is asserted. Therefore, more data
phases are completed while the PCI bus master finishes the transaction. A
disconnect without data occurs when the target device deasserts trdyn
while stopn is asserted, thus ensuring that no more data phases are
completed in the transaction. Depending on the sequence of lt_rdyn and
lt_discn assertion, the MegaCore function issues either a disconnect
with data or disconnect without data.

Figure 18 shows an example of a disconnect with data which ensures that
only a single data phase is completed during a burst write transaction. It
applies to all PCI functions, excluding the 64-bit extension signals as
noted for pci_mt32 and pci_t32 . In Figure 18, both lt_rdyn and
lt_discn are asserted in clock 5. This transaction informs the MegaCore
function that the local side is ready to accept data but also wants to
disconnect. As a result, the MegaCore function issues a disconnect with
data and accepts only one data phase.
112 Altera Corporation

Specifi cations

 Specifications

3

Figure 18. Single Data Phase Disconnect in a Burst Write Transaction

Note:
(1) These signals do not apply to the pci_mt32 and pci_t32 functions and should be ignored.

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_rdyn

lt_ackn

l_dato[31..0]

lt_dxfrn

(1) l_ldat_ackn

(1) l_hdat_ackn

clk

(1) l_dato[63..32]

l_beno[3..0]

(1) l_beno[7..4]

lt_tsr[11..0]

Adr

7

Adr-PAR

Adr

7

BE0_H

000 381

D0_L

D0_H

D0_L

D0-L-PAR

D0-H-PAR

BE_L

000381781

D0_H

2 3 4 5 6 7 9 1081

D1-L

D1_H

lt_discn

BE1_L

BE1_H

D1-L-PAR

D1-H_PAR

BE0_L

BE_H
Altera Corporation 113

Specifi cations

Figure 19 shows an example of a disconnect with data that ensures that
only a single data phase is completed during a burst read transaction. It
applies to all PCI functions, excluding the 64-bit extension signals as
noted for pci_mt32 and pci_t32 . In Figure 19, lt_rdyn is asserted in
clock 4, and lt_discn is asserted in clock 5. This transaction ensures one
data phase is completed on the local side before the function detects a
disconnect request. Subsequently, the PCI MegaCore function issues a
disconnect cycle on the PCI side to ensure that only one data phase is
completed successfully.
114 Altera Corporation

Specifi cations

 Specifications

3

Figure 19. Single Data Phase Disconnect in a Burst Read Transaction

Note:
(1) These signals do not apply to the pci_mt32 and pci_t32 functions and should be ignored.

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_ackn

l_adi[31..0]

lt_dxfrn

clk

(1) l_adi[63..32]

l_beno[3..0]

(1) l_beno[7..4]

Adr

6

Adr-PAR

Z

6

Z

BE_L

BE_H

Z

D0_L

D0_H

D0_L

D0_H

D0-L-PAR

D0-H-PAR

BE_L

BE_H

2 3 4 5 6 7 9 108 111

lt_rdyn

lt_discn

Adr

lt_tsr[11..0] 000 381 000381781
Altera Corporation 115

Specifi cations

Figure 20 shows a disconnect without data during a burst read
transaction. It applies to all PCI functions, excluding the 64-bit extension
signals as noted for pci_mt32 and pci_t32 .

Figure 20. Disconnect Without Data During a Burst Read Transaction

Note:
(1) These signals do not apply to the pci_mt32 and pci_t32 functions and should be ignored.

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_ackn

l_adi[31..0]

lt_dxfrn

clk

(1) l_adi[63..32]

l_beno[3..0]

(1) l_beno[7..4]

Adr

6

Adr-PAR

Z

Z

BE_L

BE_H

Z

D0_L

D0_H

D0_L

D0_H

D0-L-PAR

D0-H-PAR

D1_L

D1_H

D1_L

D1_H

D1-L-PAR

D1-H-PAR

132 3 4 5 6 7 9 10 128 111

lt_rdyn

lt_discn

Adr

6

BE_L

BE_H

lt_tsr[11..0] 000 381 000381781
116 Altera Corporation

Specifi cations

 Specifications

3

1 The PCI Local Bus Specification, Revision 2.2 requires that a
target device issues a disconnect if a burst transaction goes
beyond its address range. In this case, the local-side device must
request a disconnect. The local-side device must keep track of the
current data transfer address; if the transfer exceeds its address
range, the local side should request a disconnect by asserting
lt_discn .

Target Abort

Target abort refers to an abnormal termination because either the local
logic detected a fatal error, or the target will never be able to complete the
request. An abnormal termination may cause a fatal error for the
application that originally requested the transaction. A target abort allows
the transaction to complete gracefully, thus preserving normal operation
for other agents.

A target device issues an abort by deasserting devseln and trdyn and
asserting stopn . A target device must set the tabort_sig bit in the PCI
status register whenever it issues a target abort. See “Status Register” on
page 66 for more details. Figure 21 shows the MegaCore function issuing
an abort during a burst write cycle. It applies to all PCI functions,
excluding the 64-bit extension signals as noted for pci_mt32 and
pci_t32 .

1 The PCI Local Bus Specification, Revision 2.2 requires that a
target device issues an abort if the target device shares bytes in
the same DWORD with another device, and the byte enable
combination received byte requests outside its address range.
This condition most commonly occurs during I/O transactions.
The local-side device must ensure that this requirement is met,
and if it receives this type of transaction, it must assert
lt_abortn to request a target abort termination.
Altera Corporation 117

Specifi cations
Figure 21. Target Abort

Note:
(1) These signals do not apply to the pci_mt32 and pci_t32 functions and should be ignored.

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_rdyn

lt_ackn

l_dato[31..0]

lt_dxfrn

(1) l_ldat_ackn

(1) l_hdat_ackn

clk

(1) l_dato[63..32]

l_beno[3..0]

(1) l_beno[7..4]

Adr

7

Adr-PAR

7

BE0_L

BE0_H

D0_L

D0_H

D0_L

D0-L-PAR

D0-H-PAR

BE_L

D0_H

2 3 4 5 6 7 9 10 128 111 13

D1-L

D1_H

lt_abortn

BE1_L

BE1_H

D1-L-PAR

D1-H_PAR

D2_L

D2_H

D3_L

D3_H

BE2_L

BE2_H

BE3_L

BE3_H

D2-L-PAR

D2-H_PAR

D3-L-PAR

D3-H_PAR

D1-L

D1_H

BE1_L

BE1_H

D2_L

D2_H

BE2_L

BE2_H

Adr

BE_H

lt_tsr[11..0] 000 381 000381781
118 Altera Corporation

Specifi cations

 Specifications

3

Master Mode
Operation

This section describes all supported master transactions for both the
pci_mt64 and pci_mt32 functions. Although this section includes
waveform diagrams showing typical PCI cycles in master mode for the
pci_mt64 function, these waveforms are also applicable for the pci_t64
function, the pci_mt32 function, and the pci_t32 function. Table 27 lists
the PCI and local side signals that apply for each PCI function.

Table 27. PCI MegaCore Function Signals (Part 1 of 2)

PCI Signals pci_mt64 pci_mt32

clk v v

rstn v v

gntn v v

reqn v v

ad[63..0] v ad[31..0]

cben[7..0] v cben[3..0]

par v v

par64 v

idsel v v

framen v v

req64n v

irdyn v v

devseln v v

ack64n v

trdyn v v

stopn v v

perrn v v

serrn v v

intan v v

Local side signals

l_adi[63..0] v l_adi[31..0]

l_cbeni[7..0] v l_cbeni[3..0]

l_adro[63..0] v l_adro[31..0]

l_dato[63..0] v l_dato[31..0]

l_beno[7..0] v l_beno[3..0]

l_cmdo[3..0] v v

l_ldat_ackn v

l_hdat_ackn v

Target local side

lt_abortn v v

lt_discn v v
Altera Corporation 119

Specifi cations
The MegaCore functions support both 64-bit and 32-bit transactions. The
pci_mt64 function supports the following 64-bit PCI memory
transactions:

■ 64-bit memory burst master read
■ 64-bit memory single-cycle master read
■ 64-bit memory burst master write

The pci_mt64 and pci_mt32 function also supports the following 32-bit
PCI transactions:

■ 32-bit memory burst master read
■ 32-bit memory single-cycle master read
■ Configuration master read
■ I/O master read
■ 32-bit memory burst master write
■ Configuration master write
■ I/O master write

lt_rdyn v v

lt_framen v v

lt_ackn v v

lt_dxfrn v v

lt_tsr[11..0] v v

lirqn v v

cache[7..0] v v

cmd_reg[5..0] v v

stat_reg[5..0] v v

Master local side

lm_req32n v v

lm_req64n v

lm_lastn v v

lm_rdyn v v

lm_adr_ackn v v

lm_ackn v v

lm_dxfrn v v

lm_tsr[9..0] v v

Table 27. PCI MegaCore Function Signals (Part 2 of 2)

PCI Signals pci_mt64 pci_mt32
120 Altera Corporation

Specifi cations

 Specifications

3

A master operation begins when the local-side master interface asserts the
lm_req64n signal to request a 64-bit transaction or the lm_req32n signal
to request a 32-bit transaction. The PCI function asserts the reqn signal to
the PCI bus arbiter to request bus ownership. When the PCI bus arbiter
grants the PCI function bus ownership by asserting the gntn signal, the
PCI function asserts the lm_adr_ackn signal on the local side to
acknowledge the transaction address and command. The local side must
provide the address on l_adi[31..0] and the command on
l_cbeni[3..0] during the same clock cycle when the lm_adr_ackn
signal is asserted.

The PCI function begins the transaction with the address phase by
asserting framen and driving the transaction address on ad[31..0] and
command on cben[3..0] . During the address phase, the local side must
also provide the byte-enable values on l_cbeni[7..0] for the first data
phase on a 64-bit transaction because pci_mt64 is required to drive them
on the PCI bus in the following clock. During burst transactions, the local-
side must ensure that l_cbeni[7..0] is B"00000000" . For a 32-bit
transaction, only l_cbeni[3..0] is used to provide byte enable values.

After the address phase, the local side asserts lm_rdyn to signal that it is
ready to input data from the PCI side in a master read, or it is ready to
output data to the PCI side in a master write. The PCI function asserts
lm_ackn to acknowledge that the PCI side is ready to output data to the
local side in a master read, or it is ready to input data from the local side
in a master write. In a master read, the function outputs data to the local
side through the l_dato[] bus data lines. While in a master write
transaction, the pci_mt64 and pci_mt32 functions inputs data from the
local side through the l_adi[] bus data lines. Valid data is transferred on
the local side during the same clock cycle when the lm_dxfrn signal is
asserted by the PCI function. The pci_mt64 function asserts
l_ldat_ackn and l_hdat_ackn to signal whether the lower bits [31..0]
or the upper bits [63..32] or both are being sent from the PCI side to the
local side in a master read, or in the opposite direction in a master write.
Therefore, for pci_mt64 , the l _ldat_ackn , l_hdat_ackn , and lm_dxfrn
signals can be used to qualify when valid data is transferred from the local
side. For pci_ mt32 , the lm_dxfrn signal can be used to qualify when
valid data is transferred from the local side.
Altera Corporation 121

Specifi cations
The pci_mt64 or pci_ mt 32 function can generate any transaction in
master mode because the local side provides the function with the exact
command. When the local side requests I/O or configuration cycles, the
function automatically issues a single-cycle read/write transaction. In all
other transactions, the local side must assert lm_lastn to inform the
function when to end the transaction. The function treats memory write
and invalidate, memory read multiple, and memory read line commands
in a similar manner to the corresponding memory write/read commands.
Therefore, the local side must implement any special handling required
by these commands. The function outputs the cache line size register
value to the local side for this purpose.

1 The local-side device may require a long time to transfer data
to/from the function during a burst transaction. The local-side
device must ensure that PCI latency rules are not violated while
the function waits for data. Therefore, the local-side device must
not insert more than eight wait states before asserting lm_rdyn .

The pci_mt64 and pci_mt32 functions uses the transaction status
register outputs (lm_tsr[9..0]) to inform the local-side application of
the transaction status. See “Status Register” on page 66 for a description
of each bit in this bus. The following sections provide additional details
about master mode operation.

64-Bit Master Read Transactions

In master mode, the pci_mt64 function supports two types of 64-bit read
transactions:

■ Burst memory read
■ Single-cycle read

The burst memory read and single-cycle read transactions differ in the
following ways:

■ The burst transaction transfers more data.
■ The l_cbeni[3..0] bus can only enable specific bytes in the lower

DWORD during single-cycle transactions.
■ The l_cbeni[7..4] bus can only enable specific bytes in the upper

DWORD during single-cycle transactions.
122 Altera Corporation

Specifi cations

 Specifications

3

For both types of transactions, the sequence of events is the same and can
be divided into the following steps:

1. The local side asserts lm_req64n to request a 64-bit transaction.
Consequently, the pci_mt64 or pci_mt32 function asserts reqn to
request bus ownership from the PCI arbiter. For 32-bit transactions,
the local side of the pci_mt64 or pci_mt32 function asserts
lm_req32n .

2. When the PCI arbiter grants bus ownership by asserting the gntn
signal, the pci_mt64 or pci_mt32 function asserts lm_adr_ackn on
the local side to acknowledge the transaction address and command.
During the same clock cycle when lm_adr_ackn in asserted, the
local side should provide the address on l_adi[31..0] and the
command on l_cbeni[3..0] . At the same time, the pci_mt64 or
pci_mt32 function turns on the drivers for framen and req64n .

3. The pci_mt64 or pci_mt32 function begins the PCI address phase
by asserting framen and req64n and driving the address and the
command on ad[31..0] and cben[3..0] . Also, during the address
phase, the local side should provide the byte enables for the
transaction on l_cbeni[7..0] . At the same time, the pci_mt64 or
pci_mt32 function turns on the driver for irdyn .

4. A turn-around cycle on the ad[63..0] occurs during the clock
immediately following the address phase. During the turn-around
cycle, the pci_ mt64 function tri-states ad[63..0] , but drives the
correct byte enables on cben[7..0] for the first data phase. This
process is necessary because the pci_ mt64 function must release the
bus so another PCI agent can drive it. For pci_mt32 , only
ad[31..0] and cben[3..0] apply.

5. If the address of the transaction matches one of the base address
registers of a PCI target, the PCI target should assert devseln to
claim the transaction. One or more data phases follow next,
depending on the type of read transaction.

The pci_mt64 or pci_mt32 function treats memory read, memory read
multiple, and memory read line commands in the same way. Any
additional requirements for the memory read multiple and memory read
line commands must be implemented by the local-side application.

Figure 22 shows the waveform for a 64-bit zero wait state master burst
memory read transaction. This figure applies to both the pci_mt64 and
pci_mt32 MegaCore functions, excluding the 64-bit extension signals as
noted for pci_mt32 . In this transaction, three 64-bit words are transferred
from the PCI side to the local side.
Altera Corporation 123

Specifi cations
Figure 22. 64-Bit Zero-Wait-State Master Burst Memory Read Transaction

Notes:
(1) This signal does not apply to pci_mt32 for 32-bit transactions. For these transactions, the signal should be ignored.
(2) For pci_mt32 , lm_req64n should be exchanged with lm_req32 n for 32-bit master transactions.

2 3 4 5 6 7 9 10 12

clk

reqn

8 111

gntn

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

Adr

6

Adr-PAR

BE_L

Z

D0_L

D0_H

D0-H-PAR

Z0

0

0

0

Z

Z

BE_H

Z

D1_L D2_L

D1_H D2_H

13

Z

Z

Z

D1-H-PAR D2-H-PAR

D0-H-PAR D2-H-PARD1-H-PAR

l_adi[31..0] Adr

l_cbeni[3..0]

(1) l_cbeni[7..4]

6 BE_L

BE_H

l_dato[31..0] D0_L D1_L D2_L

(1) l_dato[63..32]
D0_H D1_H D2_H

(2) lm_req64n

lm_lastn

lm_adr_ackn

lm_rdyn

lm_tsr[9..0] 000 001 004 002 200 308008 208 000

(1) l_ldat_ackn

(1) l_hdat_ackn

lm_ackn

lm_dxfrn
124 Altera Corporation

Specifi cations

 Specifications

3

Table 28 shows the sequence of events for a 64-bit zero-wait-state master
burst memory read transaction.

Table 28. 64-Bit Zero Wait State Master Burst Memory Read Transaction (Part 1 of 3)

Clock
Cycle

Event

1 The local side asserts lm_req64n to request a 64-bit transaction.

2 The function outputs reqn to the PCI bus arbiter to request bus ownership. At the same time, the
function asserts lm_tsr[0] to indicate to the local side that the master is requesting the PCI bus.

3 The PCI bus arbiter asserts gntn to grant the PCI bus to the function. Although Figure 22 shows that
the grant occurs immediately and the PCI bus is idle at the time gntn is asserted, this action may not
occur immediately in a real transaction. The function waits for gntn to be asserted while the PCI bus
is idle before it proceeds. A PCI bus idle state occurs when both framen and irdyn are deasserted.

5 The function turns on its output drivers, getting ready to begin the address phase.

The function also asserts lm_adr_ackn to indicate to the local side that it has acknowledged its
request. During the same clock cycle, the local side should provide the PCI address on
l_adi[31..0] and the PCI command on l_cbeni[3..0] .

The function continues to assert its reqn signal until the end of the address phase. The function also
asserts lm_tsr[1] to indicate to the local side that the PCI bus has been granted.

6 The function begins the 64-bit memory read transaction with the address phase by asserting framen
and req64n .

At the same time, the local side must provide the byte enables for the transaction on
l_cbeni[7..0] . The local side also asserts lm_rdyn to indicate that it is ready to accept data.

The function asserts lm_tsr[2] to indicate to the local side that the PCI bus is in its address phase.

7 The function asserts irdyn to inform the target that the function is ready to receive data. The function
asserts irdyn regardless if the local side asserts lm_rdyn to indicate that it is ready to accept data,
only for the first data phase on the PCI side. For subsequent data phases, the function will not assert
irdyn unless the local side is ready to accept data.

The target claims the transaction by asserting devseln . In this case, the target performs a fast
address decode. The target also asserts ack64n to inform the function that it can transfer 64-bit data.

During this clock cycle, the function also asserts lm_tsr[3] to inform the local side that it is in data
transfer mode.
Altera Corporation 125

Specifi cations
8 The target asserts trdyn to inform the function that it is ready to transfer data. Because the function
has already asserted irdyn , a data phase is completed on the rising edge of
clock 9.

At the same time, lm_tsr[9] is asserted to indicate to the local side that the target can transfer
64-bit data.

9 The function asserts lm_ackn to inform the local side that the function has registered data from the
PCI side on the previous cycle and is ready to send the data to the local side master interface.
Because lm_rdyn was asserted in the previous cycle and lm_ackn is asserted in the current cycle,
the function asserts lm_dxfrn . The assertion of the l m_dxfrn , l_ldat_ackn , and l_hdat_ackn
signals indicate to the local side that valid data is available on the l_dato[63..0] data lines.

Because irdyn and trdyn are asserted, another data phase is completed on the PCI side on the
rising edge of clock 10.

On the local side, the lm_lastn signal is asserted. Because lm_lastn , irdyn , and trdyn are
asserted during this clock cycle, this action guarantees to the local side that, at most, two more data
phases will occur on the PCI side: one during this clock cycle and another on the following clock cycle
(clock 10). The last data phase on the PCI side takes place during clock 10.

The function also asserts lm_tsr[8] in the same clock to inform the local side that a data phase
was completed successfully on the PCI bus during the previous clock.

10 Because lm_lastn was asserted and a data phase was completed in the previous cycle, framen
and req64n are deasserted, while irdyn and trdyn are asserted. This action indicates that the last
data phase is completed on the PCI side on the rising edge of clock 11.

On the local side, the function continues to assert lm_ackn , informing the local side that the function
has registered data from the PCI side on the previous cycle and is ready to send the data to the local
side master interface. Because lm_rdyn was asserted in the previous cycle and lm_ackn is
asserted in the current cycle, the function asserts lm_dxfrn . The assertion of the lm_dxfrn ,
l_ldat_ackn , and l_hdat_ackn signals indicate to the local side that another valid data bit is
available on the l_dato[63..0] data lines. The local side has now received two valid
64-bit data.

The function continues to assert lm_tsr[8] informing the local side that a data phase was
completed successfully on the PCI bus during the previous clock.

Table 28. 64-Bit Zero Wait State Master Burst Memory Read Transaction (Part 2 of 3)

Clock
Cycle

Event
126 Altera Corporation

Specifi cations

 Specifications

3

64-Bit Master Burst Memory Read Transaction with Local-Side Wait State

Figure 23 shows the same transaction as in Figure 22 with the local side
asserting a wait state. This figure applies to both the pci_mt64 and
pci_mt32 MegaCore functions, excluding the 64-bit extension signals as
noted for pci_mt32 . The local side deasserts l m_rdyn in clock 9.
Consequently, on the following clock cycle (clock 10), the pci_mt64
function suspends data transfer on the local side by deasserting the
lm_dxfrn signal and on the PCI side by deasserting the irdyn signal.

11 On the PCI side, irdyn , devseln , ack64n , and trdyn are deasserted, indicating that the current
transaction on the PCI side is completed. There will be no more data phases.

On the local side, the function continues to assert lm_ackn , informing the local side that the function
has registered data from the PCI side on the previous cycle and is ready to send the data to the local
side master interface. Because lm_rdyn was asserted in the previous cycle and lm_ackn is
asserted in the current cycle, the function asserts lm_dxfrn . The assertion of the lm_dxfrn ,
l_ldat_ackn , and l_hdat_ackn signals indicate to the local side that another valid data is
available on the l_dato[63..0] data lines. The local side has now received three valid 64-bit data.

Because the local side has received all the data that was registered from the PCI side, the local side
can now deassert lm_rdyn . Otherwise, if there is still some data that has not been transferred from
the PCI side to the local side, then lm_rdyn must continue to be asserted.

The function continues to assert lm_tsr[8] informing the local side that a data phase was
completed successfully on the PCI bus during the previous clock.

12 The function deasserts lm_tsr[3] , informing the local side that the data transfer mode is
completed. Therefore, lm_ackn and lm_dxfrn are also deasserted.

Table 28. 64-Bit Zero Wait State Master Burst Memory Read Transaction (Part 3 of 3)

Clock
Cycle

Event
Altera Corporation 127

Specifi cations
Figure 23. 64-Bit Master Burst Memory Read Transaction with Local Wait State

Notes:
(1) This signal does not apply to pci_mt32 for 32-bit transactions. For these transactions, the signal should be ignored.
(2) For pci_mt32 , lm_req64n should be exchanged with lm_req32 n for 32-bit master transactions.

2 3 4 5 6 7 9 10 12

clk

reqn

8 111

gntn

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

Adr

6

Adr-PAR

BE_L

Z

D0_L

D0_H

D0-H-PAR

Z0

0

0

0

Z

Z

BE_H

Z

D1_L D2_L

D1_H D2_H

13

Z

Z

Z

D2-H-PARD1-H-PAR

D0-L-PAR D1-L-PAR D2-L-PAR

l_dato[31..0]

(2) lm_req64n

lm_lastn

lm_adr_ackn

lm_rdyn

lm_tsr[9..0] 000 001 004 002 308 308008 208 000

(1) l_ldat_ackn

(1) l_hdat_ackn

lm_ackn

lm_dxfrn

208

D0_L D1_L D2_L

D0_H D1_H D2_H(1) l_dato[63..32]

200

14

l_adi[31..0] Adr

l_cbeni[3..0]

(1) l_cbeni[7..4]

6 BE_L

BE_H
128 Altera Corporation

Specifi cations

 Specifications

3

64-Bit Master Burst Memory Read Transaction with PCI Wait State

Figure 24 shows the same transaction as in Figure 22 with the PCI bus
target asserting a wait state. This figure applies to both pci_mt64 and
pci_mt32 MegaCore functions, excluding the 64-bit extension signals as
noted for pci_mt32 . The PCI target asserts a wait state by deasserting
trdyn in clock 9. Consequently, on the following clock cycle (clock 10), the
function deasserts the lm_ackn and lm_dxfrn signal on the local side.
Data transfer is suspended on the PCI side in clock 9 and on the local side
in clock 10.
Altera Corporation 129

Specifi cations
Figure 24. 64-Bit Master Burst Memory Read Transaction with PCI Wait State

Notes:
(1) This signal does not apply to pci_mt32 for 32-bit transactions. For these transactions, the signal should be ignored.
(2) For pci_mt32 , lm_req64n should be exchanged with lm_req32 n for 32-bit master transactions.

2 3 4 5 6 7 9 10 12

clk

reqn

8 111

gntn

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

Adr

6

Adr-PAR

BE_L

Z

D0_L

D0_H

D0-H-PAR

Z0

0

0

0

Z

Z

BE_H

Z

D2_LD1_L

D2_H D1_H

13

Z

Z

Z

D1-H-PAR D2-H-PAR

D0-L-PAR D2-L-PARD1-L-PAR

l_dato[31..0]

(2) lm_req64n

lm_lastn

lm_adr_ackn

lm_rdyn

lm_tsr[9..0] 000 001 004 002 308 308008 208 000

(1) l_ldat_ackn

(1) l_hdat_ackn

lm_ackn

lm_dxfrn

208

D0_L D1_L D2_L

D0_H D1_H D2_H(1) l_dato[63..32]

200

14

ad[31..0]

l_adi[31..0] Adr

l_cbeni[3..0]

(1) l_cbeni[7..4]

6 BE_L

BE_H
130 Altera Corporation

Specifi cations

 Specifications

3

64-Bit Master Single-Cycle Memory Read Transaction

The pci_mt64 function can perform 64-bit master single-cycle memory
read transactions. If you are using a purely 64-bit system and the local side
wants to transfer one 64-bit data, then Altera recommends that you
perform a 64-bit single-cycle memory read transaction. However, if you
are not using a purely 64-bit system and the local side wants to transfer
one 64-bit data, Altera recommends that a 32-bit burst memory read
transaction is performed.

Figure 25 shows the same transaction as in Figure 22 with just one data
phase. This figure applies to both the pci_mt64 and pci_mt32 MegaCore
functions, excluding the 64-bit extension signals as noted for pci_mt32 . In
clock 6, framen and req64n are asserted to begin the address phase. At
the same time, the local side should assert the lm_lastn signal on the
local side to indicate that it wants to transfer only one 64-bit data. In a real
application, in order to indicate a single-cycle 64-bit data transfer, the
lm_lastn signal can be asserted on any clock cycle between the assertion
of lm_req64n and the address phase.
Altera Corporation 131

Specifi cations
Figure 25. 64-Bit Master Single-Cycle Memory Read Transaction

Notes:
(1) This signal does not apply to pci_mt32 for 32-bit transactions. For these transactions, the signal should be ignored.
(2) For pci_mt32 , lm_req64n should be exchanged with lm_req32 n for 32-bit master transactions.

2 3 4 5 6 7 9 10 12

clk

reqn

8 11

gntn

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

13

l_adi[31..0]

l_dato[31..0]

(1) l_dato[63..32]

l_cbeni[3..0]

(1) l_cbeni[7..4]

(2) lm_req64n

lm_lastn

lm_rdyn

lm_tsr[9..0]

(1) l_ldat_ackn

(1) l_hdat_ackn

lm_ackn

lm_dxfrn

lm_adr_ackn

1

Adr

6

Adr-PAR

BE_L

Z

D0_L Z0

0

Z

D0-L-PAR

Adr

D0_L

BE_L

000 001 004 000

Z

D0_H Z0 Z

BE_H0 Z

Z D0-H-PAR

BE_H

D0_H

208008

6

308002
132 Altera Corporation

Specifi cations

 Specifications

3

32-Bit Master Read Transactions

In master mode, the pci_mt64 and pci_mt32 function supports three
types of 32-bit read transactions:

■ Memory read transactions
■ I/O read transactions
■ Configuration read transactions

For both pci_mt64 and pci_mt32 functions, 32-bit memory read
transactions are either single-cycle or burst. The 32-bit master read
transactions are similar to 64-bit master read transactions, but the upper
address ad[63..32] and the upper command/byte enables cben[7..4]
are invalid. For pci_mt32 , the waveforms for 32-bit memory read
trasactions are described in Figures 22 through 25, excluding the 64-bit
extension signals as noted, and in Figures 27 and 28.

32-Bit PCI & 64-Bit Local-Side Master Burst Memory Read Transaction

Figure 26 shows the same transaction as in Figure 22, but the PCI target
cannot transfer 64-bit transactions. This figure applies to the pci_mt64
function only. In this transaction, the local-side master interface requests
a 64-bit transaction by asserting lm_req64n . The pci_mt64 function
asserts req64n on the PCI side. However, the PCI target cannot transfer
64-bit data, and therefore does not assert ack64n in
clock 7. Since this is the case, the upper address ad[63..32] and the
upper command/byte enables cben[7..4] are invalid.

Also, because the PCI side is 32 bits wide and the local side is 64 bits wide,
the l_ldat_ackn and l_hdat_ackn signals toggle to indicate whether
the lower l_dato[31..0] or the upper l_dato[63..32] have valid data.
Along with these signals, valid data transfer on the local side is qualified
when lm_dxfrn is asserted.

1 Because the local-side master interface is 64 bits and the PCI
target is only 32 bits, these transactions always begin on 64-bit
boundaries with the first data being sent to the lower
l_dato[31..0] and the next DWORD being sent to the upper
l_dato[63..32] . These transactions should end with the last
data being sent to the upper l_dato[63..32] bus.
Altera Corporation 133

Specifi cations
Figure 26. 32-Bit PCI & 64-Bit Local-Side Master Burst Memory Read Transaction

2 3 4 5 6 7 9 10 12

clk

reqn

8 111

gntn

ad[31..0]

ad[63..32]

cben[3..0]

cben[7..4]

par

par64

framen

req64n

irdyn

devseln

ack64n

trdyn

stopn

Adr

6

Adr-PAR

BE_L

Z

D0_L Z0

0

Z D1_L D2_L

13

D0-L-PAR D2-L-PARD1-L-PAR

l_dato[31..0] D0_L D1_L D2_L

l_dato[63..32]

lm_req64n

lm_lastn

lm_adr_ackn

lm_rdyn

lm_tsr[9..0] 000 001 004 002 108008 000

l_ldat_ackn

l_hdat_ackn

lm_ackn

lm_dxfrn

D3_L

Z

D3-L-PAR

D3_L

D0_L D1_L D2_L D3_L

l_adi[31..0]

l_cbeni[3..0]

l_cbeni[7..4]

Adr

BE_L

BE_H

6

134 Altera Corporation

Specifi cations

 Specifications

3

32-Bit PCI & 32-Bit Local-Side Master Burst Memory Read Transaction

Figure 27 shows the same transaction as in Figure 22, but the local side
master interface requests a 32-bit transaction by asserting lm_req32n .
This figure applies to both pci_mt64 and pci_mt32 MegaCore functions,
excluding the 64-bit extension signals as noted for pci_mt32 . The
pci_mt64 function does not assert req64n on the PCI side. Therefore, the
upper address ad[63..32] and the upper command/byte enables
cben[7..4] are invalid.
Altera Corporation 135

Specifi cations
Figure 27. 32-Bit PCI & 32-Bit Local-Side Master Burst Memory Read Transaction

Note:
(1) This signals does not apply to pci_mt32 for 32-bit master read transactions. For these transactions, the signal

should be ignored.

2 3 4 5 6 7 9 10 12

clk

reqn

8 111

gntn

ad[31..0]

 (1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ˚ack64n

trdyn

stopn

Adr

6

Adr-PAR

BE_L

Z

D0_L Z0

0

Z D1_L D2_L

13

Z

D0-L-PAR D2-L-PARD1-L-PAR

l_dato[31..0] D0_L D1_L D2_L

(1) l_dato[63..32]

lm_req32n

lm_lastn

lm_adr_ackn

lm_rdyn

lm_tsr[9..0] 000 001 004 002 108008 000

l_ldat_ackn

l_hdat_ackn

lm_ackn

lm_dxfrn

l_adi[31..0]

l_cbeni[3..0]

(1) l_cbeni[7..4]

Adr

BE_L6
136 Altera Corporation

Specifi cations

 Specifications

3

32-Bit PCI & 32-Bit Local Side Single-Cycle Memory Read Transaction

Figure 28 shows the same transaction as in Figure 27, but the local side
master interface transfers only one data phase. This figure applies to both
the pci_mt64 and pci_mt32 MegaCore functions, excluding the 64-bit
extension signals as noted for pci_mt32 . This waveform also applies to
the following types of single-cycle transactions:

■ I/O read
■ Configuration read
Altera Corporation 137

Specifi cations
138 Altera Corporation

Figure 28. 32-Bit PCI & 32-Bit Local-Side Single-Cycle Memory Read Transaction

Note:
(1) This signal does not apply to pci_mt32 for 32-bit master read transactions. For these transactions, the signals

should be ignored.

2 3 4 5 6 7 9 10

clk

reqn

81

gntn

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

Adr

6

Adr-PAR

BE_L

Z

D0_L Z0

0

Z

D0-L-PAR

l_adi[31..0] Adr

l_dato[31..0] D0_L

(1) l_dato[63..32]

lm_req32n

lm_lastn

lm_adr_ackn

lm_rdyn

lm_tsr[9..0] 000 001 004 002 008

(1) l_ldat_ackn

(1) l_hdat_ackn

lm_ackn

lm_dxfrn

Z

000 108

l_cbeni[3..0]

(1) l_cbeni[7..4]

BE_L6

Specifi cations

 Specifications

3

64-Bit Master Write Transactions

In master mode, the pci_mt64 function supports 64-bit memory write
transactions. The pci_mt64 function does not perform 64-bit, memory
single-cycle write transactions. If the local side wants to transfera single
64-bit data, Altera recommends performing a 32-bit memory burst write.

For this type of transaction, the sequence of events can be divided into the
following steps:

1. The local side asserts lm_req64n to request a 64-bit transaction.
Consequently, the function asserts reqn to request bus ownership
from the PCI arbiter. For 32-bit transactions, the local side of the
pci_mt64 or pci_mt32 function asserts lm_req32n .

2. When the PCI arbiter grants bus ownership by asserting the gntn
signal, the pci_mt64 or pci_t64 function asserts lm_adr_ackn on
the local side to acknowledge the transaction’s address and
command. During the same clock cycle when lm_adr_ackn is
asserted, the local side should provide the address on
l_adi[31..0] and the command on l_cbeni[3..0] . At the same
time, the pci_mt64 function turns on the drivers for framen and
req64n . For pci_mt32 , req64n does not apply.

3. The pci_mt64 and pci_mt32 functions begin the PCI address phase
by asserting framen and req64n and driving the address and the
command on ad[31..0] and cben[3..0] . Also, during the address
phase, the local side should provide the byte enables for the
transaction on l_cbeni[7..0] . For pci_mt32 , only
l_cbeni[3..0] apply. At the same time, the pci_mt64 and
pci_mt32 functions turn on the driver for irdyn .

4. If the address of the transaction matches one of the base address
registers of a PCI target, the PCI target should assert devseln to
claim the transaction. One or more data phases follow next,
depending on the type of write transaction.

The pci_mt64 and pci_mt32 functions treat memory write and memory
write and invalidate in the same way. Any additional requirements for the
memory write and invalidate command must be implemented by the
local-side application.
Altera Corporation 139

Specifi cations
64-Bit Zero-Wait-State Master Burst Memory Write Transaction

Figure 29 shows the waveform for a 64-bit zero wait state master burst
memory write transaction. This figure applies to both pci_mt64 and
pci_mt32 MegaCore functions, excluding the 64-bit extension signals as
noted for pci_mt32 . In this transaction, three 64-bit words are transferred
from the local side to the PCI side.
140 Altera Corporation

Specifi cations

 Specifications

3

Figure 29. 64-Bit Zero-Wait-State Master Burst Memory Write Transaction

Notes:
(1) This signal does not apply to pci_mt32 for 32-bit master read transactions. For these transactions, the signal should

be ignored.
(2) For pci_mt32 , lm_req64n should be exchanged with lm_req32 n for 32-bit master transactions.

2 3 4 5 6 7 9 10 12

clk

reqn

8 111

gntn

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

Adr

7

Adr-PAR

BE_L

D0_L0

0

0

0

D1_L D2_L

13

l_adi[31..0] Adr

7

(1) l_adi[63..32] D0_H

D0_L

D2_H

D2_LD1_L

D1_H

l_cbeni[3..0] BE_L

(1) l_cbeni[7..4] BE_H

(2) lm_req64n

lm_lastn

lm_adr_ackn

lm_rdyn

lm_tsr[9..0] 000 001 004 002 308008 208 000

(1) l_ldat_ackn

(1) l_hdat_ackn

lm_ackn

lm_dxfrn

D0_H ZD1_H D2_H

BE_H

D0-L-PAR D1-L-PAR D2-L-PAR

 D0-H-PAR D1-H-PAR D2-H-PAR

 Z

 Z

 Z
Altera Corporation 141

Specifi cations
Table 29 shows the sequence of events for a 64-bit zero wait state master
burst memory write transaction.

Table 29. 64-Bit Zero Wait State Master Burst Memory Write Transaction (Part 1 of 3)

Clock
Cycle

Event

1 The local side asserts lm_req64n to request a 64-bit transaction.

2 The function outputs reqn to the PCI bus arbiter to request bus ownership. At the same time, the
function asserts lm_tsr[0] to indicate to the local side that the master is requesting control of the
PCI bus.

3 The PCI bus arbiter asserts gntn to grant the PCI bus to the function. Although Figure 22 shows that
the grant occurs immediately and the PCI bus is idle at the time gntn is asserted, this action may not
occur immediately in a real transaction. The function waits for gntn to be asserted while the PCI bus
is idle before it proceeds. A PCI bus idle state occurs when both framen and irdyn are deasserted.

5 The function turns on its output drivers, getting ready to begin the address phase.

The function also outputs lm_adr_ackn to indicate to the local side that it has acknowledged its
request. During this same clock cycle, the local side should provide the PCI address on
l_adi[31..0] and the PCI command on l_cbeni[3..0] .

The local side master interface asserts lm_rdyn to indicate that it is ready to send data to the PCI
side. The function does not assert irdyn regardless if the local side asserts lm_rdyn to indicate that
it is ready to send data, only for the first data phase on the local side. For subsequent data phases,
the MegaCore function asserts irdyn if the local side is ready to send data.

The PCI MegaCore function continues to assert its reqn signal until the end of the address phase.
The function also asserts lm_tsr[1] to indicate to the local side that the PCI bus has been granted.

6 The PCI MegaCore function begins the 64-bit memory read transaction with the address phase by
asserting framen and req64n .

At the same time, the local side must provide the byte enables for the transaction on
l_cbeni[7..0] .

The PCI MegaCore function asserts lm_ackn regardless if the PCI side is ready to accept data, only
for the first data phase on the local side. For subsequent data phases, the function does not assert
lm_ackn unless the PCI side is ready to accept data. Because lm_rdyn was asserted in the
previous cycle and lm_ackn is asserted in the current cycle, the PCI MegaCore function asserts
lm_dxfrn . The assertion of the lm_dxfrn , l_ldat_ackn , and l_hdat_ackn signals indicate to
the local side that the l_adi[63..0] data buses have valid data.

The PCI MegaCore function asserts lm_tsr[2] to indicate to the local side that the PCI bus is in its
address phase.
142 Altera Corporation

Specifi cations

 Specifications

3

7 The target claims the transaction by asserting devseln . In this case, the target performs a fast
address decode. The target also asserts ack64n to inform the function that it can transfer 64-bit data.
The target also asserts trdyn to inform the function that it is ready to receive data.

During this clock cycle, the function also asserts lm_tsr[3] to inform the local side that it is in data
transfer mode.

8 The PCI MegaCore function asserts lm_tsr[9] to indicate to the local side that the target can
transfer 64-bit data.

9 The function asserts irdyn to inform the target that the PCI MegaCore function is ready to send data.
Because irdyn and trdyn are asserted, the first 64-bit data is transferred to the PCI side on the
rising edge of clock 10.

The function asserts lm_ackn to inform the local side that the PCI side is ready to accept data.
Because lm_rdyn was asserted in the previous cycle and lm_ackn is asserted in the current cycle,
the PCI MegaCore function asserts lm_dxfrn . The assertion of the lm_dxfrn , l_ldat_ackn , and
l_hdat_ackn signals indicates to the local side that the l_adi[63..0] data lines have valid data.

10 Because irdyn and trdyn are asserted, the second 64-bit data is transferred to the PCI side on the
rising edge of clock 11.

The function asserts lm_ackn to inform the local side that the PCI side is ready to accept data.
Because lm_rdyn was asserted in the previous cycle and lm_ackn is asserted in the current cycle,
the PCI MegaCore function asserts lm_dxfrn . The assertion of the lm_dxfrn , l_ldat_ackn , and
l_hdat_ackn signals indicate to the local side that the l_adi[63..0] data lines have valid data.
Also, the assertion of the lm_lastn signal indicates that this is the last data phase on the local side.

The PCI MegaCore function also asserts lm_tsr[8] in the same clock to inform the local side that
a data phase was completed successfully on the PCI bus during the previous clock.

11 Because lm_lastn was asserted and a data phase was completed in the previous cycle, framen
and req64n are deasserted, while irdyn and trdyn are asserted. This action indicates that the last
data phase is completed on the PCI side on the rising edge of clock 12.

On the local side, the function deasserts lm_ackn and lm_dxfrn since the last data phase on the
local side was completed on the previous cycle.

The function continues to assert lm_tsr[8] informing the local side that a data phase was
completed successfully on the PCI bus during the previous clock.

12 On the PCI side, irdyn , devseln , ack64n , and trdyn are deasserted, indicating that the current
transaction on the PCI side is completed. There will be no more data phases.

The function continues to assert lm_tsr[8] informing the local side that a data phase was
completed successfully on the PCI bus during the previous clock.

Table 29. 64-Bit Zero Wait State Master Burst Memory Write Transaction (Part 2 of 3)

Clock
Cycle

Event
Altera Corporation 143

Specifi cations
64-Bit Master Burst Memory Write Transaction with Local Wait State

Figure 30 shows the same transaction as in Figure 29 with the local side
asserting a wait state. This figure applies to both the pci_mt64 and
pci_mt32 functions, except the 64-bit extension signals as noted for
pci_mt32 . The local side deasserts lm_rdyn in clock 9. Consequently, on
the following clock cycle (clock 10), the pci_mt64 or pci_mt32 function
suspends data transfer on the local side by deasserting the lm_dxfrn
signal. Because there is no data transfer on the local side in clock 10, the
function suspends data transfer on the PCI side by deasserting the irdyn
signal in clock 11.

13 The function deasserts lm_tsr[3], informing the local side that the data transfer mode is completed.

Table 29. 64-Bit Zero Wait State Master Burst Memory Write Transaction (Part 3 of 3)

Clock
Cycle

Event
144 Altera Corporation

Specifi cations

 Specifications

3

Figure 30. 64-Bit Master Burst Memory Write Transaction with Local Wait State

Notes:
(1) This signal does not apply to pci_mt32 for 32-bit master read transactions. For these transactions, the signal should

be ignored.
(2) For pci_mt32 , lm_req64n should be exchanged with lm_req32 n for 32-bit master transactions.

2 3 4 5 6 7 9 10 12

clk

reqn

8 111

gntn

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

Adr

7

Adr-PAR

BE_L

D0_L0

0

0

0

D2_L

13

(2) lm_req64n

lm_lastn

lm_adr_ackn

lm_rdyn

lm_tsr[9..0] 000 001 004 002 308008 208 000

(1) l_ldat_ackn

(1) l_hdat_ackn

lm_ackn

lm_dxfrn

D0_H

D1_L

BE_H

D0-L-PAR D1-L-PAR D2-L-PAR

 D0-H-PAR D1-H-PAR D2-H-PAR

 Z

 Z

 Z

D2_HD1_H Z

14

208 308

l_adi[31..0] Adr

7

(1) l_adi[63..32] D0_H

D0_L

D2_H

D2_LD1_L

D1_H

l_cbeni[3..0] BE_L

BE_H(1) l_cbeni[7..4]
Altera Corporation 145

Specifi cations
64-Bit Master Burst Memory Write Transaction with PCI Wait State

Figure 31 shows the same transaction as in Figure 29 with the PCI bus
target asserting a wait state. This figure applies to both the pci_mt64 and
pci_mt32 MegaCore functions, excluding the 64-bit extension signals as
noted for pci_mt32 . The PCI target asserts a wait state by deasserting
trdyn in clock 10. Consequently, on the following clock cycle (clock 11),
the pci_mt64 or pci_mt32 function deasserts the lm_ackn and lm_dxfrn
signal on the local side. Data transfer is suspended on the PCI side in
clock 10 and on the local side in clock 11. Also, because lm_lastn is
asserted and lm_rdyn is deasserted in clock 10, the lm_ackn and
lm_dxfrn signals remain deasserted after clock 11.
146 Altera Corporation

Specifi cations

 Specifications

3

Figure 31. 64-Bit Master Burst Memory Write Transaction with PCI Wait State

Notes:
(1) This signal does not apply to pci_mt32 for 32-bit master read transactions. For these transactions, the signal should

be ignored.
(2) For pci_mt32 , lm_req64n should be exchanged with lm_req32 n for 32-bit master transactions.

2 3 4 5 6 7 9 10 12

clk

reqn

8 111

gntn

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

Adr

7

Adr-PAR

BE_L

D0_L0

0

0

0

D1_L

13

(2) lm_req64n

lm_lastn

lm_adr_ackn

lm_rdyn

lm_tsr[9..0] 000 001 004 002 308008 208 000

(1) l_ldat_ackn

(1) l_hdat_ackn

lm_ackn

lm_dxfrn

D0_H

D2_L

BE_H

D0-L-PAR D2-L-PARD1-L-PAR

 D0-H-PAR D2-H-PARD1-H-PAR

 Z

 Z

 Z

D1_H D2_H Z

14

208308

l_adi[31..0] Adr

7

(1) l_adi[63..32] D0_H

D0_L

D2_H

D2_LD1_L

D1_H

l_cbeni[3..0] BE_L

(1) l_cbeni[7..4] BE_H
Altera Corporation 147

Specifi cations
32-Bit Master Write Transactions

In master mode, the pci_mt64 and pci_mt32 functions support three
types of 32-bit write transactions:

■ Memory write transactions
■ I/O write transactions
■ Configuration read transactions

For both the pci_mt64 and pci_mt32 MegaCore functions, 32-bit
memory write transactions are either single-cycle or burst. The 32-bit
master write transactions are similar to 64-bit master read transactions,
but the upper address ad[63..32] and the upper command/byte
enables cben[7..4] are invalid. For pci_mt32 , the waveforms for 32-bit
memory write transactions are described in Figures 29 through 31,
excluding the 64-bit extension signals as noted, and in Figures 33 and 34.

32-Bit PCI & 64-Bit Local-Side Master Burst Memory Write Transaction

Figure 32 shows the same transaction as in Figure 29, but the PCI target
cannot transfer 64-bit transactions. This figure applies to pci_mt64 only.
In this transaction, the local-side master interface requests a 64-bit
transaction by asserting lm_req64n . The pci_mt64 function asserts
req64n on the PCI side. However, the PCI target cannot transfer 64-bit
data, and therefore does not assert ack64n in clock 7. Since this is the case,
the upper address ad[63..32] and the upper command/byte enables
cben[7..4] are invalid.

Also, because the PCI side is 32 bits wide and the local side is 64 bits wide,
the pci_mt64 function assumes that the transactions are within 64-bit
boundaries. Therefore, the pci_mt64 function registers l_adi[63..0] on
the local side and transfers the lower 32-bit data l_adi[31..0] on the
PCI side first, and the upper 32-bit data l_adi[63..32] afterwards.
148 Altera Corporation

Specifi cations

 Specifications

3

Figure 32. 32-Bit PCI & 64-Bit Local-Side Master Burst Memory Write Transaction

2 3 4 5 6 7 9 10 12

clk

reqn

8 111

gntn

ad[31..0]

ad[63..32]

cben[3..0]

cben[7..4]

par

par64

framen

req64n

irdyn

devseln

ack64n

trdyn

stopn

Adr

7

Adr-PAR

BE_L

D0_L0

0

13

lm_req64n

lm_lastn

lm_adr_ackn

lm_rdyn

lm_tsr[9..0] 000 001 004 002 108008 000

l_ldat_ackn

l_hdat_ackn

lm_ackn

lm_dxfrn

D1_H

D0-L-PAR D1-H-PAR

 Z

 Z

14

D0_H D1_L

D0-H-PAR D1-L-PAR

l_adi[31..0] Adr

7

l_adi[63..32] D0_H

D0_L D1_L

D1_H

l_cbeni[3..0] BE_L

l_cbeni[7..4] BE_H
Altera Corporation 149

Specifi cations

32-Bit PCI & 32-Bit Local-Side Master Burst Memory Write Transaction

Figure 33 shows the same transaction as in Figure 29, but the local side
master interface requests a 32-bit transaction by asserting lm_req32n .
This figure applies to both pci_mt64 and pci_mt32 , excluding the 64-bit
extension signals as noted for pci_mt32 . The pci_mt64 function does not
assert req64n on the PCI side. Therefore, the upper address ad[63..32]
and the upper command/byte enables cben[7..4] are invalid.
150 Altera Corporation

Specifi cations

 Specifications

3

Figure 33. 32-Bit PCI & 32-Bit Local-Side Master Burst Memory Read Transaction

Note:
(1) This signal does not apply to pci_mt32 for 32-bit master read transactions. For these transactions, the signal should

be ignored.

2 3 4 5 6 7 9 10

clk

reqn

8 111

gntn

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

Adr

7

Adr-PAR

0

0

D1_L D2_L

lm_req32n

lm_lastn

lm_adr_ackn

lm_rdyn

lm_tsr[9..0] 000 001 004 002 108008 000

(1) l_ldat_ackn

(1) l_hdat_ackn

lm_ackn

lm_dxfrn

BE_L

D1-L-PAR D2-L-PAR

 Z

 Z

D0_L

D0-L-PAR

l_adi[31..0] Adr

7

(1) l_adi[63..32]

D0_L D1_L D2_L

l_cbeni[3..0] BE_L

(1) l_cbeni[7..4]
Altera Corporation 151

Specifi cations

32-Bit PCI & 32-Bit Local-Side Single-Cycle Memory Write Transaction

Figure 34 shows the same transaction as in Figure 33, but the local side
master interface transfers only one data phase. This figure applies to both
the pci_mt64 and pci_mt32 MegaCore functions, excluding the 64-bit
extension signals as noted for pci_mt32 . This waveform also applies to
the following types of single-cycle transactions:

■ I/O write
■ Configuration write
152 Altera Corporation

Specifi cations

 Specifications

3

Figure 34. 32-Bit PCI & 32-Bit Local-Side Single-Cycle Memory Write Transaction

Note:
(1) This signal does not apply to pci_mt32 for 32-bit master read transactions. For these transactions, the signal should

be ignored.

2 3 4 5 6 7 9

clk

reqn

81

gntn

ad[31..0]

(1) ad[63..32]

cben[3..0]

(1) cben[7..4]

par

(1) par64

framen

(1) req64n

irdyn

devseln

(1) ack64n

trdyn

stopn

Adr

7

Adr-PAR

0

0

lm_req32n

lm_lastn

lm_adr_ackn

lm_rdyn

lm_tsr[9..0] 000 001 004 002 008 000

(1) l_ldat_ackn

(1) l_hdat_ackn

lm_ackn

lm_dxfrn

BE_L

 Z

 Z

D0_L

D0-L-PAR

108

l_adi[31..0] Adr

7

(1) l_adi[63..32]

D0_L

l_cbeni[3..0] BE_L

(1) l_cbeni[7..4]
Altera Corporation 153

Specifi cations

Abnormal Master Transaction Termination

An abnormal transaction is one in which the local side did not explicitly
request the termination of a transaction by asserting the lm_lastn signal.
A master transaction can be terminated abnormally for several reasons.
This section describes the behavior of the pci_mt64 and pci_mt32
functions during the following abnormal termination conditions:

■ Latency timer expires
■ Retry
■ Disconnect without data
■ Disconnect with data
■ Target abort
■ Master abort

Latency Timer Expires

The PCI specification requires that the master device end the transaction
as soon as possible after the latency timer expires and the gntn signal is
deasserted. The pci_mt64 and pci_mt32 functions adhere to this rule,
and when it ends the transaction because the latency timer expired, it
asserts lm_tsr[4] (tsr_lat_exp) until the beginning of the next master
transaction.

Retry

The target issues a retry by asserting stopn and devseln during the first
data phase. When the pci_mt64 or pci_mt32 function detects a retry
condition (see “Retry” on page 110 for details), it ends the cycle and
asserts lm_tsr[5] until the beginning of the next transaction. This
process informs the local-side device that it has ended the transaction
because the target issued a retry.

1 The PCI specification requires that the master retry the same
transaction with the same address at a later time. It is the
responsibility of the local-side application to ensure that this
requirement is met.

Disconnect Without Data

The target device issues a disconnect without data if it is unable to transfer
additional data during the transaction. The signal pattern for this
termination is described in “Disconnect” on page 112. When the
pci_mt64 or pci_mt32 function ends the transaction because of a
disconnect without data, it asserts lm_tsr[6] (tsr_disc_wod) until the
beginning of the next master transaction.
154 Altera Corporation

Specifi cations

 Specifications

3

Disconnect with Data

The target device issues a disconnect with data if it is unable to transfer
additional data in the transaction. The signal pattern for this termination
is described in “Disconnect” on page 112. When the pci_mt64 or
pci_mt32 function ends the transaction because of a disconnect with data,
it asserts lm_tsr[7] (tsr_disc_wd) until the beginning of the next
master transaction.

Target Abort

A target device issues this type of termination when a catastrophic failure
occurs in the target. The signal pattern for a target abort is shown in
“Target Abort” on page 117. When the pci_mt64 or pci_mt32 function
ends the transaction because of a target abort, it asserts the tabort_rcvd
signal, which is the same as the PCI status register bit 12. Therefore, the
signal remains asserted until it is reset by the host.

Master Abort

The pci_mt64 or pci_mt32 function terminates the transaction with a
master abort when no target claims the transaction by asserting devseln .
Except for special cycles and configuration transactions, a master abort is
considered to be a catastrophic failure. When a cycle ends in a master
abort, the pci_mt64 or pci_mt32 function informs the local-side device
by asserting the mabort_rcvd signal, which is the same as the PCI status
register bit 13. Therefore, the signal remains asserted until it is reset by the
host.

64-Bit
Addressing,
Dual Address
Cycle (DAC)

This section describes and includes waveform diagrams for 64-bit
addressing transactions using a dual address cycle (DAC). All 32-bit
addressing transactions for master and target mode operation described
in the previous sections are supported by 64-bit addressing transactions.
This includes both 32-bit and 64-bit data transfers.

1 This section applies to pci_mt64 and pci_t64 only.
Altera Corporation 155

Specifi cations
Target Mode Operation

A read or write transaction begins after a master acquires mastership of
the PCI bus and asserts framen to indicate the beginning of a bus
transaction. If the transaction is a 64-bit transaction, the master device
asserts the req64n signal at the same time it asserts the framen signal. The
pci_mt64 and pci_t64 functions assert the framen signal in the first
clock cycle, which is called the first address phase. During the first
address phase, the master device drives the 64-bit transaction address on
ad[63..0] , the DAC command on cben[3..0] , and the transaction
command on cben[7..4] . On the following clock cycle, during the
second address phase, the master device drives the upper 32-bit
transaction address on both ad[63..32] and ad[31..0] , and the
transaction command on both cben[7..4] and cben[3..0] . During
these two address phases, the MegaCore function latches the transaction
address and command, and decodes the address. If the transaction
address matches the pci_mt64 and pci_t64 target, the pci_mt64 and
pci_t64 target asserts the devseln signal to claim the transaction. In
64-bit transactions, pci_mt64 and pci_t64 also assert the ack64n signal
at the same time as the devseln signal indicating that it accepts the 64-bit
transaction. The pci_mt64 and pci_t64 functions implement slow
decode, i.e., the devseln and ack64n signals are asserted after the second
address phase is presented on the PCI bus. Also, both of the
lt_tsr[1..0] signals are driven high to indicate that the BAR0 and
BAR1 address range matches the current transaction address.

64-Bit Address, 64-Bit Data Single-Cycle Target Read Transaction

Figure 35 shows the waveform for a 64-bit address, 64-bit data single-
cycle target read transaction. Figure 35 is exactly the same as Figure 1,
except Figure 35 has two address phases (described in the previous
paragraph). Also, both lt_tsr[1..0] signals are asserted to indicate that
the BAR0 and BAR1 address range of pci_mt64 and pci_t64 matches the
current transaction address. In addition, the current transaction upper
32-bit address is latched on l_adro[63..32] , and the lower 32-bit
address is latched on l_adro[31..0] .

1 All 32-bit addressing transactions described in “Target Mode
Operation” on page 156 are applicable for 64-bit addressing
transactions, except for the differences described in the previous
paragraph.
156 Altera Corporation

Specifi cations

 Specifications

3

Figure 35. 64-Bit Address, 64-Bit Data Single-Cycle Target Read Transaction

ad[31..0]

ad[63..32]

cben[3..0]

cben[7..4]

par

par64

framen

req64n

irdyn

devseln

ack64n

trdyn

stopn

lt_framen

l_adro[31..0]

l_cmdo[3..0]

lt_ackn

l_adi[31..0]

lt_dxfrn

clk

l_adi[63..32]

l_beno[3..0]

l_beno[7..4]

lt_tsr[11..0]

Adr_L

D

Adr-PAR_L

Z

Adr_L

6

Z

BE0_L

BE0_H

Z

000 983

D0_L

D0_H

D0-L-PAR

BE0_L

BE0_H

000

1 2 3 4 5 6 7 8 9 10 11

D0_L

D0_H

lt_rdyn

D83

Adr_H

Adr_H

6

6

Adr-PAR_H

Z D0-H-PARAdr-PAR_H

l_adro[63..32] Adr_H
Altera Corporation 157

Specifi cations

Master Mode Operation

A master operation begins when the local-side master interface asserts the
lm_req64n signal to request a 64-bit transaction or the lm_req32n signal
to request a 32-bit transaction. The pci_mt64 function outputs the reqn
signal to the PCI bus arbiter to request bus ownership. The pci_mt64
function also outputs the lm_adr_ackn signal to the local side to
acknowledge the request. When the lm_adr_ackn signal is asserted, the
local side provides the PCI address on the l_adi[63..0] bus, the DAC
command on l_cbeni[3..0] , and the transaction command on the
l_cbeni[7..4] . When the PCI bus arbiter grants the bus to the pci_mt64
function by asserting gntn , pci_mt64 begins the transaction with a dual
address phase. The pci_mt64 function asserts the framen signal in the
first clock cycle, which is called the first address phase. During the first
address phase, the pci_mt64 function drives the 64-bit transaction
address on ad[63..0] , the dual address cycle command on cben[3..0] ,
and the transaction command on cben[7..4]. On the following clock
cycle, during the second address phase, the pci_mt64 function drives the
upper 32-bit transaction address on both ad[63..32] and ad[31..0] ,
and the transaction command on both cben[7..4] and cben[3..0] .

64-Bit Address, 64-Bit Data Master Burst Memory Read Transaction

Figure 36 shows the waveform for a 64-bit address, 64-bit data master
burst memory read transaction. Figure 36 is exactly the same as Figure 22,
except Figure 36 has two address phases (as described in the previous
paragraph).

1 All 32-bit addressing transactions described in “Master Mode
Operation” on page 158 are applicable for 64-bit addressing
transactions, except for the differences described in the previous
paragraph.
158 Altera Corporation

Specifi cations

 Specifications

3

Figure 36. 64-Bit Address, 64-Bit Data Master Burst Memory Read Transaction

2 3 4 5 6 7 9 10 12

clk

reqn

8 111

gntn

ad[31..0]

ad[63..32]

cben[3..0]

cben[7..4]

par

par64

framen

req64n

irdyn

devseln

ack64n

trdyn

stopn

Adr_L

BE_L

Z

D0_L

D0_H

D0-H-PAR

Z0

0

0

0

Z

Z

BE_H

Z

D1_L D2_L

D1_H D2_H

13 14

Z

Z

Z

D1-H-PAR D2-H-PAR

D0-H-PAR D2-H-PARD1-H-PAR

l_adi[31..0] Adr_L

l_dato[31..0] D0_L D1_L D2_L

l_dato[63..32] D0_H D1_H D2_H

l_cbeni[3..0] BE_L

l_cbeni[7..4] BE_H

lm_req64n

lm_lastn

lm_rdyn

lm_tsr[9..0] 000 001 004 002 200008 208 000

l_ldat_ackn

l_hdat_ackn

lm_ackn

lm_dxfrn

lm_adr_ackn

D

Adr_H

Adr_H

D

6

6

Adr-PAR_L

Adr-PAR_H

Adr-PAR_H

l_adi[63..32] Adr_H

6

308
Altera Corporation 159

	Contents
	PCI MegaCore Function User Guide
	About this User Guide
	User Guide Contents
	How to Contact Altera

	Typographic Conventions

	Getting Started
	Before You Begin
	Obtaining MegaCore Functions
	Installing the MegaCore Files
	Windows NT 3.51
	Windows 95/98 & Windows NT 4.0
	UNIX

	MegaCore Directory Structure

	Quartus Walk-Through
	Design Entry
	Run the set_constraint Utility
	Compilation & Functional Simulation
	Timing Analysis
	Configuring a Device

	MAX+PLUS�II Walk-Through Overview
	Design Entry
	Functional Compilation/Simulation
	Run the set_constraint Utility
	Timing Compilation & Analysis
	Configuring a Device

	Using Third- Party EDA Tools
	Generating VHDL & Verilog HDL Functional Models from the Quartus Software
	Synthesis Compilation & Post-Routing Simulation with the Quartus Software
	Generating VHDL & Verilog HDL Functional Models with the MAX+PLUS II Software
	Synthesis Compilation & Post-Routing Simulation with the MAX+PLUS�II Software

	MegaCore Overview
	Features...
	General Description
	Compliance Summary
	PCI Bus Signals
	Local Address, Data, Command & Byte Enable Signals
	Target Local-Side Signals
	Master Local-Side Signals

	Parameters
	Functional Description
	Target Device Signals & Signal Assertion
	Master Device Signals & Signal Assertion

	Specifications
	PCI Bus Commands
	Configuration Registers
	Vendor ID Register
	Device ID Register
	Command Register
	Status Register
	Revision ID Register
	Class Code Register
	Cache Line Size Register
	Latency Timer Register
	Header Type Register
	Base Address Registers
	CardBus CIS Pointer Register
	Subsystem Vendor ID Register
	Subsystem ID Register
	Expansion ROM Base Address Register
	Capabilities Pointer
	Interrupt Line Register
	Interrupt Pin Register
	Minimum Grant Register
	Maximum Latency Register

	Target Mode Operation
	64-Bit Target Read Transactions
	64-Bit Single-Cycle Target Read Transaction
	64-Bit Memory Burst Read Transaction

	32-Bit Target Read Transactions
	32-Bit Memory Read Transactions
	I/O Read Transaction
	Configuration Read Transaction

	64-Bit Target Write Transactions
	64-Bit Single-Cycle Target Write Transaction
	64-Bit Target Burst Write Transaction

	32-Bit Target Write Transactions
	32-Bit Memory Write Transaction
	I/O Write Transaction
	Configuration Write Transaction

	Target Transaction Terminations
	Retry
	Disconnect
	Target Abort

	Master Mode Operation
	64-Bit Master Read Transactions
	64-Bit Master Burst Memory Read Transaction with Local-Side Wait State
	64-Bit Master Burst Memory Read Transaction with PCI Wait State
	64-Bit Master Single-Cycle Memory Read Transaction

	32-Bit Master Read Transactions
	32-Bit PCI & 64-Bit Local-Side Master Burst Memory Read Transaction
	32-Bit PCI & 32-Bit Local-Side Master Burst Memory Read Transaction
	32-Bit PCI & 32-Bit Local Side Single-Cycle Memory Read Transaction

	64-Bit Master Write Transactions
	64-Bit Zero-Wait-State Master Burst Memory Write Transaction
	64-Bit Master Burst Memory Write Transaction with Local Wait State
	64-Bit Master Burst Memory Write Transaction with PCI Wait State

	32-Bit Master Write Transactions
	32-Bit PCI & 64-Bit Local-Side Master Burst Memory Write Transaction
	32-Bit PCI & 32-Bit Local-Side Master Burst Memory Write Transaction
	32-Bit PCI & 32-Bit Local-Side Single-Cycle Memory Write Transaction

	Abnormal Master Transaction Termination
	Latency Timer Expires
	Retry
	Disconnect Without Data
	Disconnect with Data
	Target Abort
	Master Abort

	64-Bit Addressing, Dual Address Cycle (DAC)
	Target Mode Operation
	64-Bit Address, 64-Bit Data Single-Cycle Target Read Transaction

	Master Mode Operation
	64-Bit Address, 64-Bit Data Master Burst Memory Read Transaction

