

pci_b & pcit1 MegaCore Function
User Guide
June 1999

pci_b & pcit1 MegaCore Function User Guide A-UG-PCI-02

June 1999 P25-04562-00

Altera, BitBlaster, ByteBlaster, ByteBlasterMV, FLEX, FLEX 10K, MegaWizard, MAX, MAX+PLUS, MAX+PLUS II, MegaCore, OpenCore, and specific

device designations are trademarks and/or service marks of Altera Corporation in the United States and/or other countries. Product elements and

mnemonics used by Altera Corporation are protected by copyright and/or trademark laws.

Altera Corporation acknowledges the trademarks of other organizations for their respective products or services mentioned in this document.

Altera reserves the right to make changes, without notice, in the devices or the device specifications identified in this document. Altera advises its

customers to obtain the latest version of device specifications to verify, before placing orders, that the information being relied upon by the customer

is current. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty. Testing

and other quality control techniques are used to the extent Altera deems such testing necessary to support this warranty. Unless mandated by

government requirements, specific testing of all parameters of each device is not necessarily performed. The megafunctions described in this catalog

are not designed nor tested by Altera, and Altera does not warrant their performance or fitness for a particular purpose, or non-infringement of any

patent, copyright, or other intellectual property rights. In the absence of written agreement to the contrary, Altera assumes no liability for Altera

applications assistance, customer’s product design, or infringement of patents or copyrights of third parties by or arising from use of semiconductor

devices described herein. Nor does Altera warrant non-infringement of any patent, copyright, or other intellectual property right covering or relating

to any combination, machine, or process in which such semiconductor devices might be or are used.

Altera’s products are not authorized for use as critical components in life support devices or systems without the express written approval of the

president of Altera Corporation. As used herein:

1. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose

failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a

significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of

the life support device or system, or to affect its safety or effectiveness.

Products mentioned in this document may be covered by one or more of the following U.S. patents: 5,821,787: 5,821,771; 5,815,726; 5,815,024; 5,812,479;

5,812,450; 5,809,281; 5,805,516; 5,802,540; 5,801,541; 5,796,267; 5,793,246; 5,790,469; 5,787,009; 5,771,264; 5,768,562; 5,768,372; 5,767,734; 5,764,583;

5,764,569; 5,764,080; 5,764,079; 5,761,099; 5,760,624; 5,757,207; 5,757,070; 5,744,991; 5,744,383; 5,740,110; 5,732,020; 5,729,495; 5,717,901; 5,705,939;

5,699,020; 5,699,312; 5,696,455; 5,693,540; 5,694,058; 5,691,653; 5,689,195; 5,668,771; 5,680,061; 5,672,985; 5,670,895; 5,659,717; 5,650,734; 5,649,163;

5,642,262; 5,642,082; 5,633,830; 5,631,576; 5,621,312; 5,614,840; 5,612,642; 5,608,337; 5,606,276; 5,606,266; 5,604,453; 5,598,109; 5,598,108; 5,592,106;

5,592,102; 5,590,305; 5,583,749; 5,581,501; 5,574,893; 5,572,717; 5,572,148; 5,572,067; 5,570,040; 5,567,177; 5,565,793; 5,563,592; 5,561,757; 5,557,217;

5,555,214; 5,550,842; 5,550,782; 5,548,552; 5,548,228; 5,543,732; 5,543,730; 5,541,530; 5,537,295; 5,537,057; 5,525,917; 5,525,827; 5,523,706; 5,523,247;

5,517,186; 5,498,975; 5,495,182; 5,493,526; 5,493,519; 5,490,266; 5,488,586; 5,487,143; 5,486,775; 5,485,103; 5,485,102; 5,483,178; 5,481,486; 5,477,474;

5,473,266; 5,463,328, 5,444,394; 5,438,295; 5,436,575; 5,436,574; 5,434,514; 5,432,467; 5,414,312; 5,399,922; 5,384,499; 5,376,844; 5,375,086; 5,371,422;

5,369,314; 5,359,243; 5,359,242; 5,353,248; 5,352,940; 5,309,046; 5,350,954; 5,349,255; 5,341,308; 5,341,048; 5,341,044; 5,329,487; 5,317,212; 5,317,210;

5,315,172; 5,301,416; 5,294,975; 5,285,153; 5,280,203; 5,274,581; 5,272,368; 5,268,598; 5,266,037; 5,260,611; 5,260,610; 5,258,668; 5,247,478; 5,247,477;

5,243,233; 5,241,224; 5,237,219; 5,220,533; 5,220,214; 5,200,920; 5,187,392; 5,166,604; 5,162,680; 5,144,167; 5,138,576; 5,128,565; 5,121,006;

5,111,423; 5,097,208; 5,091,661; 5,066,873; 5,045,772; 4,969,121; 4,930,107; 4,930,098; 4,930,097; 4,912,342; 4,903,223; 4,899,070; 4,899,067;

4,871,930; 4,864,161; 4,831,573; 4,785,423; 4,774,421; 4,713,792; 4,677,318; 4,617,479; 4,609,986; 4,020,469; and certain foreign patents.

Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and

copyrights.

Copyright © 1998 Altera Corporation. All rights reserved.

Printed on Recycled Paper.

®

About this User Guide

June 1999

User Guide
Contents

This user guide describes the Altera® pci_b and pcit1 , including the

specifications of the functions and how to use them in your designs. The

information in this user guide is current as of the printing date, but

megafunction specifications are subject to change. For the most current

information, refer to the Altera world-wide web site at

http://www.altera.com.

For additional details on the functions, including availability, pricing, and

delivery terms, contact your local Altera sales representative.

How to Contact Altera

For additional information about Altera products, consult the sources

shown in Table 1.

Table 1. Contact Information

Information Type Access U.S. & Canada All Other Locations

Literature Altera Express (800) 5-ALTERA (408) 544-7850

Altera Literature Services (888) 3-ALTERA
lit_req@altera.com

(888) 3-ALTERA
lit_req@altera.com

Non-Technical Customer Service Telephone Hotline (800) SOS-EPLD (408) 544-7000

Fax (408) 544-8186 (408) 544-7606

Technical Support Telephone Hotline
(6:00 a.m. to 6:00 p.m.
Pacific Time)

(800) 800-EPLD (408) 544-7000

Fax (408) 544-6401 (408) 544-6401

Electronic Mail sos@altera.com sos@altera.com

FTP Site ftp.altera.com ftp.altera.com

General Product Information Telephone (408) 544-7104 (408) 544-7104

World-Wide Web http://www.altera.com http://www.altera.com
Altera Corporation iii

About this Catalog

Typographic
Conventions

The PCI MegaCore Function User Guide uses the typographic

conventions shown in Table 2.

Table 2. PCI MegaCore Function User Guide Conventions

Visual Cue Meaning

Bold Type with Initial
Capital Letter s

Command names and dialog box titles are shown in bold, initial capital letters.
Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold type.
Examples: fMAX, \maxplus2 directory, d: drive, chiptrip.gdf file.

Bold italic type Book titles are shown in bold italic type with initial capital letters. Example: 1998 Data
Book .

Italic Type with Initial
Capital Letters

Document titles, checkbox options, and options in dialog boxes are shown in italic type
with initial capital letters. Examples: AN 75 (High-Speed Board Design), the Check
Outputs option, the Directories box in the Open dialog box.

Italic type Internal timing parameters and variables are shown in italic type. Examples: tPIA, n + 1.
Variable names are enclosed in angle brackets (< >) and shown in italic type. Example:
<file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of MAX+PLUS II Help topics are
shown in quotation marks. Example: “Configuring a FLEX 10K or FLEX 8000 Device
with the BitBlaster™ Download Cable.”

Courier type Reserved signal and port names are shown in uppercase Courier type. Examples:
DATA1, TDI , INPUT.

User-defined signal and port names are shown in lowercase Courier type. Examples:
my_data , ram_input .

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\max2work\tutorial\chiptrip.gdf . Also, sections of an actual
file, such as a Report File, references to parts of files (e.g., the AHDL keyword
SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier.

1., 2., 3., and a., b., c.,... Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ Bullets are used in a list of items when the sequence of the items is not important.
v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

9 The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.
iv Altera Corporation

®

Altera Corporation v

Contents

June 1999, ver. 2

Introduction

..1

PCI MegaCore Functions ...3

OpenCore Feature...4

Altera Devices..5

Software Tools ...6

Verification...7

References ..7

Getting Started

...9

Before You Begin...11

Walk-Through Overview...14

Using Third-Party EDA Tools...19

MegaCore Overview

...23

Features ..25

General Description..26

Compliance Summary..29

PCI Bus Signals..30

Parameters..39

Functional Description ...42

Specifications

...49

PCI Bus Commands..51

Configuration Registers ...52

Target Mode Operation..64

Master Mode Operation...80

Examples

..93

Example 1: Unintelligent Local Side ..95

Example 2: Intelligent Host ...96

PCI SIG Protocol Checklists

...99

Checklists ...101

PCI SIG Test Scenarios ...108

Index

...129

Notes:

Intr oduction

Contents

Altera Corporation 1

June 1999

®

PCI MegaCore Functions ...3

OpenCore Feature...4

Altera Devices..5

Software Tools ...6

Verification...7

References ..7

Notes:

®

Intr oduction

June 1999, ver. 2

As programmable logic device (PLD) densities grow to over a million

gates, design flows must be as efficient and productive as possible. Altera

provides ready-made, pre-tested, and optimized megafunctions that let

you rapidly implement the functions you need, instead of building them

from the ground up. Altera® MegaCore™ functions, which are reusable

blocks of pre-designed intellectual property, improve your productivity

by allowing you to concentrate on adding proprietary value to your

design. When you use MegaCore functions, you can focus on your high-

level design and spend more time and energy on improving and

differentiating your product.

Altera PCI solutions include PCI MegaCore functions developed and

supported by Altera. Altera’s APEX® and FLEX® devices easily

implement PCI applications, while leaving ample room for your custom

logic. The devices are supported by the Altera QuartusTM and

MAX+PLUS® II development systems, which allow you to perform a

complete design cycle including design entry, synthesis, place-and-route,

simulation, timing analysis, and device programming. Altera’s PCI

MegaCore functions are hardware-tested using the HP E2920 product

series. Combined with Altera’s APEX and FLEX devices, Altera software,

and extensive hardware testing, Altera PCI MegaCore functions provide

you with a complete design solution.

PCI MegaCore
Functions

The PCI MegaCore functions are developed and supported by Altera.

Four PCI MegaCore functions are currently offered (see Table 1). You can

use the OpenCore™ feature in the MAX+PLUS II software to test-drive

PCI and other MegaCore functions before you decide to license the

function. This user guide discusses the pci _b and pci t1 functions.

Table 1. Altera PCI MegaCore Functions

Function Description

pci_a Master/target interface function with direct
memory access (DMA)

pcit1 Target interface function

pci_b Customizable master/target interface function

pci_c 64-bit customizable master/target interface
function
Altera Corporation 3

Intr oduction

f For more information on these MegaCore functions, refer to the

following documents:

■ PCI Master/Target MegaCore Function with DMA Data Sheet
■ pcit1 PCI Target MegaCore Function Data Sheet
■ pci_b PCI Master/Target MegaCore Function Data Sheet
■ pci_c MegaCore Function User Guide

OpenCore
Feature

Altera’s exclusive OpenCore feature allows you to evaluate MegaCore

functions before deciding to license them. You can instantiate a MegaCore

function in your design, compile and simulate the design, and then verify

the MegaCore function’s size and performance. This evaluation provides

first-hand functional, timing, and other technical data that allows you to

make an informed decision on whether to license the MegaCore function.

Once you license a MegaCore function, you can use the Quartus or

MAX+PLUS II software to generate programming files, as well as EDIF,

VHDL, or Verilog HDL output netlist files for simulation in third-party

EDA tools. Figure 1 shows a typical design flow using MegaCore

functions and the OpenCore feature.

Figure 1. OpenCore Design Flow

Download a PCI
function from the Internet.

Instantiate the function in
your design.

Simulate your design.

Does the solution work
for your application?

No risk.

License the function and
configure devices.

Yes

No
4 Altera Corporation

Intr oduction

Altera Devices The PCI MegaCore functions have been optimized and targeted for Altera

PCI-compliant APEX and FLEX devices. APEX 20K devices offer

complete system-level integration on a single device. The APEX

MultiCore™ architecture delivers the ultimate in design flexibility and

efficiency for high-performance System-on-a-Programmable Chip™

applications. With densities ranging from 100,000 to 1,000,000 gates, the

APEX 20K architecture integrates look-up-table (LUT) logic, product-

term logic, and memory into a single architecture, eliminating the need for

multiple devices, saving board space, and simplifying the

implementation of complex designs.

In the APEX MultiCore architecture, embedded system blocks (ESBs) and

logic array blocks (LABs) are combined into MegaLAB™ structures. Each

APEX 20K ESB can be configured as product-term logic, enabling

APEX 20K devices to achieve unmatched integration efficiency, as LUT

logic or as memory. The ESB can be configured as dual-port RAM, with a

wide range of RAM widths and depths, or ROM in APEX 20K devices,

and as content-addressable memory (CAM), a memory technology that

accelerates applications requiring fast searches, in APEX 20KE devices.

The FLEX 10K embedded programmable logic device (PLD) family

delivers the flexibility of traditional programmable logic with the

efficiency and density of gate arrays with embedded memory. FLEX 10K

devices feature embedded array blocks (EABs), which are 2 Kbits of RAM

that can be configured as 256 × 8, 512 × 4, 1,024 × 2, or 2,048 × 1 blocks.

Additionally, the FLEX 10K family offers all the features of programmable

logic: ease-of-use, fast and predictable performance, register-rich

architecture, and in-circuit reconfigurability (ICR). The 3.3-V FLEX 10KA

devices and the MAX+PLUS II software combine to provide performance

improvements of up to 100% over traditional FLEX 10K devices. Together,

these features enable FLEX 10K devices to achieve the fastest high-density

performance in the programmable logic market.

The 2.5-V FLEX 10KE devices support efficient implementation of dual-

port RAM, and further enhance the performance of the FLEX 10K family.

Designed for compliance with the 3.3-V PCI specification, FLEX 10KE

devices offer 100-MHz system speed and 150-MHz first-in first-out (FIFO)

buffers in devices with densities from 30,000 to 250,000 gates.

Altera’s 5.0-V and 3.3-V FLEX 6000 devices deliver the flexibility and

time-to-market of programmable logic at prices that are competitive with

gate arrays. Featuring the OptiFLEX™ architecture, FLEX 6000 devices

provide a flexible, high-performance, and cost-effective alternative to

ASICs for high-volume production.
Altera Corporation 5

Intr oduction

6 Altera Corporation

f For more information on FLEX 10K and FLEX 6000 devices, refer to the

FLEX 10K Embedded Programmable Logic Family Data Sheet, the FLEX 10KE
Embedded Programmable Logic Family Data Sheet, and the FLEX 6000
Programmable Logic Device Family Data Sheet.

Software Tools Long recognized as the best development system in the programmable

logic industry, the Quartus and MAX+PLUS II software continues to offer

unmatched flexibility and performance. Both software packages offer a

completely integrated development flow and an intuitive, Windows-

based graphical user interface, making it easy to learn and use. They also

let you quickly implement and test changes in your design, program

Altera PLDs at your desktop, and eliminate the long lead times typically

associated with gate arrays.

The Quartus and MAX+PLUS II software offer a seamless development

flow, allowing you to enter, compile, and simulate your design and

program devices using a single, integrated tool, regardless of the Altera

device you choose. Both software programs support industry-standard

VHDL and Verilog HDL design descriptions, as well as EDIF netlists

generated by third-party EDA schematic and synthesis tools.

As a standard feature, the MAX+PLUS II software interfaces with all

major EDA design tools, including tools for ASIC designers. Once a

design is captured and simulated using the tool of your choice, you can

transfer your EDIF file directly into the MAX+PLUS II software. After

synthesis and fitting, you can transfer your file back into your tool of

choice for simulation. The MAX+PLUS II system outputs the full-timing

VHDL, Verilog HDL, Standard Delay Format (SDF), and EDIF netlists

that can be used for post-route device- and system-level simulation.

Figure 2 shows the typical design flow when using the MAX+PLUS II

software with other EDA tools.

Figure 2. MAX+PLUS II/EDA Tool Design Flow

MAX+PLUS
CompilerEDIF

Third-Party
EDA Tool

EDIF Output File (.edo)
VHDL Output File (.vho)
Verilog Output File (.vo)
SDF Output File (.sdo)

Intr oduction

To simplify the design flow between the MAX+PLUS II software and

other EDA tools, Altera has developed the MAX+PLUS II Altera

Commitment to Cooperative Engineering Solutions (ACCESSSM) Key

Guidelines. These guidelines provide complete instructions on how to

create, compile, and simulate your design with tools from leading EDA

vendors. These guidelines are available on the MAX+PLUS II installation

CD-ROM and on the Altera web site at http://www.altera.com.

Verification Altera has simulated and hardware tested the PCI MegaCore functions

extensively in real systems and against multiple PCI bridges. This testing

includes using the PCI functions with a simple memory interface on the

Altera PCI prototype board and with different chipsets, such as the Intel

430-FX and 440-FX PCI chipsets, and Intel 21052-AB and 21152-AA PCI-

to-PCI bridges. Using the HP E2925A 32-bit, 33-MHz PCI Bus Analyzer

and Exerciser in-system, Altera tested numerous vectors for different PCI

transactions to analyze the PCI traffic and check for protocol violations.

Altera’s aggressive hardware testing policy produces PCI functions that

are far more robust than could be achieved from simulation alone.

References Reference documents for the pci_b and pcit1 functions include:

■ PCI Local Bus Specification, Revision 2.2 PCI SIG. Portland, Oregon:

PCI Special Interest Group, December 1998.

■ PCI Compliance Checklist, Revision 2.1. PCI SIG. Portland, Oregon.

■ 1999 Data Book. Altera Corporation. San Jose, California. May 1999.
Altera Corporation 7

Notes:

Getting Star ted
Contents

Altera Corporation 9

June 1999

®

Before You Begin...11

 Obtaining MegaCore Functions...11

 Installing the MegaCore Files...12

 MegaCore Directory Structure...13

Walk-Through Overview...14

 Design Entry ...15

 Functional Compilation/Simulation...16

 Run the make_acf Utility ..17

 Timing Compilation & Analysis..18

 Configuring a Device...18

Using Third-Party EDA Tools...19

 VHDL & Verilog HDL Functional Models...20

 Synthesis Compilation & Post-Routing Simulation..21

Notes:

®

Getting Star ted

June 1999, ver. 2
Altera PCI MegaCore™ functions provide solutions for integrating 32-bit

PCI peripheral devices, including network adapters, graphic accelerator

boards, and embedded control modules. The functions are optimized for

Altera® APEXTM and FLEX® devices, greatly enhancing your productivity

by allowing you to focus efforts on the custom logic surrounding the PCI

interface. The PCI MegaCore functions are fully tested to meet the

requirements of the PCI Special Interest Group (SIG) PCI Local Bus
Specification, Revision 2.2 and Compliance Checklist, Revision 2.1.

This section describes how to obtain Altera PCI MegaCore functions,

explains how to install them on your PC or workstation, and walks you

through the process of implementing the function in a design. You can

test-drive MegaCore functions using Altera’s OpenCore™ feature to

simulate the functions within your custom logic. When you are ready to

license a function, contact your local Altera sales representative.

1 This section describes an example design flow using FLEX 10K

devices and the MAX+PLUS® II software. For information on

design flows using APEX devices and the Quartus software,

contact your local Altera FAE.

Before You
Begin

Before you can start using Altera PCI MegaCore functions, you must

obtain the MegaCore files and install them on your PC or workstation.

The following instructions describe this process and explain the directory

structure for the functions.

Obtaining MegaCore Functions

If you have Internet access, you can download MegaCore functions from

Altera’s web site at http://www.altera.com. Follow the instructions below

to obtain the MegaCore functions via the Internet. If you do not have

Internet access, you can obtain the MegaCore functions from your local

Altera representative.

1. Run your web browser (e.g., Netscape Navigator or Microsoft

Internet Explorer).

2. Open the URL http://www.altera.com.
Altera Corporation 11

Getting Star ted
3. Click the Tools icon on the home page toolbar.

4. Click the MegaCore Functions link.

5. Click the link for the Altera PCI MegaCore function you wish to

download.

6. Follow the on-line instructions to download the function and save it

to your hard disk.

Installing the MegaCore Files

Depending on your platform, use the following instructions:

Windows 3.x & Windows NT 3.51

For Windows 3.x and Windows NT 3.51, follow the instructions below:

1. Open the Program Manager.

2. Click Run (File menu).

3. Type <path name>\<filename>.exe , where <path name> is the

location of the downloaded MegaCore function and <filename> is the

filename of the function.

4. Click OK. The MegaCore Installer dialog box appears. Follow the

on-line instructions to finish installation.

Windows 95/98 & Windows NT 4.0

For Windows 95/98 and Windows NT 4.0, follow the instructions below:

1. Click Run (Start menu).

2. Type <path name>\<filename>.exe , where <path name> is the

location of the downloaded MegaCore function and <filename> is the

filename of the function.

3. Click OK. The MegaCore Installer dialog box appears. Follow the

on-line instructions to finish installation.
12 Altera Corporation

Getting Star ted
UNIX

At a UNIX command prompt, change to the directory in which you saved

the downloaded MegaCore function and type the following commands:

uncompress <filename>.tar.Z 9
t ar xvf <filename>.tar 9

MegaCore Directory Structure

Altera PCI MegaCore function files are organized into several directories;

the top-level directory is \megacore (see Table 1).

1 The MegaCore directory structure may contain several

MegaCore products. Additionally, Altera updates MegaCore

files from time to time. Therefore, Altera recommends that you

do not save your project-specific files in the MegaCore directory

structure.

Table 1. PCI MegaCore Directories (Part 1 of 2)

Directory Description

\bin Contains the make_acf utility that generates a MAX+PLUS II Assignment &
Configuration File (.acf) for your custom design hierarchy. The generated ACF
contains all necessary assignments to ensure that all PCI timing requirements
are met.

\lib Contains encrypted lower-level design files. After installing the MegaCore
function, you should set a user library in the MAX+PLUS II software that points to
this directory. This library allows you to access all the necessary MegaCore files.

\<pci_b or pcit1> Contains the MegaCore function files.

\<pci_b or pcit1>\acf Contains ACFs for targeted Altera FLEX devices. These ACFs contain all
necessary assignments to meet PCI timing requirements. By using the make_acf
utility, you can annotate the assignments in one of these ACFs for your project.

\<pci_b or pcit1>\doc Contains documentation for the function.

\<pci_b or pcit1>\examples The \examples directory has subdirectories containing examples for FLEX
device/package combinations. Each subdirectory contains a Graphic Design File
(.gdf) and an ACF. The \examples directory also contains the following
subdirectories:
■ \sim_top , which contains a GDF and an ACF that can be used to perform

functional compilation and simulation of the PCI MegaCore function.
■ \walkthru , which contains a sample design you can use to create a PCI

design using the MAX+PLUS II software. This sample design familiarizes
you with the Altera PCI MegaCore function and describes how to use it in
your custom design. In the \walkthru directory, there is a \solution
subdirectory that can be used as a reference as you implement the sample
design.
Altera Corporation 13

Getting Star ted
Walk-Through
Overview

This section describes an entire design flow using an Altera PCI

MegaCore function and the MAX+PLUS II development system (see

Figure 1).

Figure 1. Example PCI Design Flow

The following instructions assume that:

■ You are using either the pcit1 or pci_ b MegaCore function.

■ All files are located in the default directory, c:\megacore. If the files

are installed in a different directory on your system, substitute the

appropriate path name.

■ You are using a PC; UNIX users should alter the steps as appropriate.

■ You are familiar with the MAX+PLUS II software.

■ MAX+PLUS II version 9.24 or higher is installed in the default

location (c:\maxplus2).

■ You are using the OpenCore feature to test-drive the function or you

have licensed the function.

\<pci_b or pcit1>\sim\scf Contains the Simulator Channel Files (.scf) for different PCI protocol transactions
that can be used to verify the functionality of the Altera PCI MegaCore function.

\<pci_b or pcit1>\sim\sig Contains the simulation files required by the PCI SIG Compliance Checklist,
Revision 2.1.

Table 1. PCI MegaCore Directories (Part 2 of 2)

Directory Description

Create a Graphic
Design File

Perform Functional
Compilation & Simulation

Create an ACF using the
make_acf Utility

Perform Timing
Compilation & Analysis

License the Function &
Configure the Devices
14 Altera Corporation

Getting Star ted
1 You can use Altera’s OpenCore feature to compile and simulate

the PCI MegaCore functions, allowing you to evaluate the

functions before deciding to license them. However, you must

obtain a license from Altera before you can generate

programming files or EDIF, VHDL, or Verilog HDL netlist files

for simulation in third-party EDA tools.

The sample design process uses the following steps:

1. Create a GDF that instantiates the PCI MegaCore function and an

application design called altr_app.tdf. The altr_app.tdf design is a

first-in first-out (FIFO) function, written in the Altera Hardware

Description Language (AHDL), that is used to write and read data.

This design and the PCI MegaCore function comprise the top-level

design.

2. Perform functional compilation and simulation to verify that the

circuit works correctly.

3. Run the make_acf utility to create an ACF that contains the

necessary assignments for meeting the targeted device’s PCI timing

requirements.

4. Perform timing compilation and analysis to verify that the PCI

timing specifications are met.

5. If you have licensed the MegaCore function, configure a targeted

Altera FLEX device with the completed design.

Design Entry

The following steps explain how to create a GDF that integrates the PCI

MegaCore function with your own logic.

1 Refer to MAX+PLUS II Help for detailed instructions on how to

use the Graphic Editor.

1. Run the MAX+PLUS II software.

2. Specify user libraries for the PCI function. Choose User Libraries

(Options menu) and specify the directories c:\megacore\lib and

c:\megacore\<pcit1 or pci_b>\examples\walkthru.

3. Create a directory to hold your design files, e.g., c:\altr_app.

4. Create a new GDF named walkthru.gdf and save it to your new

directory (e.g., c:\altr_app\walkthru.gdf).
Altera Corporation 15

Getting Star ted
16 Altera Corporation

5. Choose Project Set Project to Current File (File menu) and specify

the walkthru.gdf file as the current project.

6. Enter the schematic shown in the walkthru.gdf file in the \solution

directory. You may skip this step by copying the schematic in the

walkthru.gdf file into your walkthru.gdf file in your working

directory.

7. Set the parameter BAR0="H"F0000000"" . Double-click on the

Parameters Field of the symbol to open the Edit Ports/Parameters

dialog box. If you are using the schematic from the \solution

directory, you can skip this step.

1 When changing a parameter value, only change the number, i.e.,

leave the hexadecimal indicator H and quotation marks. If you

delete these characters, you will receive a compilation error.

Additionally, when setting register values, the MAX+PLUS II

software may issue several warning messages indicating that

one or more registers are stuck at ground. These warning

messages can be ignored.

After you have entered your design, you are ready to perform functional

simulation to verify that your circuit is working correctly.

Functional Compilation/Simulation

The following steps explain how to functionally compile and simulate

your design.

1. In the MAX+PLUS II Compiler, turn on Functional SNF Extractor
(Processing menu).

2. Click Start to compile your design.

3. In the MAX+PLUS II Simulator, choose Inputs/Outputs (File Menu),

specify c:\megacore\<pci_b or pcit1>\examples\walkthru\<target
or master>.scf in the Input box, and choose OK.

4. Click Start to simulate your design.

5. Click Open SCF to view the simulation file. The simulation shows

several cycles that write and read from the local-side FIFO function.

After you have verified that your design is functionally correct, you are

ready to synthesize and place and route your design. However, you still

need to generate an ACF to ensure that all of the PCI signals in your

design meet the PCI timing specifications.

Getting Star ted
Run the make_acf Utility

The make_acf utility, located in the c:\megacore\bin directory, is used to

generate an ACF that contains the placement and configuration

assignments to meet the PCI timing specifications. For more information

on the make_acf utility, refer to the documentation in the

c:\megacore\bin directory.

1 For the make_acf utility to operate correctly, you must use

directory names and filenames that are eight (8) characters or

less.

Generate the file walkthru.acf by performing the following steps. If you

used the walkthru.gdf file from the \solution directory, you can skip the

steps below and simply use the walkthru.acf that is also available in the

\solution directory.

1. Run the make_acf utility by typing the following command at a

DOS command prompt:

c:\megacore\bin\make_ac f 9

2. You are prompted with several questions. Type the following after

each question. (The bold text is the prompt text.)

Enter the hierarchical name for the PCI MegaCore:

| XX: YY 9

Where:

XX is the PCI function (pci_b or pcit1)

YY is the instance name for the MegaCore function. In a GDF, it is

the number in the lower left-hand corner of the PCI MegaCore

symbol.

Enter the chip name:

walkthru 9

Type the path and name of the output acf file:

c:\altr_app\walkthru.acf 9

Type the path and name of the input acf file:

c:\megacore\ < pci_b or pcit1>\acf\1030r240.acf 9
Altera Corporation 17

Getting Star ted
1 For a listing of the supported Altera device ACFs, refer to the

readme file in \megacore\<pci_b or pcit1>\doc.

3. After you have generated your ACF, you are ready to perform

timing compilation to synthesize and place and route your design.

Timing Compilation & Analysis

The following steps explain how to perform timing compilation and

analysis.

1. Choose Project Set Project to Current File (File menu).

2. In the Compiler, turn off the Functional SNF Extractor command

(Processing menu).

3. Click Start to begin compilation.

4. After a successful compilation, open the Timing Analyzer. There are

three forms of timing analysis you can perform on your design:

■ In the Timing Analyzer, choose Registered Performance
(Analysis menu). The Registered Performance Display calculates

the maximum clock frequency and identifies the longest delay

paths between registers.

■ In the Timing Analyzer, choose Delay Matrix (Analysis menu).

The Delay Matrix Display calculates combinatorial delays, e.g.,

tCO and tPD.

■ In the Timing Analyzer, choose Setup/Hold Matrix (Analysis

menu). The Setup/Hold Matrix Display calculates the setup and

hold times of the registers.

You are now ready to configure your targeted Altera FLEX device.

Configuring a Device

After you have compiled and analyzed your design, you are ready to

configure your targeted Altera FLEX device. If you are evaluating the PCI

MegaCore function with the OpenCore feature, you must license the PCI

MegaCore function before you can generate configuration files. Altera

provides three types of hardware to configure FLEX devices:

■ The Altera Stand-Alone Programmer (ASAP2) includes an LP6 Logic

Programmer card and a Master Programming Unit (MPU). You

should use a PLMJ1213 programming adapter with the MPU to

program a serial Configuration EPROM, which loads the
18 Altera Corporation

Getting Star ted
configuration data to the FLEX device during power-up. A

Programmer Object File (.pof) is used to program the Configuration

EPROM. The Altera Stand-Alone Programmer is typically used in the

production stage of the design flow.

■ The BitBlaster™ serial download cable is a hardware interface to a

standard PC or UNIX workstation RS-232 port. An SRAM Object File

(.sof) is used to configure the FLEX device. The BitBlaster cable is

typically used in the prototyping stage of the design flow.

■ The ByteBlaster™ and ByteBlasterMV™ parallel port download

cables provide a hardware interface to a standard parallel port. The

SOF is used to configure the FLEX device. The ByteBlaster and

ByteBlasterMV cables are typically used in the prototyping stage.

f For more information, refer to the BitBlaster Serial Download Cable Data
Sheet, ByteBlaster Parallel Port Download Cable Data Sheet, and

ByteBlasterMV Parallel Port Download Cable Data Sheet.

Perform the following steps to set up the MAX+PLUS II configuration

interface. For more information, refer to MAX+PLUS II Help.

1. Open the Programmer.

2. Choose Hardware Setup (Options menu).

3. In the Hardware Setup dialog box, select your programming

hardware in the Hardware Type box and click OK.

4. Choose Select Programming File (File menu) and select your

programming filename.

5. Click Program to program a serial Configuration EPROM, or click

Configure if you are using the BitBlaster, ByteBlaster, or

ByteBlasterMV cables.

Using Third-
Party EDA Tools

As a standard feature, Altera’s MAX+PLUS II software works seamlessly

with tools from all EDA vendors, including Cadence, Exemplar Logic,

Mentor Graphics, Synopsys, Synplicity, and Viewlogic. After you have

licensed the MegaCore function, you can generate EDIF, VHDL,

Verilog HDL, and Standard Delay output files from the MAX+PLUS II

software and use them with your existing EDA tools to perform

functional modeling and post-route simulation of your design.
Altera Corporation 19

Getting Star ted
To simplify the design flow between the MAX+PLUS II software and

other EDA tools, Altera has developed the MAX+PLUS II Altera

Commitment to Cooperative Engineering Solutions (ACCESSSM) Key

Guidelines. These guidelines provide complete instructions on how to

create, compile, and simulate your design with tools from leading EDA

vendors. The MAX+PLUS II ACCESS Key Guidelines are part of Altera’s

ongoing efforts to give you state-of-the-art tools that fit into your design

flow, and to enhance your productivity for even the highest-density

devices. The MAX+PLUS II ACCESS Key Guidelines are available on the

Altera web site (http://www.altera.com) and the MAX+PLUS II CD-ROM.

The following sections describe how to generate a VHDL or Verilog HDL

functional model, and describe the design flow to compile and simulate

your custom Altera PCI MegaCore design with a third-party EDA tool.

Refer to Figure 2 on page 6, which shows the design flow for interfacing

your third-party EDA tool with the MAX+PLUS II software.

VHDL & Verilog HDL Functional Models

To generate a VHDL or Verilog HDL functional model, perform the

following steps:

1. In the MAX+PLUS II software, open a pci_top.gdf file located in any

of the FLEX device/package example subdirectories in the

\megacore\<pcit1 or pci_b>\examples directory.

2. In the Compiler, ensure that the Functional SNF Extractor command
(Processing menu) is turned off.

3. Turn on the Verilog Netlist Writer or VHDL Netlist Writer

command (Interfaces menu), depending on the type of output file

you want to use in your third-party simulator.

4. Choose Verilog Netlist Writer Settings (Interface menu) if you

turned on Verilog Netlist Writer.

5. In the Verilog Netlist Writer Settings dialog box, select either SDF
Output File [.sdo] Ver 2.1 or SDF Output File [.sdo] Ver.1.0 and click

OK. Selecting one of these options causes the MAX+PLUS II

software to generate the files pci_top.vo, pci_top.sdo, and

alt_max2.vo. pci_top.vo is the functional model of your PCI

MegaCore design. The pci_top.sdo file contains the timing

information. The alt_max2.vo file contains the functional models of

any Altera macrofunctions or primitives.

6. Choose VHDL Netlist Writer Settings (Interface menu) if you

turned on VHDL Netlist Writer.
20 Altera Corporation

Getting Star ted
7. In the VHDL Netlist Writer Settings dialog box, select either SDF
Output File [.sdo] Ver 2.1 (VITAL) or SDF Output File [.sdo] Ver. 1.0 and

click OK. Choosing one of these options causes the MAX+PLUS II

software to generate the files pci_top.vho and pci_top.sdo. The

pci_top.vho file is the functional model of your PCI MegaCore

design. The pci_top.sdo file contains the timing information.

8. Compile the pci_top.vo or pci_top.vho output files in your third-

party simulator to perform functional simulation using Verilog HDL

or VHDL.

Synthesis Compilation & Post-Routing Simulation

To synthesize your design in a third-party EDA tool and perform post-

route simulation, perform the following steps:

1. Create your custom design instantiating a PCI MegaCore function.

2. Synthesize the design using your third-party EDA tool. Your EDA

tool should treat the PCI MegaCore instantiation as a black box by

either setting attributes or ignoring the instantiation.

1 For more information on setting compiler options in your

third-party EDA tool, refer to the MAX+PLUS II ACCESS

Key Guidelines.

3. After compilation, generate a hierarchical EDIF netlist file in your

third-party EDA tool.

4. Open your EDIF file in the MAX+PLUS II software.

5. Run the make_acf utility to generate an ACF for your targeted FLEX

device. Refer to “Run the make_acf Utility” on page 17 for more

information.

6. Set your EDIF file as the current project in the MAX+PLUS II

software.

7. Choose EDIF Netlist Reader Settings (Interfaces menu).

8. In the EDIF Netlist Reader Settings dialog box, select the vendor for

your EDIF netlist file in the Vendor drop-down list box and click OK.

9. Make logic option and/or place-and-route assignments for your

custom logic using the commands in the Assign Menu.
Altera Corporation 21

Getting Star ted
10. In the MAX+PLUS II Compiler, make sure Functional SNF Extractor

(Processing menu) is turned off.

11. Turn on the Verilog Netlist Writer or VHDL Netlist Writer
command (Interfaces menu), depending on the type of output file

you want to use in your third-party simulator. Set the netlist writer

settings as described in step 5 in “VHDL & Verilog HDL Functional

Models” on page 20.

12. Compile your design. The MAX+PLUS II Compiler synthesizes and

performs place-and-route on your design, and generates output and

programming files.

13. Import your MAX+PLUS II-generated output files (.edo, .vho, .vo, or

.sdo) into your third-party EDA tool for post-route, device-level, and

system-level simulation.
22 Altera Corporation

MegaCore Over view
Contents

Altera Corporation 23

June 1999

®

Features ..25

General Description..26

Compliance Summary..30

PCI Bus Signals..30

 Target Local-Side Signals..33

 Master Local-Side Signals ...35

 Configuration Space Output Signals...38

Parameters..38

Functional Description ...44

 Target Device Signals & Signal Assertion ..46

 Master Device Signals & Signal Assertion ...48

Notes:

®

MegaCore Over view

June 1999, ver. 2
Features... This section describes the features of both the pci_b and pcit1

MegaCore™ functions. The pci_b function is a parameterized MegaCore

function implementing a peripheral component interconnect (PCI)

master/target interface. The pcit1 function is a parameterized MegaCore

function implementing a PCI target-only interface.

1 This section describes an example design flow using FLEX® 10K

devices and the MAX+PLUS® II software. For information on

design flows using APEXTM devices and the QuartusTM software,

contact your local Altera FAE.

■ A flexible general-purpose interface that can be customized for

specific peripheral requirements

■ Dramatically shortens design cycles

■ Fully compliant with the PCI Special Interest Group (PCI SIG) PCI
Local Bus Specification, Revision 2.2 timing and functional

requirements

■ Extensively hardware tested using the following hardware and

software (see “Compliance Summary” on page 30 for details)

– FLEX 10K PCI prototype board

– HP E2925A PCI Bus Exerciser and Analyzer

– Validated against common PCI chipsets, such as the Intel 430-FX

and 440-FX, and Intel 21052-AB and 21152-AA PCI-to-PCI

bridges

■ Optimized for the APEX 20K, FLEX 10K, and FLEX 6000

architectures

■ PCI master features (applies to the pci_b function only):

– Zero-wait-state memory read/write operation (up to 132 Mbytes

per second)

– Initiates most PCI commands including: configuration

read/write, memory read/write, I/O read/write, memory read

multiple (MRM), memory read line (MRL), and memory write

and invalidate (MWI)

– Bus parking

– Independent master operation allows self configuration

capability for host bridge applications

■ PCI target features (applies to both the pci_b and pcit1 functions):

– Zero-wait-state memory read/write (up to 132 Mbytes per

second)

– Parity error detection
Altera Corporation 25

MegaCore Over view
...and More
Features

– Up to 6 base address registers (BARs) with adjustable memory

size and type

– Capabilities list pointer support, which includes compact PCI

Hot Swap support

– Expansion ROM BAR support

– CardBus CIS pointer register

– Most PCI bus commands are supported; interrupt acknowledge,

configuration read/write, memory read/write, I/O read/write,

MRM, MRL, and MWI

– Local side can request a target abort, retry, or disconnect

– Local-side interrupt

■ Configuration registers:

– Parameterized registers: device ID, vendor ID, class code,

revision ID, BAR0 through BAR5, subsystem ID, subsystem

vendor ID, interrupt pin, maximum latency, minimum grant,

capabilities list pointer, CIS pointer, and expansion ROM BAR

– Parameterized default or preset base address (available for all 6)

and expansion ROM base address

– Non-parameterized registers: command, status, header type,

latency timer, cache line size, and interrupt line

General
Description

The pci_b MegaCore function (ordering code: PLSM-PCI/B) is a

hardware-tested, high-performance, flexible implementation of the 32-bit,

33-MHz PCI master/target interface. The pcit1 MegaCore function

(ordering code: PLSM-PCIT1) is an implementation of the 32-bit, 33-MHz

PCI target interface. Because these functions handle the complex PCI

protocol and stringent timing requirements internally, designers can

focus their engineering efforts on value-added custom development,

significantly reducing time-to-market.

Optimized for Altera® APEX 20K, FLEX 10K, and FLEX 6000

architectures, the pci_b and pcit1 functions support configuration, I/O,

and memory transactions. With the high density of FLEX devices,

designers have ample resources for custom local logic after implementing

the PCI interface. The high performance of FLEX devices also enables the

functions to support unlimited cycles of zero-wait-state memory-burst

transactions, thus achieving 132 Mbytes per second throughput, which is

the theoretical maximum for a 32-bit, 33-MHz PCI bus.
26 Altera Corporation

MegaCore Over view
In the pci_b function, the master and target interface can operate

independently, allowing maximum throughput and efficient usage of the

PCI bus. For instance, while the target interface is accepting zero-wait

state burst write data, the local logic may simultaneously request PCI bus

mastership, thus minimizing latency. In addition, the pci_b function’s

separate local master and target data paths allow independent data

prefetching and posting. Depending on the application, first-in first-out

(FIFO) functions of variable length, depth, and type can be implemented

in the local logic.

To ensure timing and protocol compliance, the functions have been

vigorously hardware tested. See “Compliance Summary” on page 30 for

more information on the hardware tests performed.

As parameterized functions, pci_b and pcit1 have configuration

registers that can be modified upon instantiation. These features provide

scalability, adaptability, and efficient silicon usage. As a result, the same

MegaCore functions can be used in multiple PCI projects with different

requirements. For example, both functions offer up to six base address

registers (BARs) for multiple local-side devices. However, some

applications require only one contiguous memory range. PCI designers

can choose to instantiate only one BAR, which reduces logic cell

consumption. After designers define the parameter values, the

MAX+PLUS II software automatically and efficiently modifies the design

and implements the logic.

This user guide should be used in conjunction with the latest PCI

specification, published by the PCI Special Interest Group (SIG). Users

should be fairly familiar with the PCI standard before using this function.

Figure 1 shows the symbol for the pci_b function.
Altera Corporation 27

MegaCore Over view
28 Altera Corporation

Figure 1. pci_b Symbol

LM_REQN
LM_LASTN
LM_BUSYN

LM_ADI[31..0]
LM_CBEN[3..0]

 Master Outputs

LM_ACKN
TRDYRN

LM_DATO[31..0]
LM_TSR[7..0]

Target Inputs

LT_DATI[31..0]
LT_RDYN

LT_DISCN
LT_ABORTN

Target Outputs

LT_FRAMEN
LT_ACKN

IRDYRN
LT_ADR[31..0]
LT_CMD[3..0]

LT_DATO[31..0]
LT_BEN[3..0]

BAR_HIT[5..0]
EXP_ROM_HIT

 Interrupt Req

L_IRQN

PCI Signals

CLK
RSTN
IDSEL

AD[31..0]
CBEN[3..0]
PAR

PERRN
SERRN

INTAN

PCI_B

MSTR_ENA
MWI_ENA

PERR_ENA
SERR_ENA

MABORT_RCVD
SERR_SIG

PERR_DET

Local Signals

TABORT_RCVD
TABORT_SIG

PERR_REP

 Status Reg

IO_ENA
MEM_ENA

 Command Reg

Arbitration

GNTN
REQN

Address/Data

Control

Interrupt

Parity Error

 Cache Line Reg

CACHE[7..0]

System Master Inputs

FRAMEN_IN
FRAMEN_OUT

IRDYN_IN
IRDYN_OUT

DEVSELN_IN
DEVSELN_OUT

TRDYN_IN
TRDYN_OUT

STOPN_IN
STOPN_OUT

BAR0="H"FF000000""
BAR0_DEFAULT="H"FF000000""
BAR0_DEFAULT_ENA="NO"
BAR1="H"FF000000""
BAR1_DEFAULT="H"FF000000""
BAR1_DEFAULT_ENA="NO"
BAR2="H"FF000000""
BAR2_DEFAULT="H"FF000000""
BAR2_DEFAULT_ENA="NO"
BAR3="H"FF000000""
BAR3_DEFAULT="H"FF000000""
BAR3_DEFAULT_ENA="NO"
BAR4="H"FF000000""
BAR4_DEFAULT="H"FF000000""
BAR4_DEFAULT_ENA="NO"
BAR5="H"FF000000""
BAR5_DEFAULT="H"FF000000""
BAR5_DEFAULT_ENA="NO"
NUMBER_OF_BARS=1
EXP_ROM_ENA="NO"
EXP_ROM_BAR="H"FF000000""
EXP_ROM_DEFAULT_ENA="NO"
EXP_ROM_DEFAULT="H"00000000""
CAP_LIST_ENA="NO"
CAP_PTR="H"40""
CIS_PTR_ENA="NO"
CIS_PTR="H"00000000""
INTERRUPT_PIN_REG="H"01""
MAX_LATENCY=0
MIN_GRANT=0
CLASS_CODE=H"FF0000"
DEVICE_ID=H"0002"
REVISION_ID=H"01"
SUBSYSTEM_VENDOR_ID=H"0000"
SUBSYSTEM_ID=H"0000"
VENDOR_ID=H"1172"
INTERRUPT_ACK_ENA="NO"
HOST_BRIDGE_ENA="NO"
INTERNAL_ARBITER="NO"
TARGET_DEVICE="EPF10K30RC240"

MegaCore Over view
Figure 2 shows the symbol for the pcit1 function.

Figure 2. pcit1 Symbol

PCI Signals

CLK
RSTN
IDSEL

AD[31..0]
CBEN[3..0]
PAR

FRAMEN
IRDYN
DEVSELN
TRDYN
STOPN

PERRN
SERRN

INTAN

PCIT1

L_IRQN

LT_ABORTN
LT_DISCN

LT_RDYN
BAR_HIT[5..0]

LT_FRAMEN
LT_ACKN

LT_ADR[31..0]
LT_DATO[31..0]
LT_DATI[31..0]

LT_BEN[3..0]
LT_CMD[3..0]

IO_ENA
MEM_ENA

PERR_ENA
SERR_ENA

TABORT_SIG
SERR_SIG
PERR_DET

Local Signals

IRDYRN

BAR0="H"FF000000""
BAR0_DEFAULT="H"FF000000""
BAR0_DEFAULT_ENA="NO"
BAR1="H"FF000000""
BAR1_DEFAULT="H"FF000000""
BAR1_DEFAULT_ENA="NO"
BAR2="H"FF000000""
BAR2_DEFAULT="H"FF000000""
BAR2_DEFAULT_ENA="NO"
BAR3="H"FF000000""
BAR3_DEFAULT="H"FF000000""
BAR3_DEFAULT_ENA="NO"
BAR4="H"FF000000""
BAR4_DEFAULT="H"FF000000""
BAR4_DEFAULT_ENA="NO"
BAR5="H"FF000000""
BAR5_DEFAULT="H"FF000000""
BAR5_DEFAULT_ENA="NO"
CAP_LIST_ENA="NO"
CAP_PTR="H"40""
CIS_PTR="H"00000000""
CIS_PTR_ENA="NO"
CLASS_CODE=H"FF0000"
DEVICE_ID=H"0001"
EXP_ROM_BAR="H"FF000000""
EXP_ROM_DEFAULT="H"00000000""
EXP_ROM_DEFAULT_ENA="NO"
EXP_ROM_ENA="NO"
INTERRUPT_ACK_ENA="NO"
INTERRUPT_PIN_REG="H"01""
NUMBER_OF_BARS=1
REVISION_ID=H"01"
SUBSYSTEM_ID=H"0000"
SUBSYSTEM_VENDOR_ID=H"0000"
TARGET_DEVICE="EPF10K30RC240"
VENDOR_ID=H"1172"
Altera Corporation 29

MegaCore Over view
Compliance
Summary

The pci_b and pcit1 functions are compliant with the requirements

specified in the PCI SIG’s PCI Local Bus Specification, Revision 2.2 and

Compliance Checklist, Revision 2. 1. The functions are shipped with

sample MAX+PLUS II Simulator Channel Files (.scf), which can be used

to validate the functions in the MAX+PLUS II software. Additionally,

functions are shipped with the simulation files required by the PCI SIG

Compliance Checklist, Revision 2.1. Consult the readme files provided in

the \sim\scf and \sim\sig directories for a complete list and description

of the included simulations.

In addition to simulation, Altera has performed extensive hardware

testing on the pci_b and pcit1 functions to ensure robustness and PCI

compliance. The test platforms included the HP E2925A PCI Bus

Excerciser and Analyzer, a PCI prototype board with a FLEX device

configured with the MegaCore function, and PCI bus agents such as the

host bridge, Ethernet network adapter, and video card. The hardware

testing ensures that the pci_b and pcit1 functions operate flawlessly

under the most stringent conditions.

In addition to checking for data integrity, the HP E2925A PCI Bus

Exerciser and Analyzer was used to ensure that the PCI bus is free of

protocol violations. Each iteration of the test program transfers over

6.5 billion data bytes between the host memory and the MegaCore

function. The test procedure was completed overnight, thus accounting

for hundreds of iterations. The tests were repeated on multiple PCI

platforms to ensure compatibility with various chipsets.

PCI Bus Signals The following PCI bus signals are used by the pci_b and pcit1 functions:

■ Input—Standard input-only signal.

■ Output—Standard output-only signal.

■ Bidirectional—Tri-state input/output signal.

■ Sustained tri-state (STS)—Signal that is driven by one agent at a time

(e.g., device or host operating on the PCI bus). An agent that drives a

sustained tri-state pin low must actively drive it high for one clock

cycle before tri-stating it. Another agent cannot drive a sustained

tri-state signal any sooner than one clock cycle after it is released by

the previous agent.

■ Open-drain—Signal that is wire-ORed with other agents. The

signaling agent asserts the open-drain signal, and a weak pull-up

resistor deasserts the open-drain signal. The pull-up resistor may

require two or three PCI bus clock cycles to restore the open-drain

signal to its inactive state.
30 Altera Corporation

MegaCore Over view
Table 1 summarizes the PCI bus signals that provide the interface

between the functions and the PCI bus.

Table 1. PCI Interface Signals (Part 1 of 2)

Name Type Direction,
Note (1)

Polarity Description

clk Input Input – Clock. The clk input provides the reference signal for all
other PCI interface signals, except rstn and intan .

rstn Input Input Low Reset. The rstn input initializes the APEX 20K,
FLEX 10K, and FLEX 6000 PCI interface circuitry, and
can be asserted asynchronously to the PCI bus clk
edge. When active, the PCI output signals are tri-stated
and the open-drain signals, such as serrn , float.

gntn ,
Note (2)

Input Input Low Grant. The gntn input indicates to the master device
that it has control of the PCI bus. Every master device
has a pair of arbitration lines (gntn and reqn) that
connect directly to the arbiter.

reqn ,
Note (2)

Output Output Low Request. The reqn output indicates to the arbiter that
the master wants to gain control of the PCI bus to
perform a transaction.

ad[31..0] Tri-State Bidirectional – Address/data bus. The ad[31..0] bus is a time-
multiplexed address/data bus; each bus transaction
consists of an address phase followed by one or more
data phases. The data phases occur when irdyn and
trdyn are both asserted.

cben[3..0] Tri-State Bidirectional
(Input)

Low Command/byte enable. The cben[3..0] bus is a time-
multiplexed command/byte enable bus. During the
address phase, this bus indicates the command; during
the data phase, this bus indicates byte enables.

par Tri-State Bidirectional – Parity. The par signal is even parity across ad[31..0]
and cb en[3..0] . In other words, the number of 1s on
ad[31..0] , cben[3..0] , and par equal an even
number. The parity of a data phase is presented on the
bus on the clock following the data phase.

idsel Input Input High Initialization device select. The idsel input is a chip
select for configuration transactions.

framen ,
Note (3)

STS Bidirectional
(Input)

Low Frame. The framen is an output from the current bus
master that indicates the beginning and duration of a bus
operation. When framen is initially asserted, the
address and command signals are present on the
ad[31..0] and cben[3..0] buses. The framen
signal remains asserted during the data operation and is
deasserted to identify the end of a transaction.
Altera Corporation 31

MegaCore Over view
Notes:
(1) If a signal has a different direction for the pcit1 function than in the pci_b function, the direction of the pcit1

signal is shown in parenthesis and the direction for the pci_b function is shown without parenthesis.

(2) This signal is available in the pci_b function only.

(3) When implemented in the function, these signals are split into two pins, input, and output. For example, trdyn has

the input trdyn_in and the output trdyn_out . Using two pins allows devices that do not meet set-up times for

these signals to be used.

irdyn ,
Note (3)

STS Bidirectional
(Input)

Low Initiator ready. The irdyn signal is an output from a bus
master to its target and indicates that the bus master can
complete the current data transaction. In a write
transaction, irdyn indicates that valid data is on the
ad[31..0] bus. In a read transaction, irdyn indicates
that the master is ready to accept the data on the
ad[31..0] bus.

devseln ,
Note (3)

STS Bidirectional
(Output)

Low Device select. Target asserts devseln to indicate that
the target has decoded its own address and accepts the
transaction.

trdyn ,
Note (3)

STS Bidirectional
(Output)

Low Target ready. The trdyn signal is a target output,
indicating that the target can complete the current data
transaction. In a read operation, trdyn indicates that
the target is providing data on the ad[31..0] bus. In a
write operation, trdyn indicates that the target is ready
to accept data on the ad[31..0] bus.

stopn ,
Note (3)

STS Bidirectional
(Output)

Low Stop. The stopn signal is a target device request that
indicates to the bus master to terminate the current
transaction. The stopn signal is used in conjunction
with trdyn and devseln to indicate the type of
termination initiated by the target. See Table 8 on
page 48 for more details.

perrn STS Bidirectional
(Output)

Low Parity error. The perrn signal indicates a data parity
error. The perrn signal is asserted one clock following
the par signal or two clocks following a data phase with
a parity error.

serrn Open-
Drain

Output Low System error. The serrn signal indicates system error
and address parity error. The pci_b function asserts
serrn if a parity error is detected during an address
phase and the required bits in the PCI command register
are setup accordingly.

intan Open-
Drain

Output Low Interrupt A. The intan signal is an active-low interrupt
to the host, and must be used for any single-function
device requiring an interrupt capability.

Table 1. PCI Interface Signals (Part 2 of 2)

Name Type Direction,
Note (1)

Polarity Description
32 Altera Corporation

MegaCore Over view
The PCI bus, FLEX 10K devices, and FLEX 6000 devices allow IEEE Std.

1149.1 Joint Test Action Group (JTAG) boundary-scan testing. To use

JTAG boundary-scan testing, designers should connect the PCI bus JTAG

pins with the FLEX 10K or FLEX 6000 device JTAG pins. See Table 2.

Target Local-Side Signals

Table 3 summarizes the target interface signals that provide the interface

between the MegaCore functions to the local-side peripheral device(s)

during target transactions. These signals apply to both the pci_b and

pcit1 functions.

Table 2. Optional JTAG Signals

Name Type Polarity Description

TCK Input High Test clock. The TCK input is used to clock test mode and test
data in and out of the device.

TMS Input High Test mode select. The TMS input is used to control the state
of the test access port (TAP) control in the device.

TDI Input High Test data. The TDI input is used to shift the test data and
instruction into the device.

TDO Output High Test data. The TDO output is used to shift the test data and
instruction out of the device.

Table 3. Target Signals Connecting to the Local Side (Part 1 of 3)

Name Direction Polarity Description

lt_dati[31..0] Input – Local target data bus input. The lt_dati[31..0] bus is
driven active by the local-side peripheral device during target
read transactions.

lt_rdyn Input Low Local target ready. The local side asserts lt_rdyn to indicate
a valid data input during target read, or to indicate that it is
ready to accept data during a target write. During a target read,
lt_rdyn de-assertion suspends the current transfer, i.e., a
wait state is inserted by the local side. During a target write, an
inactive lt_rdyn directs the pci_b or pcit1 function to insert
wait states on the PCI bus. The only time the function inserts
wait states during a burst is when lt_rdyn inserts wait states
on the local side.

lt_abortn Input Low Local target abort request. This signal indicates that a local
peripheral device has encountered a fatal error and cannot
complete the current transaction. Therefore, the local device
requests the function to issue a target abort to the PCI master.
Altera Corporation 33

MegaCore Over view
lt_discn Input Low Local target disconnect request. The l t_discn input is used
to signal a request for either a retry or a disconnect depending
on when the signal is asserted during a transaction. Refer to
the target termination section for more details. The PCI protocol
requires that the PCI target issues a disconnect whenever the
transaction exceeds its memory space. In that case, it is the
responsibility of the local side to assert lt_discn .

lt_framen Output Low Local target frame request. The lt_framen output is asserted
while the function is engaged in a PCI transaction. It is asserted
one clock before the function asserts devseln (except during
a retry, in which it is not asserted) and it is released after the
last data phase of the transaction is completed on the PCI bus.

lt_ackn Output Low Local target acknowledge. The function asserts lt_ackn to
indicate valid data output during a target write, or ready to
accept data during a target read. During a target read, an
inactive lt_ackn indicates that the function is not ready to
accept data and local logic should hold off the bursting
operation. During a target write, lt_ackn de-assertion
suspends the current transfer, i.e., a wait state is inserted by
the PCI master. The l t_ackn signal is only inactive during a
burst when the PCI bus master inserts a wait state.

i rdyrn Output Low Local target initiator ready register. This signal is a registered
output of the PCI irdyn signal. Usually, the i rdyrn signal is
used by the local side to monitor the status of the PCI bus data.

lt_dato[31..0] Output – Local target data bus output. The lt_dato[31..0] bus is
driven to the local-side peripheral device during target write
transactions.

lt_adr[31..0] Output – Local target address output. The lt_adr[31..0] bus
represents the target memory address for the current local-side
data phase. The function increments lt_adr[31..0] after a
successful data transfer is completed on the local side i.e.,
lt_rdyn and lt_ackn are active during the same clock cycle.

lt_cmd[3..0] Output – Local target command. The lt_cmd[3..0] bus represents
the PCI command for the current claimed transaction. The
lt_cmd[3..0] bus uses the same encoding scheme as the
cben[3..0] bus.

lt_ben[3..0] Output Low Local target byte enable bus. The lt_ben[3..0] bus
represents the byte enable requests from the PCI master
during data phases.

Table 3. Target Signals Connecting to the Local Side (Part 2 of 3)

Name Direction Polarity Description
34 Altera Corporation

MegaCore Over view
Master Local-Side Signals

Table 4 summarizes the pci_b master interface signals that provide the

interface between the pci_b MegaCore function and the local-side

peripheral device(s) during master transactions. The pcit1 function is a

target only; therefore, the signals in this section do not apply to it.

bar_hit[5..0] Output High Base address register hit. Asserting bar_hit[5..0]
indicates that the PCI address matches that of a base address
register and the PCI function has claimed the transaction.
Each bit in bar_hit[5..0] is used for the BAR. Therefore,
bar_hit[0] is used for BAR0. The bar_hit[5..0] bus has
the same timing as the lt_framen signal.

exp_rom_hit Output High Expansion ROM base address hit. Asserting this signal
indicates that the PCI address matches that of the expansion
ROM base address register and the PCI function has claimed
the transaction. The exp_rom_hit signal has the same timing
as the lt_framen signal.

l_irqn Input Low Local interrupt request. The local-side peripheral device
asserts l_irqn to signal a PCI bus interrupt. Asserting this
signal forces the function to assert the intan signal for as long
as l_irqn is asserted.

Table 3. Target Signals Connecting to the Local Side (Part 3 of 3)

Name Direction Polarity Description

Table 4. pci_b Master Signals Interfacing to the Local Side (Part 1 of 3)

Name Direction Polarity Description

lm_reqn Input Low Local master request. The local side asserts this signal to
request ownership of the PCI bus for a master transaction. The
local-side device must supply the PCI bus address and
command in the same clock cycle as when lm_reqn goes
from high to low.

lm_lastn Input Low Local master last. This signal is driven by the local side to
request that the pci_b MegaCore master interface ends the
current transaction. When the local side asserts this signal, the
pci_b MegaCore master interface deasserts framen as soon
as possible, and asserts irdyn to indicate that the last data
phase has begun. The local side can assert this signal for one
clock any time during the master transaction.
Altera Corporation 35

MegaCore Over view
36 Altera Corporation

lm_busyn Input Low Local master busy. The local side asserts this signal to request
a wait state for the pci_b burst from/to the local side.
Asserting this signal causes the pci_b MegaCore function to
deassert irdyn on the PCI bus to request wait states. A local
data transfer occurs only if lm_ackn is asserted. Therefore,
asserting lm_busyn causes lm_ackn to be deasserted.

lm_adi[31..0] Input – Local master address/data bus. This signal is a local-side time
multiplexed address/data bus. The local side must drive the
transaction address at the same time it asserts lm_reqn to
request the master transaction. In all other cases,
lm_adi[31..0] carries data from the local side application
for master write transactions. A local side data transfer is
complete when lm_ackn is asserted. If the local side is unable
to transfer data, it must assert lm_busyn . This action
deasserts lm_ackn , indicating that a data transfer did not take
place.

lm_cben[3..0] Input Low Local master command/byte enable bus. This signal is a local-
side time multiplexed command/byte enable bus. The local-
side must drive the transaction command at the same time it
asserts lm_reqn to request the master transaction. In all other
cases lm_cben[3..0] carries byte enable information. In a
burst transaction, it may not be possible to maintain
synchronization between data transferred on the PCI bus and
local side byte enable signals. Therefore, the pci_b
MegaCore function only clocks the byte enable signals on the
first data phase.

lm_ackn Output Low Local master acknowledge. The pci_b MegaCore master
interface asserts this signal when a local-side data transfer
occurs. During a write transaction, the function asserts this
signal when it internally latches data from the local side. In a
read transaction, the pci_b function asserts this signal when
it transfers data to the local side. If the local side is not ready to
receive/send data, it must assert lm_busyn . Therefore, during
a master transaction, the pci_b function deasserts lm_ackn
if the lm_busyn is asserted or if the PCI target deasserts its
trdyn signal. The operation of lm_ackn is different than the
operation of lt_ackn.

t rdyrn Output Low Local master target read register. This signal is a registered
version of the PCI trdyn signal. Usually, the signal is used by
the local master device to monitor the status of data on the PCI
bus.

Table 4. pci_b Master Signals Interfacing to the Local Side (Part 2 of 3)

Name Direction Polarity Description

MegaCore Over view
Table 5 shows definitions for the local master transaction status register

outputs.

lm_dato[31..0] Output – Local master data output. The pci_b function drives data to
the local-side application during a master read transaction. A
successful data transfer occurs when pci_b asserts
lm_ackn . If the local side is unable to transfer data it must
assert lm_busyn .

lm_tsr[7..0] Output – Local master transaction status register bus. These signals
inform the local interface the progress of the transaction. See
Table 5 for a detailed description of the bits in this bus.

Table 4. pci_b Master Signals Interfacing to the Local Side (Part 3 of 3)

Name Direction Polarity Description

Table 5. pci_b Local Master Transaction Status Register Bit Definition

Bit Number Bit Name Description

0 tsr_req Request. This signal indicates that the pci_b function is requesting
mastership of the PCI bus, i.e., it is asserting its reqn signal.

1 tsr_gnt Grant. This signal is active after the pci_b function has detected that
gntn is asserted, and while pci_b is in the transaction address phase.

2 tsr_dat_xfr Data transfer. This signal is active while the pci_b function is in data
transfer mode. It is active after the address phase and remains active until
the turn-around state begins.

3 tsr_lat_exp Latency timer expired. pci_b terminated master transaction when the
latency timer counter expired and gntn is not asserted.

4 tsr_ret Retry detected. This signal indicates that pci_b terminated the master
transaction because the target issued a retry. Per the PCI specification, a
transaction that ended in a retry must be retried at a later time.

5 tsr_disc_wod Disconnect without data detected. This signal indicates that the pci_b
signal terminated the master transaction because the target issued a
disconnect without data.

6 tsr_disc_wd Disconnect with data detected. This signal indicates that pci_b
terminated the master transaction because the target issued a disconnect
with data.

7 tsr_dat_phase Data phase. This signal indicates that a successful data transfer has
occurred on the PCI side in the prior clock cycle. This signal can be used
by the local side to keep track of how much data was actually transferred
on the PCI side.
Altera Corporation 37

MegaCore Over view
Configuration Space Output Signals

Table 6 shows configuration signals that are useful to local-side

applications. For a detailed description of the registers, refer to the PCI
Local Bus Specification, Revision 2.2.

Note:
(1) These signals apply to the pci_b function only.

Parameters Parameters are an innovative feature in Altera’s AHDL that allow you to

customize MegaCore functions to fit your particular application. In the

pci_b and pcit1 functions, parameters allow you to set read-only

registers in the configuration space, such as DEVICE_ID, control available

features within the functions, or optimize a design for a target application.

For more information on how the parameters control the configuration

space, see “Configuration Registers” on page 56. Table 7 describes the

pci_b and pcit1 MegaCore function parameters.

Table 6. Configuration Space Output Signals

Name Polarity Description

cache[7..0] ,
Note (1)

– PCI cache line register. The local-side application must use this signal when
using the MWI and MRL commands.

io_ena High I/O space enable. PCI command register bit 0.

mem_ena High Memory space enable. PCI command register bit 1.

mstr_ena ,
Note (1)

High Master enable. PCI command register bit 2.

mwi_ena , Note (1) High Memory write and invalidate enable. PCI command register bit 4.

perr_ena High Parity error response enable. PCI command register bit 6.

serr_ena High System error enable. PCI command register bit 8.

perr_rep ,
Note (1)

High This signal indicates that perrn was detected during a master write
transaction. PCI status register bit 8.

tabort_sig High This signal indicates that pci_b signaled target abort. PCI status register bit
11.

tabort_rcvd ,
Note (1)

High This signal indicates that pci_b received a target abort. PCI status register
bit 12.

mabort_rcvd ,
Note (1)

High This signal indicates that pci_b received a master abort. PCI status register
bit 13.

serr_sig High Signaled system error. PCI status register bit 14.

perr_det High This signal indicates that pci_b detected a data or address parity error. PCI
status register bit 15.
38 Altera Corporation

MegaCore Over view
Table 7. PCI MegaCore Function Parameters (Part 1 of 5)

Name Format Default Value Description

BARn Hexadecimal H"FF000000" Base address register n. n corresponds to the
BAR number and can be from 0 to 5. Note (1)

BARn_DEFAULT_ENA String "NO" Default base address register enable. The
BARn_DEFAULT_ENA parameter indicates
that the user wants to use a default base
address at power-up. n corresponds to the
BAR number and can be from 0 to 5.

BARn_DEFAULT Hexadecimal H"FF000000" Default base address register. n corresponds
to the base address register number and can
be from 0 to 5. BARn_DEFAULT is a 32-bit
hexadecimal value that permanently sets the
value stored in the corresponding BAR. This
parameter is ignored if the corresponding
BARn_DEFAULT_ENA parameter is not set to
"YES" . When the corresponding
BARn_DEFAULT_ENA parameters is set to
"YES" , the pc i_b and pcit1 functions return
the value in BARn_DEFAULT during a
configuration read. To detect a base address
register hit, the pc i_b and pcit1 functions
compare the incoming address to the upper
bits of the BARn_DEFAULT parameter. The
corresponding BARn parameter is still used to
define the programmable setting of the
individual BAR such as address space type
and number of decoded bits.

CAP_LIST_ENA String "NO" Capabilities list enable. The CAP_LIST_ENA
parameter determines if the capabilities list will
be enabled in the configuration space. When
this parameter is set to "YES" , it sets
capabilities list bit (bit4) of the status register
and sets the capabilities register to the value of
CAP_PTR.

CAP_PTR Hexadecimal H"40" Capabilities pointer. The CAP_PTR sets the
value stored in the capabilities pointer register.
The value set in this pointer should be the
address of the first entry of the extended
capabilities list is stored. This parameter is
ignored if the CAP_LIST_ENA parameter is set
to "NO" .
Altera Corporation 39

MegaCore Over view
CIS_PTR_ENA String "NO" CardBus CIS pointer enable. The
CIS_PTR_ENA parameter enables the
CardBus CIS pointer register. When this
parameter is set to " NO" pci_b and pcit1
return H"00000000" during a configuration
read to the CAP_PTR register.

CIS_PTR Hexadecimal H"00000000" CardBus CIS pointer. The CIS_PTR sets the
value stored in the CIS pointer register. The
CIS pointer register indicates where the CIS
header is located. For more information, refer
to the PCMCIA Specification version 2.10.
pc i_b and pcit1 ignore this parameter if
CIS_PTR is not set to "YES" . In other words,
if the CIS_PTR_ENA parameter is set to
"YES" , the pc i_b and pcit1 return the value
in CIS_PTR during a configuration read to CIS
pointer register. pc i_b and pcit1 return
H"00000000" during a configuration read to
CIS when CIS_PTR_ENA is set to "NO" .

CLASS_CODE Hexadecimal H"FF0000" Class code register. This parameter is a 24-bit
hexadecimal value that sets the class code
register in the pci_b or pcit1 configuration
space. The value entered for this parameter
must be a valid PCI SIG-assigned class code
register value.

DEVICE_ID Hexadecimal H"0001" Device ID register. This parameter is a 16-bit
hexadecimal value that sets the device ID
register in the pci_b or pcit1 configuration
space. Any value can be entered for this
parameter.

EXP_ROM_BAR_ENA String "NO" Expansion ROM base address register
enable. The EXP_ROM_BAR_ENA parameter
enables the capability for the expansion ROM
base address register. If this parameter is set
to "YES" , pci_b and pcit1 use the value
stored in EXP_ROM_BAR to set the size and
number of bits decoded of the expansion ROM
BAR. Otherwise, the expansion ROM BAR is
read only and pci_b and pcit1 return
H"00000000" when the expansion ROM
BAR is read.

Table 7. PCI MegaCore Function Parameters (Part 2 of 5)

Name Format Default Value Description
40 Altera Corporation

MegaCore Over view
EXP_ROM_BAR Hexadecimal H"FF000000" Expansion ROM base address register. The
EXP_ROM_BAR parameter indicates the base
address and size information for the expansion
ROM. According to the PCI specification, only
bits 31 through 11 can be decoded. This
parameter works the same way as the BARn
parameters. If the EXP_ROM_BAR_ENA
parameter is set to "NO" , the EXP_ROM_BAR
parameter is ignored.

EXP_ROM_DEFAULT_ENAString "NO" Expansion ROM base address default enable.
The EXP_ROM_DEFAULT_ENA parameter
specifies a default address for the expansion
ROM base address.

EXP_ROM_DEFAULT Hexadecimal H"FF000000" Expansion ROM base address default.
EXP_ROM_DEFAULT is the default expansion
ROM base address. This parameter is ignored
when EXP_ROM_DEFAULT_ENA is set to
"NO" . When EXP_ROM_DEFAULT_ENA is set
to "YES" , the pci_b and pcit1 functions
return the value in EXP_ROM_DEFAULT during
a configuration read. To detect base address
hits for the expansion ROM, the pci_b and
pcit1 functions compare the input address to
the upper bits of EXP_ROM_DEFAULT.
EXP_ROM_BAR_ENA must be set to enable
expansion ROM support, and the
EXP_ROM_BAR parameter setting defines the
number of decoded bits.

HOST_BRIDGE_ENA,
Note (2)

String "NO" This parameter permanently enables the
master capability in the pci_b function to be
used in host bridge applications, which allows
the pci_b function to generate the required
configuration transactions during power-up. If
the pci_b function is used as a host bridge,
the local-side application must be able to
perform master transactions at power up. The
pci_b MegaCore function can generate
configuration cycles for other PCI bus agents,
including its own target.

Table 7. PCI MegaCore Function Parameters (Part 3 of 5)

Name Format Default Value Description
Altera Corporation 41

MegaCore Over view
INTERNAL_ARBITER,
Note (2)

String "NO" This parameter allows reqn and gntn to be
used in internal arbiter logic without requiring
external device pins. If a FLEX device is used
to implement the pci_b MegaCore function
and is also used to implement a PCI bus
arbiter, the reqn signal should feed internal
logic and gntn should be driven by internal
logic without using actual device pins. If this
parameter is set to "YES," the tri-state buffer on
the reqn signal is removed, allowing an arbiter
to be implemented without using device pins
for the reqn and gntn signals.

INTERRUPT_ACK_ENA String "NO" Interrupt acknowledge enable. The
INTERRUPT_ACK_ENA parameter enables
support for the interrupt-acknowledge
command. When set to "NO" , the pci_b or
pcit1 function ignores the interrupt
acknowledge command. When set to "YES" ,
pci_b or pcit1 responds to the interrupt
acknowledge command. The pci_b and
pcit1 functions treat the interrupt
acknowledge command as a regular target
memory read. The local side must implement
the necessary logic to respond to the interrupt
controller.

I NTERRUPT_PIN_REG Hexadecimal H"01" Interrupt pin register. The
INTERRUPT_PIN_REG parameter indicates
the value of the interrupt pin register in the
configuration space address location 3DH.
This parameter can be set to two possible
values: H"00" to indicate that no interrupt
support is needed, or H"01" to implement
intan . When the INTERRUPT_PIN_REG
parameter is set to H"00" , intan will be stuck
at VCC and the l_irqn local interrupt request
input pin will not be required.

MAX_LATENCY

Note (2)
Hexadecimal H"0" Maximum latency register. This parameter is

an 8-bit hexadecimal value that sets the
maximum latency register in the pci_b
configuration space. This parameter must be
set according to the guidelines in the PCI
specifications.

Table 7. PCI MegaCore Function Parameters (Part 4 of 5)

Name Format Default Value Description
42 Altera Corporation

MegaCore Over view
MIN_GRANT,
Note (2)

Hexadecimal H"0" Minimum grant register. This parameter is an
8-bit hexadecimal value that sets the minimum
grant register in the pci_b configuration
space. This parameter must be set according
to the guidelines in the PCI specification.

NUMBER_OF_BARS Decimal 1 Number of base address registers. Only the
logic that is required to implement the number
of BARs specified by this parameter is used—
i.e., BARs that are not used do not take up
additional logic resources. The pci_b and
pcit1 MegaCore functions sequentially
instantiate the number of BARs specified by
this parameter starting with BAR0.

REVISIO N_ID Hexadecimal H"01" Revision ID register. This parameter is an 8-bit
hexadecimal value that sets the revision ID
register in the pci_b or pcit1 configuration
space.

SUBSYSTEM_ID Hexadecimal H"0000" Subsystem ID register. This parameter is a 16-
bit hexadecimal value that sets the subsystem
ID register in the pci_b or pcit1
configuration space. The user can choose a
value that uniquely identifies the application.

SUBSYSTEM_VEND_ID Hexadecimal H"0000" Subsystem vendor ID register. This parameter
is a 16-bit hexadecimal value that sets the
subsystem vendor ID register in the pci_b or
pcit1 configuration space. The value for this
parameter must be a valid PCI SIG-assigned
vender ID number.

TARGET_DEVICE,
Note (4)

String EPF10K30RC240 This parameter should be set to your targeted
Altera FLEX device for logic and performance
optimization.

VEND_ID Hexadecimal H"1172" Device vendor ID register. This parameter is a
16-bit hexadecimal value that sets the vendor
ID register in the pci_b or pcit1
configuration space. The value for this
parameter can be the Altera vendor ID (1172
Hex) or any other PCI SIG-assigned vendor ID
number.

Table 7. PCI MegaCore Function Parameters (Part 5 of 5)

Name Format Default Value Description
Altera Corporation 43

MegaCore Over view
Notes:
(1) The BAR0 through BAR5 parameters control the options of the corresponding BAR instantiated in the PCI

MegaCore function. If the NUMBER_OF_BARS parameter is less than the maximum number of available BARs, the

corresponding BARn parameter value is ignored. Each BARn parameter is a 32-bit value that controls the BAR

options per the definition of a BAR, according to the PCI Local Bus Specification, Revision 2.2. For example, bit 0

of the BARn parameter controls the BAR type similar to bit 0 of the BAR. For more details about how these

parameters affect the BARs, refer to “Base Address Registers” on page 63.

(2) These parameters apply to the pci_b function only.

(3) When the INTERRUPT_PIN_REG parameter is set to H"00" , intan remains at VCC and the l_irqn local interrupt

request input pin is not required.

(4) For a listing of the supported Altera FLEX devices, refer to the readme file for your PCI MegaCore function.

Functional
Description

This section provides a general overview of pci_b and pcit1 operations.

The pci_b function consists of three main elements:

■ A parameterized PCI bus configuration register space

■ Target interface control logic

■ Master interface control logic
44 Altera Corporation

MegaCore Over view
Figure 3 shows the pci_b functional block diagram.

Figure 3. pci_b Functional Block Diagram

Parameterized
Configuration

Registers

PCI Address/
Data Buffer

PCI Master
Control

Parity Checker &
Generator

PCI Target
Control

io_ena
mem_ena
mstr_ena
mwi_ena
perr_ena
serr_ena

perr_rep
tabort_sig
tabort_rcvd
mabort_rcvd
serr_sig
perr_det

cache[7..0]

par
perrn
serrn

framen
irdyn
trdyn

devseln
stopn

gntn
reqn
intan

ad[31..0]
cben[3..0]

clk
rstn

idsel

PCI_B

Local Target
Data Buffer

lt_dati[31..0]
lt_adr[31..0]
lt_cmd[3..0]
lt_dato[31..0]
lt_ben[3..0]

Local Target
Control

lt_rdyn
lt_discn
lt_abortn
l_irqn
lt_framen
lt_ackn
irdyrn
bar_hit[5..0]
exp_rom_bar_hit

Local Master
Data Buffer

lm_adi[31..0]
lm_cben[3..0]
lm_dato[31..0]
lm_tsr[7..0]

Local Master
Control

lm_reqn
lm_lastn
lm_busyn
lm_ackn
trdyrn
Altera Corporation 45

MegaCore Over view
The pcit1 function consists of two main elements:

■ A parameterized PCI bus configuration register space

■ Target interface control logic

Figure 4 shows the pcit1 functional block diagram.

Figure 4. pcit1 Functional Block Diagram

Target Device Signals & Signal Assertion

Figure 5 illustrates the signal directions for a PCI device connecting to the

PCI bus in target mode. These signals apply to the pcit1 function and the

pci_b function when it is operating in target mode. The signals are

grouped by functionality, and signal directions are illustrated from the

perspective of the MegaCore function operating as a target on the PCI bus.

Parameterized
Configuration

Space Registers

Parity Checking
 & Generation

idsel

rstn

clk

PCI Address/
Data Buffering

lt_dati[31..0]

lt_ben[3..0]

lt_cmd[3..0]

lt_adr[31..0]

lt_dato[31..0]

io_ena
mem_ena
perr_ena
serr_ena
tabort_sig
serr_sig
perr_det

l_irqn

Local Side
Access
Control

par

serrn
perrn

ad[31..0]

cben[3..0]
 Local Side

Data
Buffering

lt_rdyn

lt_ackn
lt_framen

bar_hit[5..0]

lt_discn
lt_abortn

devseln

framen
irdyn

stopn
trdyn

PCI Target
Control

intan

System
Signals

Address
& Data
Signals

Interrupt
Signal

Interface
Control
Signals

Parity
Error

Reporting
 Signals

Local
Command
& Status
Signals

Local
Target
Address
Data &
Command
Signals

Local
Target
Control
Signals

Interrupt
Request
Signal

irdyrn

PCIT1

exp_rom_bar_hit
46 Altera Corporation

MegaCore Over view
Figure 5. Target Device Signals

A target sequence begins when the PCI master device asserts framen and

drives the address and the command on the PCI bus. If the address

matches one of the BARs in the MegaCore function, it asserts devseln to

claim the transaction. The master then asserts irdyn to indicate to the

target device that:

■ For a read operation, the master device can complete a data transfer.

■ For a write operation, valid data is on the ad[31..0] bus.

The MegaCore function drives the control signals devseln , trdyn , and

stopn to indicate one of the following conditions to the PCI master:

■ The MegaCore function has decoded a valid address for one of its

BARs and it accepts the transactions (assert devseln).

■ The MegaCore function is ready for the data transfer (assert trdyn).

When both trdyn and irdyn are active, a data word is clocked from

the sending to the receiving device.

■ The master device should retry the current transaction.

■ The master device should stop the current transaction.

■ The master device should abort the current transaction.

pci_b
Target Device

clk
rstn

idsel
framen

irdyn
trdyn
stopn

devseln

par
ad[31..0]

cben[3..0]

perrn
serrn

intan

System
Signals

Interface
Control
Signals

Address,
Data &

Command
Signals

Error
Reporting
Signals

Interrupt
Request
Signal
Altera Corporation 47

MegaCore Over view
Table 8 shows the control signal combinations possible on the PCI bus

during a PCI transaction. The pci_b or pcit1 function processes the PCI

signal assertion from the local side. Therefore, the pci_b or pcit1

function only drives the control signals per the PCI Local Bus
Specification, Revision 2.2. The local-side application can force retry,

disconnect, abort, successful data transfer, and target wait state cycles to

appear on the PCI bus by driving the lt_rdyn , lt_discn , and lt_abortn

signals to certain values. See “Target Transaction Terminations” on

page 84 for more details.

Notes:
(1) A retry occurs before the first data phase.

(2) A device must assert the devseln signal for at least one clock before it signals an abort.

The pci_b and pcit1 functions support unlimited burst access cycles.

Therefore, they can achieve a throughput of 132 Mbytes per second, the

theoretical maximum bandwidth of a 32-bit, 33-MHz PCI bus. However,

the PCI Local Bus Specification, Revision 2.2 does not recommend

bursting beyond 16 data cycles because of the latency of other devices that

share the bus. Designers should be aware of the tradeoff between

bandwidth and increased latency.

Master Device Signals & Signal Assertion

Figure 6 illustrates the PCI-compliant master device signals that connect

to the PCI bus. The signals are grouped by functionality, and signal

directions are illustrated from the perspective of the pci_b function

operating as a master on the PCI bus. This section applies to the pci_b

function only.

Table 8. Control Signal Combination Transfer

Type devseln trdyn stopn irdyn

Claim transaction Assert Don’t care Don’t care Don’t care

Retry, Note (1) Assert De-Assert Assert Don’t care

Disconnect with data Assert Assert Assert Don’t care

Disconnect without data Assert De-assert Assert Don’t care

Abort, Note (2) De-assert De-assert Assert Don’t care

Successful data transfer Assert Assert De-assert Assert

Target wait state Assert De-assert De-assert Assert

Master wait state Assert Assert De-assert De-assert
48 Altera Corporation

MegaCore Over view
Figure 6. pci_b Master Device Signals

A pci_b master sequence begins when the local side asserts lm_reqn to

request mastership of the PCI bus. After receiving gntn from the PCI bus

arbiter and after the bus idle state is detected, the pci_b function initiates

the address phase by asserting framen , driving the PCI address on

ad[31..0] , and driving the bus command on cben[3..0] for one clock

cycle.

When the pci_b function is ready to present or accept data on the bus, it

asserts irdyn . At this point, the pci_b master logic monitors the control

signals driven by the target device. A target device is determined by the

decoding of the address and command signals presented on the PCI bus

during the address phase of the transaction. The target device drives the

control signals devseln , trdyn , and stopn to indicate one of the

following conditions:

■ The data transaction has been decoded and accepted.

■ The target device is ready for the data operation. When both trdyn

and irdyn are active, a data word is clocked from the sending to the

receiving device.

■ The master device should retry the current transaction.

■ The master device should stop the current transaction.

■ The master device should abort the current transaction.

pci_b
Master Device

clk
rstn

idsel
framen

irdyn
trdyn
stopn

devseln

par
ad[31..0]

cben[3..0]

perrn
serrn

intan

System
Signals

Interface
Control
Signals

Address,
Data &

Command
Signals

Error
Reporting
Signals

Interrupt
Request
Signal

gntn
reqn

Arbitration
Signals
Altera Corporation 49

MegaCore Over view
Table 8 on page 48 shows the possible control signal combinations on the

PCI bus during a transaction. The pci_b function signals that it is ready

to present or accept data on the bus by asserting irdyn . At this point, the

pci_b master logic monitors the control signals driven by the target

device and asserts its control signals appropriately. The local-side

application can use the lm_tsr[7..0] signals to monitor the progress of

the transaction. The master transaction can be terminated normally or

abnormally. The local side signals a normal transaction termination by

asserting the l m_lastn signal. The abnormal termination can be signaled

by the target, master abort, latency timer expiration, and gntn not being

asserted. See “Abnormal Master Transaction Termination” on page 97 for

more details.
50 Altera Corporation

Specifi cations
Contents

Altera Corporation 53

June 1999

®

PCI Bus Commands..55

Configuration Registers ...56

 Vendor ID Register ..58

 Device ID Register ...59

 Command Register ..59

 Status Register ..60

 Revision ID Register ..62

 Class Code Register ...62

 Cache Line Size Register ...62

 Latency Timer Register ...63

 Header Type Register..63

 Base Address Registers ...63

 Subsystem Vendor ID Register ..67

 Subsystem ID Register ..67

 Interrupt Line Register ..69

 Interrupt Pin Register ..69

 Minimum Grant Register..70

 Maximum Latency Register..70

Target Mode Operation..71

 Target Read Transactions ...72

 Target Write Transactions...78

 Target Transaction Terminations...84

Master Mode Operation...88

 Master Read Transactions...89

 Master Write Transactions..93

 Abnormal Master Transaction Termination ..97

Notes:

®

Specifi cations

June 1999, ver. 2
This section describes the specifications of the pci_b and pcit1

MegaCore functions, including the supported PCI bus commands and

configuration registers and the clock cycle sequence for both target and

master read/write transactions.

PCI Bus
Commands

Table 1 shows the PCI bus commands that can be initiated or responded

to by the pci_b and pcit1 MegaCore functions. The commands

supported by the master can be initiated by the pci_b function, and the

commands supported by the target can be responded to by either the

pci_b or pcit1 functions.

Notes:
(1) The INT_ACK_ENA parameter must be set to "YES" to support the interrupt

acknowledge command, which is aliased with a memory read.

(2) The memory read multiple and memory read line commands are treated as

memory reads. The memory write and invalidate command is treated as a memory

write. The local side sees the exact command on the lt_cmd[3..0] bus with the

encoding shown in Table 1.

Table 1. PCI Bus Commands

cben[3..0] Value Bus Command Cycle Master Target

0000 Interrupt acknowledge, Note (1) Yes Yes

0001 Special cycle Ignored Ignored

0010 I/O read Yes Yes

0011 I/O write Yes Yes

0100 Reserved Ignored Ignored

0101 Reserved Ignored Ignored

0110 Memory read Yes Yes

0111 Memory write Yes Yes

1000 Reserved Ignored Ignored

1001 Reserved Ignored Ignored

1010 Configuration read Yes Yes

1011 Configuration write Yes Yes

1100 Memory read multiple, Note (2) Yes Yes

1101 Dual address cycle Ignored Ignored

1110 Memory read line, Note (2) Yes Yes

1111 Memory write and invalidate, Note (2) Yes Yes
Altera Corporation 55

Specifi cations
During the address phase of a transaction, the cben[3..0] bus is used to

indicate the transaction type. See Table 1.

The PCI functions respond to the standard memory read/write, cache

memory read/write, I/O read/write, configuration read/write, and

interrupt acknowledge commands. The bus commands are discussed in

greater detail in “Target Mode Operation” on page 71 and “Master Mode

Operation” on page 88.

In master mode, the pci _b function can initiate transactions of standard

memory read/write, cache memory read/write, I/O read/write, and

configuration read/write commands. Per the PCI specification, the master

must keep track of the number of words that are transferred and can only

end the transaction at cache line boundaries during MRL and MWI

commands. It is the responsibility of the local-side interface to ensure that

this requirement is not violated. Additionally, it is the responsibility of the

local-side interface to ensure that proper address and byte enable

combinations are used during I/O read/write cycles.

Configuration
Registers

Each logical PCI bus device includes a block of 64 configuration DWORDS

reserved for the implementation of its configuration registers. The format

of the first 16 DWORDS is defined by the PCI Special Interest Group

(PCI SIG) PCI Local Bus Specification, Revision 2.2 and the Compliance
Checklist, Revision 2.1. These specifications define two header formats,

type one and type zero. Header type one is used for PCI-to-PCI bridges;

header type zero is used for all other devices, including the pci_b and

pcit1 functions.

Table 2 shows the defined 64-byte configuration space. The registers

within this range are used to identify the device, control PCI bus

functions, and provide PCI bus status. The shaded areas indicate registers

that are supported by the pci_b and pcit1 functions. The latency timer,

cache line size maximum latency, and minimum grant registers are not

supported by the pcit1 function because they are only applicable to a PCI

master interface.
56 Altera Corporation

Specifi cations
1 A write to unused registers completes normally but the data is

ignored.

Table 3 summarizes the pci_b and pcit1 supported configuration

registers address map. Unused registers produce a zero when read, and

they ignore a write operation. Read/write refers to the status at runtime,

i.e., from the perspective of other PCI bus agents. Designers can set some

of the read-only registers when creating a custom PCI design by setting

the pci_b or pcit1 function parameters. For example, the designer can

change the device ID register value from the default value by changing

the DEVICE_ID parameter in the MAX+PLUS II software. The specified

default state is defined as the state of the register when the PCI bus is

reset.

Table 2. PCI Bus Configuration Registers

Address Byte

3 2 1 0

00H Device ID Vendor ID

04H Status Register Command Register

08H Class Code Revision ID

0CH BIST Header Type Latency Timer Cache Line Size

10H Base Address Register 0

14H Base Address Register 1

18H Base Address Register 2

1CH Base Address Register 3

20H Base Address Register 4

24H Base Address Register 5

28H CardBus CIS Pointer

2CH Subsystem ID Subsystem Vendor ID

30H Expansion ROM Base Address Register

34H Reserved Capabilities List

38H Reserved

3CH Maximum
Latency

Minimum Grant Interrupt Pin Interrupt Line
Altera Corporation 57

Specifi cations
Note:
(1) These registers are supported by the pci_b function only.

Vendor ID Register

Vendor ID is a 16-bit read-only register that identifies the manufacturer of

the device (e.g., Altera for the pci_b and pcit1 functions). The value of

this register is assigned by the PCI SIG; the default value of this register is

the Altera vendor ID value, which is 1172 hex. However, by setting the

VEND_ID parameter, designers can change the value of the vendor ID

register to their PCI SIG-assigned vendor ID value. See Table 4.

Table 3. Supported Configuration Registers Address Map

Address Offset
(Hex)

Range
Reserved

(Hex)

Bytes Used/
Reserved

Read/Write Mnemonic Register Name

00 00-01 2/2 Read ven_id Vendor ID

02 02-03 2/2 Read dev_id Device ID

04 04-05 2/2 Read/write comd Command

06 06-07 2/2 Read/write status Status

08 08-08 1/1 Read rev_id Revision ID

09 09-0B 3/3 Read class Class code

0C 0C-0C 1/1 Read/write cache Cache line size, Note (1)

0D 0D-0D 1/1 Read/write lat_tmr Latency timer, Note (1)

0E 0E-0E 1/1 Read header Header type

10 10-13 4/4 Read/write bar0 Base address register zero

14 14-17 4/4 Read/write bar1 Base address register one

18 18-1B 4/4 Read/write bar2 Base address register two

1C 1C-1F 4/4 Read/write bar3 Base address register three

20 20-23 4/4 Read/write bar4 Base address register four

24 24-27 4/4 Read/write bar5 Base address register five

28 28–2B 4/4 Read cis_ptr CardBus CIS pointer

2C 2C-2D 2/2 Read sub_ven_id Subsystem vendor ID

2E 2E-2F 2/2 Read sub_id Subsystem ID

30H 30–33 4/4 Read exp_rom_bar Expansion ROM BAR

34H 34–34 1/1 Read cap_ptr Capabilities pointer

3C 3C-3C 1/1 Read/write int_ln Interrupt line

3D 3D-3D 1/1 Read int_pin Interrupt pin

3E 3E-3E 1/1 Read min_gnt Minimum grant, Note (1)

3F 3F-3F 1/1 Read max_lat Maximum latency, Note (1)
58 Altera Corporation

Specifi cations
Device ID Register

Device ID is a 16-bit read-only register that identifies the device type. The

value of this register is assigned by the manufacturer (e.g., Altera assigned

the value of the device ID register for the pci_b and pcit1 functions). The

default value of the device ID register is 0003 hex. Designers can change

the value of the device ID register by setting the parameter DEVICE_ID.
See Table 5.

Command Register

Command is a 16-bit read/write register that provides basic control over

the ability of the pci_b or pcit1 function to respond to the PCI bus

and/or access it. See Table 6.

Table 4. Vendor ID Register Format

Data Bit Mnemonic Read/Write Definition

15..0 vendor_id Read PCI vendor ID

Table 5. Device ID Register Format

Data Bit Mnemonic Read/Write Definition

15..0 device_id Read Device ID
Altera Corporation 59

Specifi cations
Note:
(1) These bits are only supported by the pci_b function. In the pcit1 function, these bits are hardwired to ground.

Status Register

Status is a 16-bit register that provides the status of bus-related events.

Read transactions from the status register behave normally. However,

write transactions are different from typical write transactions because

bits in the status register can be cleared but not set. A bit in the status

register is cleared by writing a logic one to that bit. For example, writing

the value 4000 hex to the status register clears bit 14 and leaves the rest of

the bits unchanged. The default value of the status register is 0400 hex.

See Table 7.

Table 6. Command Register Format

Data
Bit

Mnemonic Read/Write Definition

0 io_ena Read/write Read/write to I/O access enable.

1 mem_ena Read/write Memory access enable. When high, mem_ena lets the pci_b or pcit1
function respond to the PCI bus memory accesses as a target.

2 mstr_ena ,
Note (1)

Read/write Master enable. When high, mstr_ena allows the pci_b function to acquire
mastership of the PCI bus.

3 Unused – –

4 mwi_ena ,
Note (1)

Read/write Memory write and invalidate enable. This bit controls whether the master
may generate a MWI command. Although the pci_b function implements
this bit, it is ignored. The local side must ensure that the mwi_ena output is
high before it requests a master transaction using the MWI command.

5 Unused – –

6 perr_ena Read/write Parity error enable. When high, perr_ena enables the pci_b or pcit1
function to report parity errors via the perrn output.

7 Unused – –

8 serr_ena Read/write System error enable. When high, serr_ena allows the pci_b or pcit1
function to report address parity errors via the serrn output. However, to
signal a system error, the perr_ena bit must also be high.

15..9 Unused – –
60 Altera Corporation

Specifi cations
Note:
(1) These bits are supported by the pci_b function only. In the pcit1 function, these bits are hardwired to ground.

Table 7. Status Register Format

Data
Bit

Mnemonic Read/Write Definition

3..0 Unused – Reserved.

4 cap_list_ena Read Capabilities list enable. This bit is read only and is set by the user by
setting the CAP_LIST_ENA parameter to "YES" . When set, this bit
enables the capabilities list pointer register at offset 34 hex.

7..5 Unused – –

8 dat_par_rep ,
Note (1)

Read/write Data parity reported. When high, dat_par_rep indicates that
during a read transaction the pci_b function asserted the perrn
output as a master device, or that during a write transaction the
perrn output was asserted by a target device. This bit is high only
when the perr_ena bit (bit 6 of the command register) is also high.
This signal is driven to the local side on the perr_rep output

10..9 devsel_tim Read Device select timing. The devsel_tim bits indicate target access
timing of the pci_b or pcit1 function via the devseln output. The
pci_b and pcit1 functions are designed to be slow target devices,
i.e., devsel_tim = B"10" .

11 tabort_sig Read/write Target abort signaled. This bit is set when a local peripheral device
terminates a transaction. The pci_b or pcit1 function
automatically sets this bit if it issued a target abort after the local side
asserted lt_abortn . This bit is driven to the local side on
tabort_sig output.

12 tar g_abort_r cvd Read/write Target abort. When high, targ_abort_rcvd indicates that the
current target device transaction has been terminated. This bit is
driven to the local side on ta rg_a bort_rcvd output.

13 mstr_ab ort ,
Note (1)

Read/write Master abort. When high, mstr_abort indicates that the current
master device transaction has been terminated. This bit is driven to
the local side on the mabort_rcvd output.

14 serr_set Read/write Signaled system error. When high, serr_set indicates that the
pci_b or pcit1 function drove the serrn output active, i.e., an
address phase parity error has occurred. The pci_b or pcit1
function signals a system error only if an address phase parity error
was detected and serr_ena was set. This signal is driven to the
local side on the serr_sig output.

15 det_par_err Read/write Detected parity error. When high, det_par_err indicates that the
pci_b or pcit1 function detected either an address or data parity
error. Even if parity error reporting is disabled (via perr_ena), the
pci_b or pcit1 function sets the det_par_err bit. This signal is
driven to the local side on the perr_det output.
Altera Corporation 61

Specifi cations
Revision ID Register

Revision ID is an 8-bit read-only register that identifies the revision

number of the device. The value of this register is assigned by the

manufacturer (e.g., Altera for the pci_b or pcit1 function). For Altera

PCI MegaCore functions, the default value of the revision ID register is

the revision number of the pci_b or pcit1 function. See Table 8.

Designers can change the value of the revision ID register by setting the

REVISION_ID parameter.

Class Code Register

Class code is a 24-bit read-only register divided into three sub-registers:

base class, sub-class, and programming interface. Refer to the PCI Local
Bus Specification, Revision 2.2 for detailed bit information. The default

value of the class code register is H"FF0000" . Designers can change the

value by setting the CLASS_CODE parameter. See Table 9.

Cache Line Size Register

The cache line size register specifies the system cache line size in

DWORDS, and is supported by the pci_b function only. This read/write

register is written by system software at power-up. The value in this

register is driven to the local side on the cache[7..0] bus. The local side

must use this value when using the memory write and invalidate

command in master mode. See Table 10.

Table 8. Revision ID Register Format

Data Bit Mnemonic Read/Write Definition

7..0 rev_id Read PCI revision ID

Table 9. Class Code Register Format

Data Bit Mnemonic Read/Write Definition

23..0 class Read Class code

Table 10. Cache Line Size Register Format

Data Bit Mnemonic Read/Write Definition

7..0 cache Read/write Cache line size
62 Altera Corporation

Specifi cations
Latency Timer Register

The latency timer register is an 8-bit register with bits 2, 1, and 0 tied to

ground, and is supported by the pci_b function only. The register defines

the maximum amount of time, in PCI bus clock cycles, that the pci_b

function can retain ownership of the PCI bus. After initiating a

transaction, the pci_b function decrements its latency timer by one on the

rising edge of each clock. The default value of the latency timer register is

H"00" . See Table 11.

Header Type Register

Header type is an 8-bit read-only register that identifies the pci_b or

pcit1 function as a single-function device. The default value of the

header type register is H"00" . See Table 12.

Base Address Registers

The pci_b or pcit1 function supports up to six BARs. Each base address

register (BARn) has identical attributes. You can control the number of

BARs that are instantiated in the function by setting the parameter

NUMBER_OF_BARS. Depending on the value set by this parameter, one or

more of the BARs in the pci_b or pcit1 function is instantiated. The logic

for the unused BARs is reduced automatically by the MAX+PLUS II

software when you compile the pci_b or pcit1 function.

Table 11. Latency Timer Register Format

Data Bit Mnemonic Read/Write Definition

2..0 lat_tmr Read Latency timer register

7..3 lat_tmr Read/write Latency timer register

Table 12. Header Type Register Format

Data Bit Mnemonic Read/Write Definition

7..0 header Read PCI header type
Altera Corporation 63

Specifi cations
Each BAR has its own parameter BARn (where n is the BAR number).

Each BARn should be a 32-bit Hexadecimal number, which selects a

combination of the following BAR options:

■ Type of address space reserved by the BAR

■ Location of the reserved memory in the 32-bit address space

■ Sets the reserved memory as prefetchable or non-prefetchable

■ Size of memory or I/O address space reserved for the BAR

1 When compiling the pci_b or pcit1 function, the

MAX+PLUS II software generates informational messages

informing you of the number and options of the BARs you have

specified.

The BAR is formatted per the PCI Local Bus Specification, Revision 2.2.

Bit 0 of each BAR is read only, and is used to indicate whether the reserved

address space is memory or I/O. BARs that map to memory space must

hardwire bit 0 to 0, and BARs that map to I/O space must hardwire bit 0

to 1. Depending on the value of bit 0, the format of the BAR changes. You

can set the type of BAR you want to instantiate by setting the individual

bit 0 of the corresponding BARn parameter.

In a memory, BAR bits 2 and 1 indicate the location of the address space

in the memory map. You can control the location of each BAR address

space independently by setting the value of bit 2 and 1 in the

corresponding BARn parameter.

Bit 3 of a memory BAR controls whether the BAR is prefetchable. You can

control whether the BAR is prefetchable independently by setting the

value for bit 3 in the corresponding BARn parameter. See Table 13.

Table 13. Memory BAR Format

Data
Bit

Mnemonic Read/Write Definition

0 mem_ind Read Memory indicator. The mem_ind bit indicates that the register maps into
memory address space. This bit must be set to 0 in the BARn parameter.

2..1 mem_type Read Memory type. The mem_type bits indicate the type of memory that can
be implemented in the pci_b or pcit1 memory address space. Only
the following two possible values are valid for pci_b and pcit1 : locate
memory space any where in the 32-bit address space and locate
memory space below 1 Mbyte.

3 pre_fetch Read/write Memory prefetchable. The pre_fetch bit indicates whether the blocks
of memory are prefetchable by the host bridge.

31..4 bar Read/write Base address registers.
64 Altera Corporation

Specifi cations
In addition to the type of space reserved by the BAR, the parameter value

BARn determines the number of read/write bits instantiated in the

corresponding BAR. The number of read/write bits in a BAR determines

the size of address space reserved (See Section 6.2.5 in the PCI Local Bus
Specification, Revision 2.2). You can indicate the number of read/write

bits instantiated in a BAR by the number of 1s in the corresponding BARn

value starting from bit 31. The BARn parameter should contain 1s from bit

31 down to the required bit without any 0s in between. For example, a

value of H"FF000000" is a legal value for a BARn parameter, but the value

H"FF700000" is not, because bits 24 and 22 are 1s and bit 23 is 0. As

another example, if you set the BAR0 parameter to H"FFC00008" , BAR0

would have the following options:

■ Memory BAR

■ Located anywhere in the 32-bit address space

■ Prefetchable

■ Reserved memory space = 2 (32 – 10) = 4 Mbytes

Like a memory BAR, the corresponding BARn parameter can be used to

instantiate an I/O BAR in any of the six BARs available for the pci_b or

pcit1 function. You can instantiate an I/O BAR by setting bit 0 of the

corresponding BARn parameter to 1 instead of 0.

In an I/O BAR, bit 1 is always reserved and you should set it to 0. Like the

memory BAR, the read/write bits in the most significant part of the BAR

control the amount of address space reserved. You can indicate the

number of read/write bits you would like to instantiate in a BAR by

setting the appropriate bits to a 1 in the corresponding BARn parameter.

The PCI Local Bus Specification, Revision 2.2 prevents any single I/O

BAR from reserving more than 256 Bytes of I/O space. See Table 14.

For example, if you set the BAR1 parameter to H"FFFFFFC1" , BAR 1 would

have the following options:

■ I/O BAR

■ Reserved I/O space = 2 (32 – 26) = 64 Bytes

Table 14. I/O Base Address Register Format

Data
Bit

Mnemonic Read/Write Definition

0 io_ind Read I/O indicator. The io_ind bit indicates that the register maps into I/O
address space. This bit must be set to 1 in the BARn parameter.

1 Reserved – –

31..2 bar Read/write Base address registers.
Altera Corporation 65

Specifi cations
In some applications, one or more BARs must be hardwired. The pci_b

and pcit1 functions allow you to set default base addresses that can be

used to claim transactions without requiring the configuration of the

corresponding BARs. To implement this feature, set the

BARn_DEFAULT_ENA parameter to "YES" . In this case, pci_b or pcit1

uses the content of the BARn_DEFAULT parameter as the default base

address (n corresponds to the BAR number and can be from 0 to 5). When

using BARn_DEFAULT, you must set the corresponding BARn parameter

appropriately to indicate the BAR settings, such as address space type and

number of decoded bits. When BARn_DEFAULT_ENA is set to "NO" ,

BARn_DEFAULT is ignored.

1 When you use BARn_DEFAULT, the corresponding BARs become

read-only. A configuration write to this BAR will proceed

normally. However, a configuration read of these registers will

return the value in the BARn_DEFAULT parameter.

CardBus CIS Pointer Register

The card information structure (CIS) pointer register is a 32-bit read-only

register that points to the beginning of the CIS. This optional register is

used by devices that have the PCI and CardBus interfaces on the same

silicon. By default, the pci_b and pcit1 MegaCore functions do not

support this register. To enable support, set the CIS_PTR_ENA parameter

to "YES" and the CIS_PTR parameter to the appropriate value. Table 15

shows this register’s format. For more information on the CardBus CIS

pointer register, refer to the PCMCIA Specification version 2.10.

Table 15. CIS Pointer Register Format

Data
Bit

Mnemonic Read/Write Definition

0..2 adr_space_ind Read Address space indicator. The value of these bits indicates that the CIS
pointer register is pointing to one of the following spaces: configuration
space, memory space, or expansion ROM space.

3..27 adr_offset Read Address space offset. This value gives the address space’s offset
indicated by the address space indicator.

31..28 rom_im Read ROM image. These bits are the uppermost bits of the address space
offset when the CIS pointer register is pointing to an expansion ROM
space.
66 Altera Corporation

Specifi cations
Subsystem Vendor ID Register

Subsystem vendor ID is a 16-bit read-only register that identifies add-in

cards from different vendors that have the same functionality. The value

of this register is assigned by the PCI SIG. See Table 16. The default value

of the subsystem vendor ID register is 0000 hex. However, designers can

change the value by setting the SUBSYSTEM_VEND_ID parameter.

Subsystem ID Register

The subsystem ID register identifies the subsystem. The value of this

register is defined by the subsystem vendor, i.e., the designer. See

Table 17. The default value of the subsystem ID register is 0000 hex.

However, designers can change the value by setting the SUBSYSTEM_ID
parameter.

Expansion ROM BAR

PCI devices on expansion boards require local EPROMs (or expansion

ROMs). The 32-bit expansion ROM BAR handles the expansion ROM’s

base address and size information. This register functions like a 32-bit

BAR except the encoding and use of the bottom bits is different. Bit 0 is

read/write and is used to indicate whether the device accepts accesses to

its expansion ROM or not. The upper 21 bits correspond to the upper 21

bits of the expansion ROM base address. The size of the address space

must not be greater than 16 Mbytes. To enable expansion ROM BAR

support in pci_b and pcit1 , set the EXP_ROM_ENA parameter to "YES"

and the EXP_ROM_BAR parameter to the appropriate value. When the

EXP_ROM_ENA parameter is set to "NO" , the EXP_ROM_BAR parameter is

ignored. The expansion ROM BAR in pcit1 and pci_b is formatted

according to the PCI Local Bus Specification, Revision 2.2. See Table 18.

Table 16. Subsystem Vendor ID Register Format

Data Bit Mnemonic Read/Write Definition

15..0 sub_vend_id Read PCI subsystem/vendor ID

Table 17. Subsystem ID Register Format

Data Bit Mnemonic Read/Write Definition

15..0 sub_id Read PCI subsystem ID
Altera Corporation 67

Specifi cations
In some applications, you may want to hardwire the value of the

expansion ROM’s base address. To use this feature in pci_b and pcit1 ,

set the EXP_ROM_DEFAULT_ENA parameter to "YES" . In this case, the value

in the EXP_ROM_DEFAULT parameter is used as the expansion ROM’s base

address. The EXP_ROM_ENA parameter must be set to "YES" and the

EXP_ROM_BAR parameter setting defines the expansion ROM’s size.

Capabilities Pointer

The capabilities pointer register is an 8-bit read-only register added to the

PCI configuration space to support the capabilities added to PCI after PCI
Local Bus Specification, Revision 2.1 was published. The PCI status

register supports this optional register when the capabilities list bit (bit 4)

is set to indicate that the capabilities pointer is located at offset H"34" in

the configuration space. The pointer points to the first item in the

capabilities list. To enable the capabilities pointer register in pci_b and

pcit1 , set the CAP_LIST_ENA parameter to "YES" . In this case, the value

in the CAP_PTR parameter is the address of the first item in the capabilities

list. See Table 19. The address indicated by the pointer must be H"40" or

greater, and each capability must be within a DWORD boundary. When

you implement the capabilities pointer register in pci_b and pcit1 , the

locations at offset H"40" and beyond become accessible.

The capabilities pointer register allows the implementation of a compact

PCI hot swap register in pci_b or pcit1 . The capabilities list also includes

PCI power management, accelerated graphics port (AGP), and others. For

a complete list of the items and their ID’s, see appendix H in the PCI Local
Bus Specification, Revision 2.2.

Table 18. Expansion ROM Base Address Register Format

Data
Bit

Mnemonic Read/Write Definition

0 exp_rom_ena Read/write Address decode enable. The exp_rom_ena bit indicates whether or not
the device accepts accesses to its expansion ROM. You can disable the
expansion ROM address space by setting this bit to 0. You can enable
the address decoding of the expansion ROM by setting this bit to 1.

10..1 Reserved – –

31..11 bar Read/write Expansion ROM base address registers.
68 Altera Corporation

Specifi cations
Interrupt Line Register

The interrupt line register is an 8-bit register that defines to which system

interrupt request line (on the system interrupt controller) the intan

output is routed. The interrupt line register is written by the system

software upon power-up; the default value is FF hex. See Table 20.

Interrupt Pin Register

The interrupt pin register is an 8-bit read-only register that defines the

pci_b or pcit1 function’s PCI bus interrupt request line. Both functions

support only one interrupt request line: intan . The interrupt pin register

is controlled by the INTERRUPT_PIN_REG parameter, which can be set to

only two possible values: H"01" to indicate that pci_b or pcit1

implements intan , or H"00" to indicate that pci_b or pcit1 will not

implement an interrupt request. In this case, intan is stuck at VCC and the

local input signal l_irqn is not required. By default, pci_b and pcit1

implement intan . See Table 21.

Table 19. Interrupt Line Register Format

Data Bit Mnemonic Read/Write Definition

7..0 cap_ptr Read/write Capabilities pointer register

Table 20. Interrupt Line Register Format

Data Bit Mnemonic Read/Write Definition

7..0 int_ln Read/write Interrupt line register

Table 21. Interrupt Pin Register Format

Data Bit Mnemonic Read/Write Definition

7..0 int_pin Read Interrupt pin register
Altera Corporation 69

Specifi cations
Minimum Grant Register

The minimum grant register applies to the pci_b function only. It is an

8-bit read-only register that defines the length of time the pci_b function

would like to retain mastership of the PCI bus. The value set in this

register indicates the required burst period length in 250-ns increments.

Designers can set this register with the parameter MIN_GRANT. See

Table 22.

Maximum Latency Register

The maximum latency register applies to the pci_b function only. It is an

8-bit read-only register that defines the frequency in which the pci_b or

pcit1 function would like to gain access to the PCI bus. See Table 23.

Designers can set this register with the parameter MAX_LAT.

Table 22. Minimum Grant Register Format

Data Bit Mnemonic Read/Write Definition

7..0 min_gnt Read Minimum grant register

Table 23. Maximum Latency Register Format

Data Bit Mnemonic Read/Write Definition

7..0 max_lat Read Maximum latency register
70 Altera Corporation

Specifi cations
Target Mode
Operation

This section describes all supported target transactions for the pci_b

function in target mode and for the pcit1 function. The MegaCore

functions support the following target transaction types:

■ Memory single-cycle target read

■ Memory burst target read

■ Interrupt acknowledge

■ Configuration target read

■ Memory single-cycle target write

■ Memory burst target write

■ Configuration target write

■ I/O read

■ I/O write

A read or write transaction begins after a master acquires mastership of

the PCI bus and asserts framen to indicate the beginning of a bus

transaction. The MegaCore function latches the address and command

signals on the first clock edge when framen is asserted and starts the

address decode phase. The MegaCore functions implement slow decode,

i.e., the devseln signal is asserted three clock cycles after a valid address

is presented on the PCI bus. In all operations except configuration

read/write and interrupt acknowledge, one of the bar_hit[5..0] or

exp_rom_hit signals is driven high, indicating the BAR range address of

the current transaction or the expansion ROM BAR range.

For configuration transactions, the MegaCore function has complete

control over the transaction and informs the local-side device of the

progress and command of the transaction. The MegaCore function asserts

all control signals, provides data in the case of a read, and receives data in

the case of write without interaction from the local-side device.

The pci_b and pcit1 MegaCore functions support the PCI interrupt

acknowledge command. This command is treated like a memory read,

except during the address phase in which the ad[31..0] bus does not

contain a valid address, but is driven with stable data. Moreover, these

functions do not assert the bar_hit or exp_rom_hit signals. The local

side must implement any special requirements required by the interrupt

acknowledge command to respond properly to the interrupt controller.
Altera Corporation 71

Specifi cations
Memory transactions can be single-cycle or burst. In target mode, the

MegaCore function supports an unlimited length of zero-wait-state

memory burst read or write. In a read transaction, data is transferred from

the local side to the PCI master. In a write transaction, data is transferred

from the PCI master to the local-side device. A memory transaction can be

terminated by either the PCI master or the local-side device. The local-side

device can terminate the memory transaction using one of three types of

terminations: retry, disconnect, or target abort. “Target Transaction

Terminations” on page 84 describes how to initiate the different types of

termination.

1 The MegaCore functions treat the memory read line and

memory read multiple commands as memory read. Similarly,

the functions treat the memory write and invalidate command as

a memory write. The local-side application must implement any

special requirements required by these commands.

I/O transactions are always single-cycle transactions. Therefore, the

MegaCore function handles them like single-cycle memory commands.

Any of the six BARs in the pci_b or pcit1 function can be configured to

reserve I/O space. See “Base Address Registers” on page 63 for more

information on how to configure a specific BAR to be an I/O BAR. Like

memory transactions, I/O transactions can be terminated normally by the

PCI master, or the local-side device can instruct the MegaCore function to

terminate the transactions with a retry or target abort. Because all I/O

transactions are single-cycle, terminating a transaction with a disconnect

does not apply.

Target Read Transactions

In target mode, the MegaCore functions support three types of read

transactions:

■ Single-cycle read

■ Burst read

■ Configuration read

■ Interrupt acknowledge
72 Altera Corporation

Specifi cations
For all three types of read transactions, the sequence of events is the same

and can be divided into the following steps:

1. The address phase occurs when the PCI master asserts framen and

drives the address and command on ad[31..0] and cben[3..0] ,

correspondingly.

2. Turn-around cycles on the ad[31..0] bus occur during the clock

immediately following the address phase. During the turn around

cycles, the PCI master tri-states the ad[31..0] bus but drives correct

byte enables on cben[3..0] for the first data phase. This process is

necessary because the PCI agent driving the ad[31..0] bus changes

during read cycles.

3. The pci_b or pcit1 function drives ad[31..0] with data, but

trdyn is not asserted.

4. One or more data phases follow next, depending on the type of read

transaction.

Single-Cycle Read Transaction

Figure 1 shows the waveform for a single-cycle target read transaction.

This waveform applies to both single-cycle memory read and I/O read

commands. However, if the address specifies a location in the expansion

ROM, the exp_rom_hit signal is asserted instead of a bar_hit signal.

Because pci_b and pcit1 treat the interrupt acknowledge command as a

memory read, this waveform also applies to the interrupt acknowledge

transaction, except the bar_hit and exp_rom_hit signals are not

asserted.
Altera Corporation 73

Specifi cations
Figure 1. Single-Cycle Target Read Transaction

clk

ad[31..0]

cben[3..0]

framen

irdyn

devseln

trdyn

stopn

lt_framen

lt_adr[31..0]

lt_cmd[3..0]

lt_rdyn

lt_ackn

lt_dati[31..0]

bar_hit[5..0]

1 2 3 4 5 6 7 8 9 10 11

ADR Z DATA0

000000 0000001 000000

DATA0

ADR ADR+4

CMD BE0

CMD
74 Altera Corporation

Specifi cations
The event sequence is summarized in Table 24.

Table 24. Single-Cycle Target Read Sequence

Clock
Cycle

Event

1 The PCI bus is idle.

2 The address phase occurs.

3 The MegaCore function latches the address and command, and decodes the address to check if it falls
within the range of one of its BARs. During clock 3, the master deasserts framen and asserts irdyn
to indicate that only one data phase remains in the transaction. For a single-cycle target read, this
phase is the only data phase in the transaction. The MegaCore function uses clock 3 to decode the
address, and if the address falls in the range of one of its BARs, it is treated as an address hit.

4 If the MegaCore function detects an address hit in clock 3, several actions occur during clock 4:
■ The MegaCore function informs the local-side device that it is going to claim the read transaction

by asserting one of the bar_hit or exp_rom_hit signals and lt_framen . During an interrupt
acknowledge command, the bar_hit and exp_rom_hit signals are not asserted.

■ The MegaCore function drives the command on lt_cmd[3..0] and address on
lt_adr[31..0] .

■ The MegaCore function turns on the drivers of devseln , trdyn , and stopn , getting ready to
assert devseln in clock 5.

■ The PCI master tri-states the ad[31..0] bus for the turn-around cycle.

5 The MegaCore function asserts devseln to claim the transaction. The function also drives lt_ackn
to the local-side device to indicate that it is ready to accept data on lt_dati[31..0] . The MegaCore
function also enables the output drivers of the ad[31..0] bus to ensure that it is not tri-stated for a
long time while waiting for valid data.

6 lt_rdyn is asserted, indicating that valid data is available on lt_dati[31..0] . Because the
MegaCore function asserts lt_ackn at the same time, indicating that it is ready to receive data from
lt_dati[31..0] , the MegaCore function registers the data into its internal pipeline.

7 The rising edge of clock 7 registers the valid data from lt_dati[31..0] .

8 The MegaCore function drives the valid data that was registered on the rising edge of clock 7. At the
same time, the MegaCore function asserts trdyn , indicating to the master device that valid data is
available on the ad[31..0] bus.

9 The MegaCore function deasserts trdyn and devseln to end the transaction. To satisfy the
requirements for sustained tri-state buffers, the MegaCore function drives devseln , trdyn , and
stopn high during this clock cycle. Additionally, the MegaCore function tri-states the ad[31..0] bus
because the cycle is complete.

10 The MegaCore function informs the local-side device that the transaction is complete by deasserting
lt_framen and resetting the bar_hit signals. Additionally, the MegaCore function tri-states
devseln , trdyn , and stopn to begin the turn-around cycle on the PCI bus.
Altera Corporation 75

Specifi cations
1 The local-side device must ensure that PCI latency rules are not

violated while the MegaCore function waits for data. If the local-

side device is unable to meet the latency requirements, it must

assert lt_discn to request that the MegaCore function

terminate the transaction. The PCI target latency rules state that

the time to complete the first data phase must not be greater than

16 PCI clocks, and the subsequent data phases must not take

more than 8 PCI clocks to complete. Therefore, the local-side

device cannot use more than 12 clocks from lt_framen to

provide the first data, and no longer than 8 clocks for each

subsequent data transfer.

Burst Read Transaction

The sequence of events for a burst read transaction is the same as that of a

single-cycle read transaction. However, during a burst read transaction,

more data is transferred and both the local-side device and the PCI master

can insert waits states at any point during the transaction. Figure 2

illustrates a burst read transaction and shows the assertion of wait states

both by the local side and by the PCI master.

Figure 2. Target Burst Memory Read Transaction

clk

ad[31..0]

cben[3..0]

framen

irdyn

devseln

trdyn

stopn

lt_framen

lt_adr[31..0]

lt_cmd[3..0]

lt_rdyn

lt_ackn

lt_dati[31..0]

bar_hit[5..0]

1 2 3 4 5 6 7 8 9 10 11

ADR Z DATA0

000000 0000001 000000

DATA0

ADR ADR+4

CMD BE0

6

12 13 14 15 16 17 18

DATA1 DATA2 DATA3 DATA4 DATA5

BE3 BE4 BE5BE2BE1

DATA5DATA1 DATA2 DATA3 DATA4 DATA6 DATA7 DATA8

CMD

ADR+20ADR+8 ADR+12 ADR+16 ADR+24 ADR+28 ADR+32
76 Altera Corporation

Specifi cations
Table 25 describes some of the events during the transaction.

For a burst-read transaction, the MegaCore function can sustain a

maximum of 132 Mbytes per second transfer because it does not impose

wait-state requirements. Additionally, the MegaCore function has no

upper limit on the size of the burst transfer.

Table 25. Burst Read Events

Clock
Cycle

Event

6 The local side asserts lt_rdyn and the MegaCore function asserts lt_ackn indicating a successful
data transfer from the local side to the MegaCore function.

7 On the rising edge of clock 7, DATA0 is registered in the first stage of the MegaCore function internal
pipeline. The following events occur during clock 7:
■ The MegaCore function increments lt_adr[31..0] by 4 to point to the address of the next

word to be transferred.
■ The local side deasserts lt_rdyn, indicating that it is not ready to transfer data to the MegaCore

function.
■ The MegaCore function asserts lt_ackn , indicating that it is ready to receive data from the local-

side application.

8 On the rising edge of clock 8, DATA0 is registered from the first stage of the MegaCore function internal
pipeline to the second stage. The following events occur during clock 8:
■ The MegaCore function drives DATA0 on the PCI bus. Because the internal pipeline has two

stages, data requires two clocks to be driven on the PCI side from the local side.
■ The MegaCore function asserts trdyn to indicate that valid data is available on the ad[31..0]

bus.
■ DATA1 is transferred on the local side because both lt_rdyn and lt_ackn are asserted.
■ The lt_adr[31..0] bus is incremented by 4 to indicate the address of the next word.

9 The MegaCore function deasserts trdyn because of the wait state asserted by the local side during
clock 7. At the same time, a new word is transferred on the local side and the address on
lt_adr[31..0] bus is incremented.

10 The MegaCore function asserts trdyn and transfers the second word from the local side (i.e., DATA1).
At the same time, the local side transfers additional data and the MegaCore function increments the
address on lt_adr[31..0] .

11 The master deasserts irdyn to indicate that it is not ready to receive data. At the same time, the
MegaCore function continues to receive data from the local side.

12 The wait state asserted by the master during clock 11 is shown by the MegaCore function on the local
side by deasserting lt_ackn during the same clock. At the same time, the same data that is driven
on the PCI bus by the MegaCore function is driven during this clock.

13 to 16 The cycle continues in a similar fashion as described above. The cycle is terminated normally by the
master in clock 15 with framen going high and irdyn going low. The last data is transferred on the
rising edge of clock 16.
Altera Corporation 77

Specifi cations
Configuration Read Transaction

Figure 3 shows the timing of a pci_b or pcit1 configuration read

transaction. The protocol is identical to the protocol discussed in

“Interrupt Acknowledge” on page 73 except for the idsel signal, which

is active during the address phase of a configuration transaction.

Additionally, because the pci_b or pcit1 function does not have to wait

for the local side to supply it with data during the configuration read

transaction, this transaction requires fewer clock cycles.

Figure 3. Configuration Read Transaction

Target Write Transactions

The pci_b and pcit1 functions support three types of target write

transactions:

■ Single-cycle write

■ Burst target write

■ Configuration write

clk

idsel

ad[31..0]

cben[3..0]

framen

irdyn

devseln

trdyn

stopn

lt_framen

lt_adr[31..0]

lt_cmd[3..0]

1 2 3 4 5 6 7 8 9

ADR Z DATA0

A BE0

A

ADR
78 Altera Corporation

Specifi cations
In all target write transactions, the events follow the sequence described

below:

1. The address phase occurs when the PCI master asserts framen and

drives the address and command on ad[31..0] and cben[3..0] ,

correspondingly.

2. The MegaCore function decodes the address and determines if the

address is within the range of one of its BARs.

3. If the MegaCore function detects a hit, it informs the local side that it

will claim the transaction and drive the address and command to the

local side.

4. The MegaCore function claims the transaction by asserting devseln .

5. The MegaCore function accepts one or more data phases.

Single-Cycle Write Transaction

Figure 4 shows the waveform for a single-cycle target write transaction.

This waveform applies to both single-cycle memory write and I/O write

commands.
Altera Corporation 79

Specifi cations
Figure 4. Single-Cycle Target Write Transaction

clk

ad[31..0]

cben[3..0]

framen

irdyn

devseln

trdyn

stopn

lt_framen

lt_adr[31..0]

lt_cmd[3..0]

lt_rdyn

lt_ackn

lt_dato[31..0]

lt_be[3..0]

bar_hit[5..0]

1 2 3 4 5 6 7 8 9 10

ADR DATA0

000000 0000001 000000

DATA0

7 BE0

7

ADR

BE0
80 Altera Corporation

Specifi cations
Table 26 describes the events that occur during the transaction.

Burst Write Transaction

The sequence of events in a burst write transaction is the same as for a

single-cycle write transaction. However, in a burst write transaction, more

data is transferred and both the local-side device and the PCI master can

insert wait-states. Figure 5 shows the waveform for a typical burst write

transaction.

Table 26. Single-Cycle Target Write Events

Clock
Cycle

Event

1 The PCI bus is idle.

2 The address phase occurs.

3 The MegaCore function latches the address and command, and decodes the address to check if it
falls within the range of one of its BARs. In clock 3, the master deasserts framen and asserts irdyn
to indicate that only one data phase remains in the transaction. For single-cycle target write
transactions, only one data phase occurs during the transaction. The MegaCore function uses clock
3 to decode the address, and if the address falls in the range of one of its BARs, it is treated as an
address hit.

4 If the MegaCore function detects an address hit in clock 3, several events follow in clock 4:
■ The MegaCore function informs the local-side device that it will claim the write transaction by

asserting one of the bar_hit or exp_rom_hit signals and lt_framen .
■ The MegaCore function drives the command on lt_cmd[3..0] and address on

lt_adr[31..0] .
■ The MegaCore function turns on the drivers of devseln , trdyn , and stopn , getting ready to

assert devseln in clock 5.

5 The MegaCore function asserts devseln to claim the transaction. Figure 4 also shows the local side
asserting lt_rdyn , indicating that it is ready to receive data from the MegaCore function in clock 6.

6 The MegaCore function asserts trdyn to inform the PCI master that it is ready to accept data.
Because irdyn is already asserted, this clock is the first and last data phase in this cycle.

7 Data is registered in the MegaCore function internal pipeline on the rising edge of clock 7. Then, the
MegaCore function latches the data and byte enables from the PCI bus because both irdyn and
trdyn are asserted. At the same time, the MegaCore function asserts lt_ackn to inform the local-
side device that valid data will be driven on the lt_dato[31..0] bus in clock 8 and the local-side
device asserts lt_rdyn . Therefore, on the rising edge of clock 9, data is transferred to the local-side
device. During a write cycle, data is transferred to the local side on the clock cycle following the one
where both lt_rdyn and lt_ackn are asserted. This process differs from the read transaction in
which data is transferred on the same clock that both lt_rdyn and lt_ackn are asserted.

8 The MegaCore function drives valid data and byte enables on lt_dato[31..0] and
lt_ben[3..0] on clock 8. During the same clock cycle, the MegaCore function deasserts
lt_framen and the bar_hit signal to indicate to the local-side device that the PCI transaction is
complete.
Altera Corporation 81

Specifi cations
Figure 5. Target Burst Memory Write Transaction

Figure 5 shows the assertion of wait states by the local side and the PCI

master. The PCI master inserts a wait state during the second data phase

at clock 7 by deasserting irdyn for one clock cycle. The pci_b or pcit1

function deasserts lt_ackn in clock 8 to indicate the PCI wait state. The

local-side device inserts a wait state during the third data transfer by

de-asserting lt_rdyn during clock 10. The local-side wait state is reflected

to the PCI bus with the MegaCore function deasserting trdyn during the

fifth data phase in clock 11. As also shown in Figure 5, lt_adr[31..0]

advances by 4 bytes after each successful transfer on the local side.

1 During burst write transactions, the lt_rdyn signal must be

asserted before the trdyn signal can be asserted.

During burst write transactions, the MegaCore function can sustain a

maximum of 132 Mbytes per second transfer because it does not impose

any wait state requirements. Additionally, the pci_b and pcit1 functions

have no upper limit on the size of the burst transfer.

clk

ad[31..0]

cben[3..0]

framen

irdyn

devseln

trdyn

stopn

lt_framen

lt_adr[31..0]

lt_cmd[3..0]

lt_rdyn

lt_ackn

lt_dato[31..0]

lt_be[3..0]

bar_hit[5..0]

1 2 3 4 5 6 7 8 9 10 11

ADR DATA0 DATA1

H"000000" H"0000001" H"000000"

DATA0

7 BE0

6

12 13 14 15 16 17

DATA3DATA2 DATA4 DATA5

BE1

DATA1 DATA2 DATA3 DATA4 DATA5

7

ADR ADR+4 ADR+20

BE3BE2 BE4 BE5

BE0 BE1 BE2 BE3 BE4 BE5

ADR+8 ADR+12 ADR+16
82 Altera Corporation

Specifi cations
1 The local-side device must ensure that PCI latency rules are not

violated while the MegaCore function waits for data. If the local-

side device is unable to meet the latency requirements, it must

assert lt_discn to request that the MegaCore function

terminates the transaction. The PCI target latency rules state that

the time to complete the first data phase must not be greater than

16 PCI clocks, and the subsequent data phases must not take

more than 8 PCI clocks to complete. Therefore, the local-side

device cannot use more than 12 clocks from lt_framen to

provide the first data, and no longer than 8 clocks for each

subsequent data transfer.

Configuration Write Transaction

Figure 6 shows the timing of a pci_b or pcit1 configuration write

transaction. The protocol is the same as the protocol discussed in “Single-

Cycle Write Transaction” on page 79, except for the idsel signal, which

is active during the address phase of a configuration transaction.

Figure 6. Configuration Write Transaction

clk

idsel

ad[31..0]

cben[3..0]

framen

irdyn

devseln

trdyn

stopn

lt_framen

lt_adr[31..0]

lt_cmd[3..0]

1 2 3 4 5 6 7 8 9

ADR DATA0

B BE0

B

ADR
Altera Corporation 83

Specifi cations
Target Transaction Terminations

For all transactions except configuration transactions, the local-side

device can request a transaction to be terminated with one of several

termination schemes defined by the PCI Local Bus Specification,
Revision 2.2. The local-side device can use the lt_discn signal to request

a retry or disconnect. These termination types are considered graceful

terminations and are normally used by a target device to indicate that it is

not ready to receive or supply the requested data. A retry termination

forces the PCI master that initiated the transaction to retry the same

transaction at a later time. A disconnect, on the other hand, does not force

the PCI master to retry the same transaction.

The local-side device can also request a target abort, which indicates that

a catastrophic error has occurred in the device. This termination is

requested by asserting lt_abortn during a target transaction other than

a configuration transaction.

f For more details on these termination types, refer to the PCI Local Bus
Specification, Revision 2.2.

Retry

The local-side device can request a retry, for example, because the device

cannot meet the initial latency requirement or because there is a conflict

for an internal resource. A target device signals a retry by asserting

devseln and stopn , while deasserting trdyn before the first data phase.

The local-side device can request a retry as long as it did not supply or

request at least one data in a burst transaction. In a write transaction, the

local-side device may request a retry by asserting lt_discn as long as it

did not assert the lt_rdyn signal to indicate it is ready for a data transfer.

If lt_rdyn is asserted, it can result in pci_b or pcit1 asserting the trdyn

signal on the PCI bus. Therefore, asserting lt_discn forces a disconnect

instead of a retry. In a read transaction, the local-side device can request a

retry as long as the first DWORD of data has not been received by the

pci_b or pcit1 function. Figure 7 shows a write transaction where the

MegaCore function issues a retry in response to the local side asserting

lt_discn during clock 5.
84 Altera Corporation

Specifi cations
Figure 7. Target Retry

Disconnect

A PCI target can signal a disconnect by asserting stopn and devseln after

at least one data phase is complete. There are two types of disconnects:

disconnect with data and disconnect without data. In a disconnect with

data, trdyn is asserted while stopn is asserted. Therefore, more data

phases are completed while the PCI bus master finishes the transaction. A

disconnect without data occurs when the target device deasserts trdyn

while stopn is asserted, thus ensuring that no more data phases are

completed in the transaction. Figure 8 shows the MegaCore function

issuing a disconnect during a burst write transaction.

1 The PCI Local Bus Specification requires that a target device

issue a disconnect if a burst transaction goes beyond its address

range. In this case, the local-side device must request a

disconnect. The local-side device must keep track of the address

of the current data transfer, and if the transfer exceeds its address

range, the local side should request a disconnect by asserting

lt_discn .

clk

ad[31..0]

cben[3..0]

framen

irdyn

devseln

trdyn

stopn

lt_framen

lt_adr[31..0]

lt_cmd[3..0]

lt_discn

lt_rdyn

lt_ackn

bar_hit[5..0]

1 2 3 4 5 6 7 8 9 10

ADR DATA0

000000 0000001 000000

7 BE0

7

ADR

11
Altera Corporation 85

Specifi cations
Figure 8. Target Disconnect

Target Abort

Target abort refers to an abnormal termination because either the local

logic detected a fatal error, or the target will never be able to complete the

request. An abnormal termination may cause a fatal error for the

application that originally requests the transaction. A target abort allows

the transaction to complete gracefully, thus preserving normal operation

for other agents.

A target device issues an abort by deasserting devseln and trdyn and

asserting stopn . A target device must set the tabort_sig bit in the PCI

status register whenever it issues a target abort. See “Status Register” on

page 60 for more details. Figure 9 shows the pci_b or pcit1 function

issuing an abort during a burst write cycle.

clk

ad[31..0]

cben[3..0]

framen

irdyn

devseln

trdyn

stopn

lt_framen

lt_adr[31..0]

lt_cmd[3..0]

lt_discn

lt_rdyn

lt_ackn

lt_dato[31..0]

lt_be[3..0]

bar_hit[5..0]

1 2 3 4 5 6 7 8 9 10 11

ADR DATA0

000000 0000001 000000

DATA0

7 BE0

6

12 13

DATA2DATA1 DATA3

DATA1 DATA2

7

ADR+12ADR ADR+4 ADR+8

BE2BE1 BE3

BE0 BE1 BE2
86 Altera Corporation

Specifi cations
1 The PCI Local Bus Specification, Revision 2.2 requires that a

target device issue an abort if the target device shares bytes in the

same DWORD with another device, and the byte enable

combination received byte requests outside its address range.

This condition occurs most commonly during I/O transactions.

The local-side device must ensure that this requirement is met,

and if it receives this type of transaction, it must assert

lt_abortn to request a target abort termination.

Figure 9. Target Abort

clk

ad[31..0]

cben[3..0]

framen

irdyn

devseln

trdyn

stopn

lt_framen

lt_adr[31..0]

lt_cmd[3..0]

lt_abortn

lt_rdyn

lt_ackn

lt_dato[31..0]

lt_be[3..0]

bar_hit[5..0]

tabort_sig

1 2 3 4 5 6 7 8 9 10 11

ADR DATA0

000000 0000001 000000

DATA0

7 BE0

6

12

DATA2DATA1 DATA3

DATA1 DATA2

7

ADR+12ADR ADR+4 ADR+8

BE2BE1 BE3

BE0 BE1 BE2
Altera Corporation 87

Specifi cations
Master Mode
Operation

The pci_b function supports the following master transaction types (the

pcit1 function supports target transactions only):

■ Single-cycle read

■ Memory burst read

■ Single-cycle write

■ Memory burst write

A master operation begins when the local side asserts the lm_reqn signal

and provides the transaction command on the lm_cben[3..0] bus and

the PCI address on lm_adi[31..0] . The pci_b function latches the

address and command internally and at the same time asserts reqn to

request mastership of the PCI bus. When the PCI bus arbiter grants the

bus to the pci_b function by asserting gntn , pci_b begins the transaction

with the address phase.

The pci_b function can generate any transaction in master mode because

the local side provides the pci_b function with the exact command. When

the local side requests I/O or configuration cycles, the pci_b function

automatically issues a single-cycle read/write transaction. In all other

transactions, the local side must assert lm_lastn to inform the pci_b

function when to end the transaction. The pci_b function treats memory

write and invalidate, memory read multiple, and memory read line

commands in a similar manner to the corresponding memory read/write

commands. Therefore, the local side must implement any special

handling required by these commands. The pci_b function outputs the

cache line size register value to the local side for this purpose.

During a transaction, the pci_b function outputs data on

lm_dato[31..0] and inputs data on lm_adi[31..0]. During a single-

cycle read/write transaction, the local side provides the pci_b function

with the byte enable values on lm_cben[3..0] . During burst

transactions, the local-side application must ensure that lm_cben[3..0]

is B"0000" " .

A data transfer between the local side and the pci_b function in master

mode occurs if lm_ackn is asserted, which is different than when the

pci_b function is in target mode. If the local-side application cannot

transfer data, it must assert lm_busyn . Asserting lm_busyn always results

in the pci_b function deasserting lm_ackn to indicate that data is not

being transferred between the pci_b function and the local side. The

pci_b function only deasserts irdyn in response to lm_busyn if it is

necessary. For example, if l m_busyn is asserted during a burst read

transaction and the target also asserts a wait state, the pci_b function

does not deassert irdyn .
88 Altera Corporation

Specifi cations
1 The local-side device may require a long time to transfer data

to/from the pci_b function during a burst transaction. The

local-side device must ensure that PCI latency rules are not

violated while the pci_b function waits for data. Therefore, the

local-side device must not insert more than 8 wait states before

asserting lm_busyn .

The pci_b function uses the transaction status register outputs

(lm_tsr[7..0]) to inform the local-side application of the transaction

status. See “Status Register” on page 60 for a description of each bit in this

bus. The following sections provide additional details about pci_b

master mode operation.

Master Read Transactions

There are two types of pci_b master read transactions: single-cycle read

transactions and burst memory read transactions. These transactions

differ in the following ways:

■ The burst transaction transfers more data and is generally longer.

■ The lm_ben[3..0] bus can only enable specific bytes in the DWORD

during single-cycle transactions.

■ The local side uses different processes to assert lm_lastn .

Single-Cycle Read Transaction

Figure 10 shows the waveform for a single-cycle master read transaction.

This waveform applies to the following transactions generated by the

pci_b function in master mode:

■ I/O read transactions

■ Configuration read transactions

■ Single-cycle memory read transactions
Altera Corporation 89

Specifi cations
Figure 10. Single-Cycle Master Read Transaction

Table 27 shows the sequence of events for a single-cycle master read

transaction.

clk

reqn

gntn

ad[31..0]

cben[3..0]

framen

irdyn

devseln

trdyn

stopn

lm_reqn

lm_lastn

lm_adi[31..0]

lm_cben[3..0]

lm_busyn

lm_ackn

lm_dato[31..0]

lm_tsr[7..0]

1 2 3 4 5 6 7 8 9 10 11

ADR0

60 BE0

DATA0Z

ADR

6 BE0

DATA0

H"01"H"00" H"02" H"04" H"00"H"80"

Table 27. Single-Cycle Master Read Transactions (Part 1 of 2)

Clock
Cycle

Event

1 The local side asserts lm_reqn , drives the address on the lm_adi[31..0] bus, and drives the
command on lm_cben[3..0] . This action informs the pci_b function that the local-side application
requests a master transaction.

2 The pci_b function latches the address and command internally and asserts reqn to request
mastership of the PCI bus. At the same time, the pci_b function asserts lm_tsr[0] to indicate to the
local side that the pci_b master requests the PCI bus.
90 Altera Corporation

Specifi cations
3 The PCI bus arbiter asserts gntn to grant the PCI bus to the pci_b function. Although Figure 10
shows that the grant occurs immediately and the PCI bus is idle at the time gntn is asserted, this action
may not occur immediately in a real transaction. The pci_b function waits for gntn to be asserted
while the PCI bus is idle before it proceeds. A PCI bus idle state occurs when both framen and irdyn
are deasserted.

5 The pci_b function turns on its output drivers, getting ready to begin the address phase. The pci_b
function continues to assert its reqn signal until it begins the address phase. The pci_b function also
asserts lm_tsr[1] to indicate to the local side that the PCI bus has been granted.

6 The pci_b function begins the master read transaction with the address phase. At the same time,
lm_tsr[1] remains asserted. During this clock cycle, the local side must provide the byte enables for
the transaction on lm_cben[3..0] . The local side must assert lm_lastn during this clock cycle or
earlier to ensure that the cycle is a single-cycle read transaction. If lm_lastn is not asserted during
this clock cycle or earlier and the transaction is a memory transaction, the transaction must have at
least two data phases.

1 In I/O and configuration transactions, the pci_b function automatically performs single-
cycle transactions and ignores lm_lastn . It is sufficient for the local side to assert
lm_lastn for a single clock cycle on or before clock 6 to ensure that the transaction has
only one data phase.

7 The pci_b function tri-states the ad[31..0] bus for the PCI bus turn-around cycle. Also, the pci_b
function deasserts framen and asserts irdyn to inform the target that this data phase is the one in
the transaction. Because this phase is the only data phase in the transaction, this action also informs
the target that the cycle is a single-cycle transaction. By asserting irdyn , the pci_b function informs
the target that it is ready to receive data. During this clock cycle, the pci_b function also asserts
lm_tsr[2] to inform the local side that it is in data transfer mode. The pci_b function asserts irdyn
on the first data phase of a read transaction, independent of the state of lm_busyn .

8 The target claims the transaction by asserting devseln . In this case, the target performs a medium
address decode. During the same clock cycle, the target asserts trdyn to inform the pci_b function
that it is ready to transfer data. Because the pci_b function has already asserted irdyn , a data phase
is completed on the rising edge of clock 9.

9 The data is output on the local side and the pci_b function asserts lm_ackn to inform the local side
that valid data is available on the lm_dato[31..0] bus. The pci_b function also asserts
lm_tsr[7] in the same clock to inform the local side that a data phase was completed successfully
on the PCI bus during the previous clock. Because this transaction is single-cycle, the pci_b function
also deasserts irdyn and tri-states the cben[3..0] bus for the PCI bus turn-around cycle.

10 The pci_b function performs a turn-around cycle for irdyn by tri-stating it. The lm_tsr[7..0] bus
does not show signals are asserted, indicating that the transaction ended normally and the pci_b
function has no further activity in master mode. Also, the rising edge of clock 10 transfers the data from
the pci_b function to the local side, deasserting lm_ackn , because the pci_b function is finished
transferring data.

Table 27. Single-Cycle Master Read Transactions (Part 2 of 2)

Clock
Cycle

Event
Altera Corporation 91

Specifi cations
Burst Memory Read Transaction

Figure 11 shows the waveform for a master burst memory read

transaction. This waveform applies to the following transactions

generated by the pci_b function in master mode:

■ Memory burst-read transaction

■ Memory read multiple transaction

■ Memory read line transaction

1 The pci_b function treats memory read, memory read multiple,

and memory read line commands in the same way. Any

additional requirements for the memory read multiple and

memory read line commands must be implemented by the local-

side application.

Figure 11. Master Burst Memory Read Transaction

The sequence of events in Figure 11 is the same as Figure 10. However,

Figure 11 has more than one data phase, and wait states exist on the local

side as well as on the PCI master side.

In Figure 11, the PCI target asserts a wait state during clock 9. During

clock 10, the local side reflects that wait state by deasserting lm_ackn and

informing the local side that it does not have valid data on the

lm_dato[31..0] bus.

clk

reqn

gntn

ad[31..0]

cben[3..0]

framen

irdyn

devseln

trdyn

stopn

lm_reqn

lm_lastn

lm_adi[31..0]

lm_cben[3..0]

lm_busyn

lm_ackn

lm_dato[31..0]

lm_tsr[7..0]

1 2 3 4 5 6 7 8 9 10 11

DATA1

DATA0

12 13 14 15 16 17 18

DATA3 DATA4 DATA5

DATA3DATA1 DATA2 DATA4 DATA5

0

0

ADR

6

Z DATAO DATA2

0

ADR

6 0

H"01"H"00" H"02" H"04" H"04"H"84" H"84" H"04" H"84" H"00"
92 Altera Corporation

Specifi cations
The local side asserts lm_busyn during clock 12, indicating to the pci_b

function that the local side cannot receive data in clock 13. In response, the

pci_b function deasserts irdyn on the PCI side to inform the PCI target

that it is not ready to receive data. Additionally, in clock 13 the pci_b

function deasserts lm_ackn to inform the local side that a data transfer did

not take place.

1 In a burst read transaction, the pci_b function asserts wait states

on the PCI bus in response to local-side wait states only when

necessary. Additionally, the pci_b function asserts wait states

on the local side in response to PCI target wait states only when

necessary.

The local side asserts lm_lastn during clock 14. This assertion guarantees

to the local side that two more data phases will occur, at most: one during

clock 14 and another during clock 15. In Figure 11, the last data phase

takes place during clock 15. If irdyn was deasserted during clock 15, only

one additional data phase takes place after lm_lastn is asserted.

1 It is sufficient for the local side to assert lm_lastn for one clock

cycle to end the transaction. Asserting l m_lastn for more than

one clock cycle has no effect on the pci_b master interface.

Master Write Transactions

The pci_b function has two types of master write transactions: single-

cycle write transactions and burst memory write transactions. These

transactions differ in the following ways:

■ The burst transaction transfers more data and is generally longer.

■ The lm_ben[3..0] bus can only be used to enable specific bytes in

the DWORD in single-cycle transactions.

■ The local side asserts lm_lastn differently in each transaction.

Single-Cycle Write Transaction

Figure 12 shows a single-cycle master write transaction. This waveform

applies to the following transactions generated by pci_b in master mode:

■ I/O write transactions

■ Configuration write transactions

■ Single-cycle memory write transactions
Altera Corporation 93

Specifi cations
Figure 12. Single-Cycle Master Write Transaction

clk

reqn

gntn

ad[31..0]

cben[3..0]

framen

irdyn

devseln

trdyn

stopn

lm_reqn

lm_lastn

lm_adi[31..0]

lm_cben[3..0]

lm_busyn

lm_ackn

lm_tsr[7..0]

1 2 3 4 5 6 7 8 9 10 11

ADR0

70 BE0

DATA0

ADR

7 BE0

H"01"H"00" H"02" H"04" H"84" H"00"

DATA0
94 Altera Corporation

Specifi cations
Table 28 shows the sequence of events for the single-cycle master write

transaction.

Table 28. Single-Cycle Master Write Transaction Events

Clock
Cycle

Event

1 The local side asserts lm_reqn , drives the address on the lm_adi[31..0] bus, and drives the
command on lm_cben[3..0] . This action informs the pci_b function that the local-side application
requests a master transaction.

2 The pci_b function latches the address and command internally, and asserts reqn to request the PCI
bus. At the same time, the pci_b function asserts lm_tsr[0] to indicate to the local side that the
pci_b master requests the PCI bus.

3 The PCI bus arbiter asserts gntn to grant the PCI bus to the pci_b function. Although Figure 12 shows
that the grant occurs immediately and the PCI bus is idle at the time, this situation may not apply in an
actual transaction on the PCI bus. The pci_b function waits until gntn is asserted and the PCI bus is
idle before it proceeds. A PCI bus idle state occurs when both framen and irdyn are deasserted.

5 The pci_b function turns its output drivers on and begins the address phase. The pci_b function
continues asserting its reqn signal until the function enters the address phase. The pci_b function
asserts lm_tsr[1] to inform the local side that the PCI bus has been granted.

6 The pci_b function begins the master write transaction with the address phase. At the same time,
lm_tsr[1] remains asserted. During this clock cycle, the local side must provide the byte enables for
the transaction on lm_cben[3..0] . The local side must also assert lm_lastn during this clock cycle
or earlier to inform the pci_b function that there is only one data phase in this transaction. This
situation exists because the local side did not transfer any data prior to asserting lm_lastn .

In I/O and configuration transactions, the pci_b function ignores lm_lastn and performs single-cycle
transactions automatically. It is sufficient for the local side to assert lm_lastn for a single clock on or
before clock 6 to ensure that the transaction only has one data phase.

7 The pci_b function deasserts framen and asserts irdyn to inform the target that this data phase is
the last one in the transaction and valid data exists on the ad[31..0] bus. The pci_b function asserts
lm_tsr[2] to inform the local side that it is in data transfer mode. Additionally, the target claims the
transaction by asserting devseln .

8 The target asserts trdyn to inform the pci_b function that it is ready to transfer data. Because the
pci_b function has already asserted irdyn , a data phase is completed on the rising edge of clock 9.

9 The pci_b function asserts lm_tsr[7] to inform the local side that a data phase was completed
successfully on the PCI bus during the previous clock cycle. Because this transaction is single-cycle,
the pci_b function also deasserts irdyn and tri-states the cben[3..0] and ad[31..0] buses for
the PCI bus turn-around cycle.

10 The pci_b function performs a turn-around cycle for irdyn by tri-stating it. The lm_tsr[7..0] bus
does not show asserted signals, indicating that the transaction ended normally and the pci_b function
has completed its actions in master mode.
Altera Corporation 95

Specifi cations
96 Altera Corporation

Burst Memory Write Transaction

Figure 13 shows the waveform for a master burst memory write

transaction. This waveform applies to the following transactions

generated by the pci_b function in master mode:

■ Memory burst read transaction

■ Memory write and invalidate transaction

The pci_b function treats the memory write and memory write and

invalidate commands in the same way. Any additional requirements for

the memory write and invalidate command must be implemented by the

local-side application.

Figure 13. Master Burst Memory Write Transaction

The sequence of events in Figure 13 is the same as in Figure 12. However,

in Figure 13 more than one data phase is shown and wait states are shown

on the local side as well as on the PCI side. Table 29 shows additional

events for the burst memory write transaction.

clk

reqn

gntn

ad[31..0]

cben[3..0]

framen

irdyn

devseln

trdyn

stopn

lm_reqn

lm_lastn

lm_adi[31..0]

lm_cben[3..0]

lm_busyn

lm_ackn

lm_tsr[7..0]

1 2 3 4 5 6 7 8 9 10 11

DATA2

12 13 14 15 16 17 18

DATA5DATA3 DATA60

0

ADR

7

DATA0 DATA1 DATA4

0

ADR

7 0

H"00"

DATA2DATA0 DATA1 DATA3 DATA4 DATA5 DATA6

H"01" H"02" H"04" H"84" H"04" H"84" H"04" H"84" H"00"

Specifi cations
Abnormal Master Transaction Termination

An abnormal transaction is one in which the local side did not explicitly

request the termination of a transaction by asserting the lm_lastn signal.

A master transaction can be terminated abnormally for several reasons.

This section describes the behavior of the pci_b function during the

following abnormal termination conditions:

■ Latency timer expires

■ Retry

■ Disconnect without data

■ Disconnect with data

■ Target abort

■ Master abort

Latency Timer Expires

The PCI specification requires that the master device end the transaction

as soon as possible after the latency timer expires and the gntn signal is

deasserted. The pci_b function adheres to this rule; it ends the transaction

when the latency timer expires and gntn is no longer asserted. In that

case, pci_b asserts l m_tsr[3] (tsr_lat_exp) until the beginning of the

next master transaction.

Table 29. Master Burst Memory Write Transaction Events

Clock
Cycle

Event

7 The local side asserts lm_busyn during clock 7. This action indicates to the pci_b function that the
local side is unable to transfer data in clock 8.

8 The pci_b function deasserts l m_ackn during clock 8 to inform the local side that it will not transfer
data on the rising edge of clock 9.

9 The pci_b function deasserts irdyn during clock 9 because it does not have valid data to transfer
to the PCI target.

11 The PCI target asserts a wait state during clock 11.

12 The pci_b function deasserts lm_ackn during clock 12 to inform the local side that it is unable to
receive data.

14 The local side asserts lm_lastn during clock 14 at the same time that DATA6 is transferred from the
local side to the pci_b function.

15 The pci_b function signals the last data phase in clock 15.

16 The last data phase ends when the pci_b function transfers DATA6 on the rising edge of clock 16.
Altera Corporation 97

Specifi cations
Retry

The target issues a retry by asserting stopn and devseln during the first

data phase. When the pci_b function detects a retry condition (see

“Retry” on page 84 for details), it ends the cycle and asserts lm_tsr[4]

until the beginning of the next transaction. This process informs the local-

side device that it has ended the transaction because the target issued a

retry.

1 The PCI specification requires that the master repeat the same

transaction with the same address at a later time. It is the

responsibility of the local-side application to ensure that this

requirement is met.

Disconnect Without Data

The target device issues a disconnect without data if it is unable to transfer

additional data during the transaction. The signal pattern for this

termination is described in “Disconnect” on page 85. When the pci_b

function ends the transaction because of a disconnect without data, it

asserts lm_tsr[5] (tsr_disc_wod) until the beginning of the next

master transaction.

Disconnect With Data

The target device issues a disconnect with data if it is unable to transfer

additional data in the transaction. The signal pattern for this termination

is described in “Disconnect” on page 85. When the pci_b function ends

the transaction because of a disconnect with data, it asserts lm_tsr[6]

(tsr_disc_wd) until the beginning of the next master transaction.

Target Abort

A target device issues this type of termination when a catastrophic failure

occurs in the target. The signal pattern for a target abort is shown in

“Target Abort” on page 86. When the pci_b function ends the transaction

because of a target abort, it asserts the ta rg_a bort_rcvd signal, which is

the same as the PCI status register bit 12. Therefore, the signal remains

asserted until it is reset by the host.
98 Altera Corporation

Specifi cations
Master Abort

The pci_b function terminates the transaction with a master abort when

no target claims the transaction by asserting devseln . Except for special

cycles and configuration transactions, a master abort is considered to be a

catastrophic failure. When a cycle ends in a master abort, the pci_b

function informs the local-side device by asserting the mabort_rcvd

signal, which is the same as the PCI status register bit 13. Therefore, the

signal remains asserted until it is reset by the host.
Altera Corporation 99

Notes:

Examples
Contents

Altera Corporation 101

June 1999

®

Example 1: Unintelligent Local Side ..103

 Master DMA Interface...104

 Master Memory Interface..104

 Target Memory Interface ..104

Example 2: Intelligent Host ...104

 Microprocessor Interface ..105

 Master Memory Interface..105

 Target Memory Interface ..106

Notes:

®

Examples

June 1999, ver. 2
The applications for the PCI bus interface have increased as the demand

for high-performance and high-bandwidth I/O functions has increased.

This section describes two typical designs that implement a PCI interface

using the Altera® pci_b and pcit1 MegaCore™ functions.

Example 1:
Unintelligent
Local Side

The first example shows the pci_b function connecting with an

unintelligent local side. The example also describes the signals that are

used to communicate between the different design blocks. See Figure 1.

Figure 1. Interface Logic to an Unintelligent Local Side

Master DMA
Interface

Master
Memory
Interface

Target
Memory
Interface

lm_reqn
lm_lastn
lm_tsr[7..0]

lm_adi[31..0]

lm_cben[3..0]

lm_dato[31..0]

lm_ackn
lm_busyn

lt_adr[31..0]

lt_dati[31..0]

lt_dato[31..0]

lt_ackn

lt_rdyn

pci_b
Master/Target
Local-Side I/O

m_adr[31..0]

m_data[31..0]

m_wr_ena

m_cs

m_oe

t_adr[31..0]

t_data[31..0]

t_wr_ena

t_cs

t_oe

Master
Memory

Target
Memory

Command/Byte
Enable Select

Address/Data Select

Address

Data
Command

Byte Enable
Altera Corporation 103

Examples
Master DMA Interface

The master DMA interface generates the control signals to initiate a PCI

transaction and monitors the progress of the transaction. The master

DMA interface asserts lm_reqn when the local side requests ownership of

the PCI bus and asserts lm_lastn when the local side requests the pci_b

master function to end the current transaction. The master DMA interface

also drives lm_adi[31..0] and lm_cben[3..0] during the address

phase. The master DMA interface monitors lm_tsr[7..0] to identify the

status of the transaction.

Master Memory Interface

The master memory interface buffers the data transfer between the pci_b

master function and the master memory. The interface monitors lm_ackn

to determine if a local side data transfer is complete and asserts lm_busyn

when the local side is unable to transfer data.

Target Memory Interface

The target memory interface buffers the data transfer between the pci_b

target function and the target memory. The interface asserts lt_rdyn to

indicate valid data during a target read, or to indicate it is ready to accept

data during a target write. It also monitors lt_ackn to acknowledge when

the pci_b target function has driven valid data out during a target write,

or when the pci_b target function is ready to accept data during a target

read.

The Altera pcit1 MegaCore function operates in the same manner as the

pci_b target function.

Example 2:
Intelligent Host

The next example shows the pci_b function connecting with an

intelligent host using a local bus. The example also describes the signals

that communicate between the different design blocks. See Figure 2.
104 Altera Corporation

Examples
Figure 2. Interface Logic to a Local-Side Microprocessor

Microprocessor Interface

The microprocessor interface generates the control signals to initiate a PCI

transaction or a local bus transaction, and monitors the transaction’s

progress. The microprocessor interface also arbitrates ownership of the

local bus and verifies whether the pci_b function is performing a

transaction on the local bus. If the microprocessor interface wants

ownership of the PCI bus, it asserts lm_reqn and sends the request to the

pci_b master function. After the microprocessor interface has been

granted ownership of the PCI bus or the local bus, it generates the control

signals to begin the read/write transactions.

Master Memory Interface

The master memory interface controls the data transfer between the

pci_b master function and the local memory. The master memory

interface monitors lm_ackn to determine whether a local-side data

transfer is complete and asserts lm_busyn when the local side is unable to

transfer data.

Microprocessor
Interface

Master
Memory
Interface

Target
Memory
Interface

lm_reqn
lm_lastn
lm_tsr[7..0]

lm_adi[31..0]

lm_cben[3..0]

lm_dato[31..0]

lm_ackn
lm_busyn

lt_adr[31..0]

lt_dati[31..0]

lt_dato[31..0]

lt_ackn

lt_rdyn

pci_b
Master/Target
Local-Side I/O

m_adr[31..0]

m_data[31..0]

m_wr_ena

m_cs

m_oe

t_adr[31..0]

t_data[31..0]

t_wr_ena

t_cs

t_oe

Local
Bus

adr[31..0]

data[31..0]

wr_ena

cs

oe

Microprocessor

Local
Memory

Command/Byte
Enable Select

Address/Data
Select

Address

Data
Command

Byte Enable
Altera Corporation 105

Examples
Target Memory Interface

The target memory interface controls the data transfer between the pci_b

target function and the local memory. The target memory interface asserts

lt_rdyn to indicate valid data during a target read, or that it is ready to

accept data during a target write. In addition, the interface monitors

lt_ackn to acknowledge that the pci_b target function has driven valid

data out during a target write, or to indicate when the pci_b target

function is ready to accept data during a target read.

The Altera pcit1 MegaCore function operates in a manner similar to the

pci_b target function.
106 Altera Corporation

PCI SIG
Protocol Chec klists

Contents

Altera Corporation 105

June 1999

®

Checklists ...107

 Component Configuration ...107

 Component Configuration Space Summary..108

 Device Control summary..109

 Command Register Summary..109

 Device Status...110

 Status Register Summary..110

 Component Master Checklist...111

 Component Target Checklist..113

PCI SIG Test Scenarios ...114

 Test Scenario: 1.1 PCI Device Speed (as indicated by devsel) Tests...115

 Test Scenario: 1.2 PCI Bus Target Abort Cycles ..116

 Test Scenario: 1.3 PCI Bus Target Retry Cycles ...118

 Test Scenario: 1.4 PCI Bus Single Data Phase Disconnect Cycles ...119

 Test Scenario: 1.5. PCI Bus Multi-Data Phase Target Abort Cycles..120

 Test Scenario: 1.6. PCI Bus Multi-Data Phase Retry Cycles...122

 Test Scenario: 1.7. PCI Bus Multi-Data Phase Disconnect Cycles...123

 Test Scenario: 1.8 Multi-Data Phase & trdyn Cycles...125

 Test Scenario: 1.9 Bus Data Parity Error Single Cycles...127

 Test Scenario: 1.10 Bus Data Parity Error Multi-Data Phase Cycles...128

 Test Scenario: 1.11 Bus Master Timeout ...129

 Test Scenario: 1.13. PCI Bus Master Parking..129

 Test Scenario: 1.14. PCI Bus Master Arbitration..129

 Test Scenario: 2.1. Target Reception of an Interrupt Cycle ..130

 Test Scenario: 2.2. Target Reception of Special Cycle ...130

 Test Scenario: 2.3. Target Detection of Address & Data Parity Error for Special Cycle130

 Test Scenario: 2.4. Target Reception of I/O Cycles with Legal & Illegal Byte Enables130

 Test Scenario: 2.5. Target Ignores Reserved Commands ...131

 Test Scenario: 2.6. Target Receives Configuration Cycles..131

 Test Scenario: 2.7. Target Receives I/O Cycles with Address & Data Parity Errors131

 Test Scenario: 2.8 Target Receives Configuration Cycles with Address & Data

 Parity Errors...127

 Test Scenario: 2.9. Target Receives Memory Cycles ...132

 Test Scenario: 2.10. Target Receives Memory Cycles with Address & Parity Errors.......................132

 Test Scenario: 2.11. Target Receives Fast Back-to-Back Cycles ...132

 Test Scenario: 2.12. Target Performs Exclusive Address Cycles ...133

 Test Scenario: 2.13. Target Receives Cycles with irdy Used for Data Stepping................................133

Notes:

®

PCI SIG
Protocol Chec klists

June 1999, ver. 2
Checklists Tables 1 through 8 list the applicable PCI SIG protocol requirements from

the PCI Compliance Checklist, Revision 2.1. A check mark in the Yes

column indicates that the pci_b or pcit1 function meets the requirement.

Checklists not applicable to the Altera pci_b or pcit1 functions are not

listed, and table entries annotated with N.A. represent non-applicable PCI

SIG requirements.

Table 1. Component Configuration

CO# Requirement pci_b pcit1

Yes No Yes No

 1 Does each PCI resource have a configuration space based on the 256
byte template defined in section 6.1, with a predefined 64-byte header
and a 192-byte device-specific region?

v

 2 Do all functions in the device support the vendor ID, device ID,
command, status, header type, and class code fields in the header?

v v

 3 Is the configuration space available for access at all times? v v
 4 Are writes to reserved registers or read-only bits completed normally

and the data discarded?
v v

 5 Are reads to reserved or unimplemented registers, or bits, completed
normally and a data value of 0 returned?

v v

 6 Is the vendor ID a number allocated by the PCI SIG? v v
 7 Does the header type field have a valid encoding? v v
 8 Do multi-byte transactions access the appropriate registers and are the

registers in “little endian” order?
v v

 9 Are all read-only register values within legal ranges? For example, the
interrupt pin register must only contain values 0-4.

v v

 10 Is the class code in compliance with the definition in appendix D? v v
11 Is the predefined header portion of configuration space accessible as

bytes, words, and DWORDs?
v v

12 Is the device a multi-function device? v v
13 If the device is multi-function, are configuration space accesses to

unimplemented functions ignored?
N.A. N.A.
Altera Corporation 107

PCI SIG Protocol Chec klists
Table 2. Component Configuration Space Summary

Location Name Required/Optional pci_b pcit1

N/A Support N/A Support

00h-01h Vendor ID Required. v v
02h-03h Device ID Required. v v
04h-05h Command Required. v v
06h-07h Status Required. v v
08h Revision ID Required. v v
09h-0Bh Class code Required. v v
0Ch Cache line size Required by master

devices/functions that can
generate Memory Write and
Invalidate.

v v

0Dh Latency timer Required by master
devices/functions that can burst
more than two data phases.

v v

0Eh Header type If the device is multi-functional,
bit 7 must be set to a 1.

v v

0Fh BIST Optional. v v
10h-27h Base address registers One or more required for any

address location.
v v

28h-2Bh Cardbus CIS pointer Optional. v v
2Ch-2Dh Subsystem vendor ID Optional. v v
2Eh-2Fh Subsystem ID Optional. v v
30h-33h Expansion ROM base

address.
Required for devices/functions
that have expansion ROM.

v v

34h Capabilities pointer Optional. v v
35h-3Bh Reserved. v v
3Ch Interrupt line Required by devices/functions

that use an interrupt pin.
v v

3Dh Interrupt pin Required by devices/functions
that use an interrupt pin.

v v

3Eh Min_Gnt Optional. v v
3Fh Max_Lat Optional v v
108 Altera Corporation

PCI SIG Protocol Chec klists
Table 3. Device Control summary

 DC# Required/Optional pci_b pcit1

Yes No Yes No

1 When the command register is loaded with a 0000h, is the
device/function logically disconnected from the PCI bus, with the
exception of configuration accesses? (Devices in boot code path are
exempt).

v v

2 Is the device/function disabled after the assertion of PCI rstn ? (Devices
in boot code are exempt.)

v v

Table 4. Command Register Summary

Bit Name Required/Optional pci_b pcit1

Yes No Yes No

0 I/O space Required if device/function has registers mapped
into I/O space.

v v

1 Memory space Required if device/function responds to memory
space accesses.

v v

2 Bus master Required. v v
3 Special cycles Required for devices/functions that can respond to

special cycles.
v v

4 Memory write
and invalidate

Required for devices/functions that generate
Memory Write and Invalidate cycles.

v v

5 VGA palette
snoop

Required for VGA or graphical devices/functions
that snoop VGA palette.

v v

6 Parity error
response

Required. v v

7 Wait cycle
control

Optional. v v

8 serrn enable Required if device/function has serrn pin. v v
9 Fast back-to-

back enable
Required if master device/function can support fast
back-to-back cycles among different targets.

v v

10-15 Reserved
Altera Corporation 109

PCI SIG Protocol Chec klists
Table 5. Device Status

 DS# Requirement pci_b pcit1

Yes No Yes No

1 Do all implemented read/write bits in the status reset to 0? v v
2 Are read/write bits set to a 1 exclusively by the device/function? v v
3 Are read/write bits reset to a 0 when PCI rstn is asserted? v v
4 Are read/write bits reset to a 0 by writing a 1 to the bit? v v

Table 6. Status Register Summary

Bit Name Required/Optional pci_b pcit1

Yes No Yes No

0-3 Reserved Required.

4 Capabilities list Required for devices/functions that support
the capabilities list.

v v

5 66-MHz capable Required for 66-MHz capable devices. v v
6 UDF supported Optional. v v
7 Fast back-to-back

capable
Optional. v v

8 Data parity detected Required. v v
9-10 devsel timing Required. v v
11 Signaled target abort Required for devices/functions that are

capable of signaling target abort.
v v

12 Received target
abort

Required. v N.A.

13 Received master abort Required. v N.A.

14 Signaled system error Required for devices/functions that are
capable of asserting serrn .

v v

15 Detected parity error Required unless exempted per section 3.7.2. v v
110 Altera Corporation

PCI SIG Protocol Chec klists
Table 7. Component Master Checklist (Part 1 of 2)

MP# Requirement pci_b

Yes No

1 All sustained tri-state signals are driven high for one clock before being tri-stated.
(section 2.1)

v

2 Interface under test (IUT) always asserts all byte enables during each data phase of
a memory write and invalidate cycle. (section 3.1.1)

v

3 IUT always uses linear burst ordering for memory write and invalidate cycles.
(section 3.1.1)

v

4 IUT always drives irdyn when data is valid during a write transaction. (section 3.2.1) v
5 IUT only transfers data when both irdyn and trdyn are asserted on the same rising

clock edge. (section 3.2.1)
v

6 Once the IUT asserts irdyn , it never changes framen until the current data phase
completes. (section 3.2.1)

v

7 Once the IUT asserts irdyn , it never changes irdyn until the current data phase
completes. (section 3.2.1)

v

8 IUT never uses reserved burst ordering (ad[1..0] = “01”). (section 3.2.2) v
9 IUT never uses reserved burst ordering (ad[1..0] = “11”). (section 3.2.2) v

10 IUT always ignores the configuration command unless idsel is asserted and
ad[1..0] is “00”. (section 3.2.2)

v

11 The IUT’s address lines are driven to stable values during every address and data
phase. (section 3.2.4)

v

12 The IUT’s cben[3..0] output buffers remain enabled from the first clock of the data
phase through the end of the transaction. (section 3.3.1)

v

13 The IUT’s cben[3..0] lines contain valid byte enable information during the entire
data phase. (section 3.3.1)

v

14 IUT never deasserts framen unless irdyn is asserted or will be asserted. (section
3.3.3.1)

v

15 IUT never deasserts irdyn until at least one clock after framen is deasserted.
(section 3.3.3.1)

v

16 Once the IUT deasserts framen , it never reasserts framen during the same
transaction. (section 3.3.3.1)

v

17 IUT never terminates with master abort once target has asserted devseln . v
18 IUT never signals master abort earlier than 5 clocks after framen was first sample-

asserted. (section 3.3.3.1)
v

19 IUT always repeats an access exactly as the original when terminated by retry.
(section 3.3.3.2.2)

v

20 IUT never starts cycle unless gntn is asserted. (section 3.4.1) v
21 IUT always tri-states cben[3..0] and ad[31..0] within one clock after gntn

negation when the bus is idle and framen is negated. (section 3.4.3)
v

Altera Corporation 111

PCI SIG Protocol Chec klists
Notes:
(1) The lock function is not supported.

(2) The dual address command is not supported.

22 IUT always drives cben[3..0] and ad[31..0] within eight clocks of gntn
assertion when the bus is idle. (section 3.4.3)

v

23 IUT always asserts irdyn within eight clocks on all data phases. (section 3.5.2) v
24 IUT always begins lock operation with a read transaction. (section 3.6) (1) v
25 IUT always releases LOCK# when access is terminated by target-abort or master-

abort. (section 3.6) (1)
v

26 IUT always deasserts LOCK# for a minimum of one idle cycle between consecutive
lock operations. (section 3.6) (1)

v

27 IUT always uses linear burst ordering for configuration cycles. (section 3.7.4) v
28 IUT always drives par within one clock of cben[3..0] and ad[31..0] being

driven. (section 3.8.1)
v

29 IUT always drives par such that the number of “1”s on ad[31..0] , cben[3..0] ,
and par equals an even number. (section 3.8.1)

v

30 IUT always drives perrn (when enabled) active two clocks after data when a data
parity error is detected. (section 3.8.2.1)

v

31 IUT always drives perr (when enabled) for a minimum of 1 clock for each data phase
that a parity error is detected. (section 3.8.2.1)

v

32 IUT always holds framen asserted for the cycle following DUAL command. (section
3.10.1) (2)

v

33 IUT never generates a dual cycle when the upper 32-bits of the address are zero.
(section 3.10.1) (2)

v

Table 7. Component Master Checklist (Part 2 of 2)

MP# Requirement pci_b

Yes No
112 Altera Corporation

PCI SIG Protocol Chec klists
Table 8. Component Target Checklist (Part 1 of 2)

TP# Requirement pci_b pcit1

Yes No Yes No

1 All sustained tri-state signals are driven high for one clock before being
tri-stated. (section 2.1)

v v

2 IUT never reports perrn until it has claimed the cycle and completed a
data phase. (section 2.2.5)

v v

3 IUT never aliases reserved commands with other commands.
(section 3.1.1)

v v

4 32-bit addressable IUT treats the dual command as reserved.
(section 3.1.1)

v v

5 Once IUT has asserted trdyn , it never changes trdyn until the data
phase completes. (section 3.2.1)

v v

6 Once IUT has asserted trdyn , it never changes devseln until the data
phase completes. (section 3.2.1)

v v

7 Once IUT has asserted trdyn , it never changes stopn until the data
phase completes. (section 3.2.1)

v v

8 Once IUT has asserted stopn , it never changes stopn until the data
phase completes. (section 3.2.1)

v v

9 Once IUT has asserted stopn , it never changes trdyn until the data
phase completes. (section 3.2.1)

v v

10 Once IUT has asserted stopn , it never changes devseln until the data
phase completes. (section 3.2.1)

v v

11 IUT only transfers data when both irdyn and trdyn are asserted on
the same rising clock edge. (section 3.2.1)

v v

12 IUT always asserts trdyn when data is valid on a read cycle.
(section 3.2.1)

v v

13 IUT always signals target-abort when unable to complete the entire I/O
access as defined by the byte enables. (section 3.2.2)

v v

14 IUT never responds to reserved encodings. (section 3.2.2) v v
15 IUT always ignores a configuration command unless idsel is asserted

and ad[31..0] is “00”. (section 3.2.2)
v v

16 IUT always disconnects after the first data phase when reserved burst
mode is detected. (section 3.2.2)

v v

17 The IUT’s ad[31..0] lines are driven to stable values during every
address and data phase. (section 3.2.4)

v v

18 The IUT’s cben[3..0] output buffers remain enabled from the first
clock of the data phase through the end of the transaction.
(section 3.3.1)

v v

19 IUT never asserts trdyn during a turn-around cycle on a read.
(section 3.3.1)

v v
Altera Corporation 113

PCI SIG Protocol Chec klists
PCI SIG Test
Scenarios

Tables 9 through 24 list the applicable PCI SIG test scenarios from the

Compliance Checklist, Revision 2.2. A check mark in the Yes column

indicates that the pci_b or pcit1 function meets the requirement.

Checklist items that are not applicable are indicated with N.A.

1 Refer to the readme files in the \sim\sig directory of each

MegaCore function for the descriptions of the Simulator

Channel Files (.scf) that correspond to the PCI SIG test

scenarios.

20 IUT always deasserts trdyn , stopn , and devseln the clock following
the completion of the last data phase. (section 3.3.3.2)

v v

21 IUT always signals disconnect when a burst crosses the resource
boundary. (section 3.3.3.2)

v v

22 IUT always deasserts stopn the cycle immediately following framen
being deasserted. (section 3.3.3.2.1)

v v

23 Once the IUT has asserted stopn , it never deasserts stopn until
framen is negated. (section 3.3.3.2.1)

v v

24 IUT always deasserts trdyn before signaling target-abort.
(section 3.3.3.2.1)

v v

25 IUT never deasserts stopn and continues the transaction.
(section 3.3.3.2.1)

v v

26 IUT always completes an initial data phase within 16 clocks.
(section 3.5.1.1)

v v

27 IUT always locks a minimum of 16 bytes. (section 3.6) (2) N.A. N.A.

28 IUT always issues devseln before any other response. (section 3.7.1) v v
29 Once IUT has asserted devseln , it never deasserts devseln until the

last data phase has competed except to signal target-abort.
(section 3.7.1)

v v

30 IUT never responds to special cycles. (section 3.7.2) v v
31 IUT always drives par within one clock of cben[3..0] and

ad[31..0] being driven. (section 3.8.1)
v v

32 IUT always drives par such that the number of “1”s on ad[31..0] ,
cben[3..0] , and par equals an even number. (section 3.8.1)

v v

Table 8. Component Target Checklist (Part 2 of 2)

TP# Requirement pci_b pcit1

Yes No Yes No
114 Altera Corporation

PCI SIG Protocol Chec klists
Table 9. Test Scenario: 1.1 PCI Device Speed (as indicated by devsel) Tests

Requirement pci_b

Yes No

1 Data transfer after write to fast memory slave. v
2 Data transfer after read from fast memory slave. v
3 Data transfer after write to medium memory slave. v
4 Data transfer after read from medium memory slave. v
5 Data transfer after write to slow memory slave. v
6 Data transfer after read from slow memory slave. v
7 Data transfer after write to subtractive memory slave. v
8 Data transfer after read from subtractive memory slave. v
9 Master abort bit set after write to slower than subtractive memory slave. v

10 Master abort bit set after read from slower than subtractive memory slave. v
11 Data transfer after write to fast I/O slave. v
12 Data transfer after read from fast I/O slave. v
13 Data transfer after write to medium I/O slave. v
14 Data transfer after read from medium I/O slave. v
15 Data transfer after write to slow I/O slave. v
16 Data transfer after read from slow I/O slave. v
17 Data transfer after write to subtractive I/O slave. v
18 Data transfer after read from subtractive I/O slave. v
19 Master abort bit set after write to slower than subtractive I/O slave. v
20 Master abort bit set after read from slower than subtractive I/O slave. v
21 Data transfer after write to fast configuration slave. v
22 Data transfer after read from fast configuration slave. v
23 Data transfer after write to medium configuration slave. v
24 Data transfer after read from medium configuration slave. v
25 Data transfer after write to slow configuration slave. v
26 Data transfer after read from slow configuration slave. v
27 Data transfer after write to subtractive configuration slave. v
28 Data transfer after read from subtractive configuration slave. v
29 Master abort bit set after write to slower than subtractive configuration slave. v
30 Master abort bit set after read from slower than subtractive configuration slave. v
Altera Corporation 115

PCI SIG Protocol Chec klists
Table 10. Test Scenario: 1.2 PCI Bus Target Abort Cycles (Part 1 of 2)

Requirement pci_b

Yes No

1 Target abort bit set after write to fast memory slave. v
2 IUT does not repeat the write transaction. v
3 IUT’s target abort bit set after read from fast memory slave. v
4 IUT does not repeat the read transaction. v
5 Target abort bit set after write to medium memory slave. v
6 IUT does not repeat the write transaction. v
7 IUT’s target abort bit set after read from medium memory slave. v
8 IUT does not repeat the read transaction. v
9 Target abort bit set after write to slow memory slave. v

10 IUT does not repeat the write transaction. v
11 IUT’s target abort bit set after read from slow memory slave. v
12 IUT does not repeat the read transaction. v
13 Target abort bit set after write to subtractive memory slave. v
14 IUT does not repeat the write transaction. v
15 IUT’s target abort bit set after read from subtractive memory slave. v
16 IUT does not repeat the read transaction. v
17 Target abort bit set after write to fast I/O slave. v
18 IUT does not repeat the write transaction. v
19 IUT’s target abort bit set after read from fast I/O slave. v
20 IUT does not repeat the read transaction. v
21 Target abort bit set after write to medium I/O slave. v
22 IUT does not repeat the write transaction. v
23 IUT’s target abort bit set after read from medium I/O slave. v
24 IUT does not repeat the read transaction. v
25 Target abort bit set after write to slow I/O slave. v
26 IUT does not repeat the write transaction. v
27 IUT’s target abort bit set after read from slow I/O slave. v
28 IUT does not repeat the read transaction. v
29 Target abort bit set after write to subtractive I/O slave. v
30 IUT does not repeat the write transaction. v
31 IUT’s target abort bit set after read from subtractive I/O slave. v
32 IUT does not repeat the read transaction. v
33 Target abort bit set after write to fast configuration slave. v
116 Altera Corporation

PCI SIG Protocol Chec klists
34 IUT does not repeat the write transaction. v
35 IUT’s target abort bit set after read from fast configuration slave. v
36 IUT does not repeat the read transaction. v
37 Target abort bit set after write to medium configuration slave. v
38 IUT does not repeat the write transaction. v
39 IUT’s target abort bit set after read from medium configuration slave. v
40 IUT does not repeat the read transaction. v
41 Target abort bit set after write to slow configuration slave. v
42 IUT does not repeat the write transaction. v
43 IUT’s target abort bit set after read from slow configuration slave. v
44 IUT does not repeat the read transaction. v
45 Target abort bit set after write to subtractive configuration slave. v
46 IUT does not repeat the write transaction. v
47 IUT’s target abort bit set after read from subtractive configuration slave. v
48 IUT does not repeat the read transaction. v

Table 10. Test Scenario: 1.2 PCI Bus Target Abort Cycles (Part 2 of 2)

Requirement pci_b

Yes No
Altera Corporation 117

PCI SIG Protocol Chec klists
Table 11. Test Scenario: 1.3 PCI Bus Target Retry Cycles

Requirement pci_b

Yes No

1 Data transfer after write to fast memory slave. v
2 Data transfer after read from fast memory slave. v
3 Data transfer after write to medium memory slave. v
4 Data transfer after read from medium memory slave. v
5 Data transfer after write to slow memory slave. v
6 Data transfer after read from slow memory slave. v
7 Data transfer after write to subtractive memory slave. v
8 Data transfer after read from subtractive memory slave. v
9 Data transfer after write to fast I/O slave. v

10 Data transfer after read from fast I/O slave. v
11 Data transfer after write to medium I/O slave. v
12 Data transfer after read from medium I/O slave. v
13 Data transfer after write to slow I/O slave. v
14 Data transfer after read from slow I/O slave. v
15 Data transfer after write to subtractive I/O slave. v
16 Data transfer after read from subtractive I/O slave. v
17 Data transfer after write to fast configuration slave. v
18 Data transfer after read from fast configuration slave. v
19 Data transfer after write to medium configuration slave. v
20 Data transfer after read from medium configuration slave. v
21 Data transfer after write to slow configuration slave. v
22 Data transfer after read from slow configuration slave. v
23 Data transfer after write to subtractive configuration slave. v
24 Data transfer after read from subtractive configuration slave. v
118 Altera Corporation

PCI SIG Protocol Chec klists
Table 12. Test Scenario: 1.4 PCI Bus Single Data Phase Disconnect Cycles

Requirement pci_b

Yes No

1 Data transfer after write to fast memory slave. v
2 Data transfer after read from fast memory slave. v
3 Data transfer after write to medium memory slave. v
4 Data transfer after read from medium memory slave. v
5 Data transfer after write to slow memory slave. v
6 Data transfer after read from slow memory slave. v
7 Data transfer after write to subtractive memory slave. v
8 Data transfer after read from subtractive memory slave. v
9 Data transfer after write to fast I/O slave. v

10 Data transfer after read from fast I/O slave. v
11 Data transfer after write to medium I/O slave. v
12 Data transfer after read from medium I/O slave. v
13 Data transfer after write to slow I/O slave. v
14 Data transfer after read from slow I/O slave. v
15 Data transfer after write to subtractive I/O slave. v
16 Data transfer after read from subtractive I/O slave. v
17 Data transfer after write to fast configuration slave. v
18 Data transfer after read from fast configuration slave. v
19 Data transfer after write to medium configuration slave. v
20 Data transfer after read from medium configuration slave. v
21 Data transfer after write to slow configuration slave. v
22 Data transfer after read from slow configuration slave. v
23 Data transfer after write to subtractive configuration slave. v
24 Data transfer after read from subtractive configuration slave. v
Altera Corporation 119

PCI SIG Protocol Chec klists
Table 13. Test Scenario: 1.5. PCI Bus Multi-Data Phase Target Abort Cycles (Part 1 of 3)

Requirement pci_b

Yes No

1 Target abort bit set after write to fast memory slave. v
2 IUT does not repeat the write transaction. v
3 IUT’s target abort bit set after read from fast memory slave. v
4 IUT does not repeat the read transaction. v
5 Target abort bit set after write to medium memory slave. v
6 IUT does not repeat the write transaction. v
7 IUT’s target abort bit set after read from medium memory slave. v
8 IUT does not repeat the read transaction. v
9 Target abort bit set after write to slow memory slave. v

10 IUT does not repeat the write transaction. v
11 IUT’s target abort bit set after read from slow memory slave. v
12 IUT does not repeat the read transaction. v
13 Target abort bit set after write to subtractive memory slave. v
14 IUT does not repeat the write transaction. v
15 IUT’s target abort bit set after read from subtractive memory slave. v
16 IUT does not repeat the read transaction. v
17 Target abort bit set after write to fast memory slave. (2) v
18 IUT does not repeat the write transaction. v
19 IUT’s target abort bit set after read from fast memory slave. (2) v
20 IUT does not repeat the read transaction. (2) v
21 Target abort bit set after write to medium memory slave. (2) v
22 IUT does not repeat the write transaction. (2) v
23 IUT’s target abort bit set after read from medium memory slave. (2) v
24 IUT does not repeat the read transaction. (2) v
25 Target abort bit set after write to slow memory slave. (2) v
26 IUT does not repeat the write transaction. (2) v
27 IUT’s target abort bit set after read from slow memory slave. (2) v
28 IUT does not repeat the read transaction. (2) v
29 Target abort bit set after write to subtractive memory slave. (2) v
30 IUT does not repeat the write transaction. (2) v
31 IUT’s target abort bit set after read from subtractive memory slave. (2) v
32 IUT does not repeat the read transaction. (2) v
33 Target abort bit set after write to fast configuration slave. v
120 Altera Corporation

PCI SIG Protocol Chec klists
34 IUT does not repeat the write transaction. v
35 IUT’s target abort bit set after read from fast configuration slave. v
36 IUT does not repeat the read transaction. v
37 Target abort bit set after write to medium configuration slave. v
38 IUT does not repeat the write transaction. v
39 IUT’s target abort bit set after read from medium configuration slave. v
40 IUT does not repeat the read transaction. v
41 Target abort bit set after write to slow configuration slave. v
42 IUT does not repeat the write transaction. v
43 IUT’s target abort bit set after read from slow configuration slave. v
44 IUT does not repeat the read transaction. v
45 Target abort bit set after write to subtractive configuration slave. v
46 IUT does not repeat the write transaction. v
47 IUT’s target abort bit set after read from subtractive configuration slave. v
48 IUT does not repeat the read transaction. v
49 IUT’s target abort bit set after read from fast memory slave. v
50 IUT does not repeat the read transaction. v
51 IUT’s target abort bit set after read from medium memory slave. v
52 IUT does not repeat the read transaction. v
53 IUT’s target abort bit set after read from slow memory slave. v
54 IUT does not repeat the read transaction. v
55 IUT’s target abort bit set after read from subtractive memory slave. v
56 IUT does not repeat the read transaction. v
57 IUT’s target abort bit set after read from fast memory slave. v
58 IUT does not repeat the read transaction. v
59 IUT’s target abort bit set after read from medium memory slave. v
60 IUT does not repeat the read transaction. v
61 IUT’s target abort bit set after read from slow memory slave. v
62 IUT does not repeat the read transaction. v
63 IUT’s target abort bit set after read from subtractive memory slave. v
64 IUT does not repeat the read transaction. v
65 Target abort bit set after write to fast memory slave. v
66 IUT does not repeat the write transaction. v

Table 13. Test Scenario: 1.5. PCI Bus Multi-Data Phase Target Abort Cycles (Part 2 of 3)

Requirement pci_b

Yes No
Altera Corporation 121

PCI SIG Protocol Chec klists
67 Target abort bit set after write to medium memory slave. v
68 IUT does not repeat the write transaction. v
69 Target abort bit set after write to slow memory slave. v
70 IUT does not repeat the write transaction. v
71 IUT’s target abort bit set after read from slow memory slave. v
72 IUT does not repeat the write transaction. v

Table 13. Test Scenario: 1.5. PCI Bus Multi-Data Phase Target Abort Cycles (Part 3 of 3)

Requirement pci_b

Yes No

Table 14. Test Scenario: 1.6. PCI Bus Multi-Data Phase Retry Cycles (Part 1 of 2)

Requirement pci_b

Yes No

1 Data transfer after write to fast memory slave. v
2 Data transfer after read from fast memory slave. v
3 Data transfer after write to medium memory slave. v
4 Data transfer after read from medium memory slave. v
5 Data transfer after write to slow memory slave. v
6 Data transfer after read from slow memory slave. v
7 Data transfer after write to subtractive memory slave. v
8 Data transfer after read from subtractive memory slave. v
9 Data transfer after write to fast I/O slave. v

10 Data transfer after read from fast I/O slave. v
11 Data transfer after write to medium I/O slave. v
12 Data transfer after read from medium I/O slave. v
13 Data transfer after write to slow I/O slave. v
14 Data transfer after read from slow I/O slave. v
15 Data transfer after write to subtractive I/O slave. v
16 Data transfer after read from subtractive I/O slave. v
17 Data transfer after write to fast configuration slave. v
18 Data transfer after read from fast configuration slave. v
19 Data transfer after write to medium configuration slave. v
20 Data transfer after read from medium configuration slave. v
21 Data transfer after write to slow configuration slave. v
122 Altera Corporation

PCI SIG Protocol Chec klists
22 Data transfer after read from slow configuration slave. v
23 Data transfer after write to subtractive configuration slave. v
24 Data transfer after read from subtractive configuration slave. v
25 Data transfer after memory read multiple from fast slave. v
26 Data transfer after memory read multiple from medium slave. v
27 Data transfer after memory read multiple from slow slave. v
28 Data transfer after memory read multiple from subtractive slave. v
29 Data transfer after memory read line from fast slave. v
30 Data transfer after memory read line from medium slave. v
31 Data transfer after memory read line from slow slave. v
32 Data transfer after memory read line from subtractive slave. v
33 Data transfer after memory write and invalidate to fast slave. v
34 Data transfer after memory write and invalidate to medium slave. v
35 Data transfer after memory write and invalidate to slow slave. v
36 Data transfer after memory write and invalidate to subtractive slave. v

Table 14. Test Scenario: 1.6. PCI Bus Multi-Data Phase Retry Cycles (Part 2 of 2)

Requirement pci_b

Yes No

Table 15. Test Scenario: 1.7. PCI Bus Multi-Data Phase Disconnect Cycles (Part 1 of 2)

Requirement pci_b

Yes No

1 Data transfer after write to fast memory slave. v
2 Data transfer after read from fast memory slave. v
3 Data transfer after write to medium memory slave. v
4 Data transfer after read from medium memory slave. v
5 Data transfer after write to slow memory slave. v
6 Data transfer after read from slow memory slave. v
7 Data transfer after write to subtractive memory slave. v
8 Data transfer after read from subtractive memory slave. v
9 Data transfer after write to fast I/O slave. v

10 Data transfer after read from fast I/O slave. v

11 Data transfer after write to medium I/O slave. v

12 Data transfer after read from medium I/O slave. v
Altera Corporation 123

PCI SIG Protocol Chec klists
13 Data transfer after write to slow I/O slave. v

14 Data transfer after read from slow I/O slave. v

15 Data transfer after write to subtractive I/O slave. v

16 Data transfer after read from subtractive I/O slave. v

17 Data transfer after write to fast configuration slave. v

18 Data transfer after read from fast configuration slave. v

19 Data transfer after write to medium configuration slave. v

20 Data transfer after read from medium configuration slave. v

21 Data transfer after write to slow configuration slave. v

22 Data transfer after read from slow configuration slave. v

23 Data transfer after write to subtractive configuration slave. v

24 Data transfer after read from subtractive configuration slave. v

25 Data transfer after memory read multiple from fast slave. v
26 Data transfer after memory read multiple from medium slave. v
27 Data transfer after memory read multiple from slow slave. v
28 Data transfer after memory read multiple from subtractive slave. v
29 Data transfer after memory read line from fast slave. v
30 Data transfer after memory read line from medium slave. v
31 Data transfer after memory read line from slow slave. v
32 Data transfer after memory read line from subtractive slave. v
33 Data transfer after memory write and invalidate to fast slave. v
34 Data transfer after memory write and invalidate to medium slave. v
35 Data transfer after memory write and invalidate to slow slave. v
36 Data transfer after memory write and invalidate to subtractive slave. v

Table 15. Test Scenario: 1.7. PCI Bus Multi-Data Phase Disconnect Cycles (Part 2 of 2)

Requirement pci_b

Yes No
124 Altera Corporation

PCI SIG Protocol Chec klists
Table 16. Test Scenario: 1.8 Multi-Data Phase & trdyn Cycles (Part 1 of 2)

Requirement pci_b

Yes No

1 Verify that data is written to the primary target when trdyn is released after the
second rising clock edge and asserted on the third rising clock edge after framen .

v

2 Verify that data is read from the primary target when trdyn is released after the
second rising clock edge and asserted on the third rising clock edge after framen .

v

3 Verify that data is written to the primary target when trdyn is released after the third
rising clock edge and asserted on the fourth rising clock edge after framen .

v

4 Verify that data is read from the primary target when trdyn is released after the third
rising clock edge and asserted on the fourth rising clock edge after framen .

v

5 Verify that data is written to the primary target when trdyn is released after the third
rising clock edge and asserted on the fifth rising clock edge after framen .

v

6 Verify that data is read from the primary target when trdyn is released after the third
rising clock edge and asserted on the fifth rising clock edge after framen .

v

7 Verify that data is written to the primary target when trdyn is released after the fourth
rising clock edge and asserted on the sixth rising clock edge after framen .

v

8 Verify that data is read from the primary target when trdyn is released after the fourth
rising clock edge and asserted on the sixth rising clock edge after framen .

v

9 Verify that data is written to the primary target when trdyn is alternately released for
one clock cycle and asserted for one clock cycle after framen .

v

10 Verify that data is read from the primary target when trdyn is alternately released for
one clock cycle and asserted for one clock cycle after framen .

v

11 Verify that data is written to the primary target when trdyn is alternately released for
two clock cycles and asserted for two clock cycles after framen .

v

12 Verify that data is read from the primary target when trdyn is alternately released for
two clock cycles and asserted for two clock cycles after framen .

v

 25 Verify that data is read from the primary target when trdyn is released after the
second rising clock edge and asserted on the third rising clock edge after framen .

v

26 Verify that data is read from the primary target when trdyn released after the third
rising clock edge and asserted on the fourth rising clock edge after framen .

v

27 Verify that data is read from the primary target when trdyn released after the third
rising clock edge and asserted on the fifth rising clock edge after framen .

v

28 Verify that data is read from the primary target when trdyn released after the fourth
rising clock edge and asserted on the sixth rising clock edge after framen .

v

 29 Verify that data is read from the primary target when trdyn is alternately released for
one clock cycle and asserted for one clock cycle after framen .

v

 30 Verify that data is read from the primary target when trdyn is alternately released for
two clock cycles and asserted for two clock cycles after framen .

v

 31 Verify that data is read from the primary target when trdyn is released after the
second rising clock edge and asserted on the third rising clock edge after framen .

v

Altera Corporation 125

PCI SIG Protocol Chec klists
32 Verify that data is read from the primary target when trdyn released after the third
rising clock edge and asserted on the fourth rising clock edge after framen .

v

 33 Verify that data is read from the primary target when trdyn is released after the third
rising clock edge and asserted on the fifth rising clock edge after framen .

v

34 Verify that data is read from the primary target when trdyn is released after the fourth
rising clock edge and asserted on the sixth rising clock edge after framen .

v

35 Verify that data is read from the primary target when trdyn is alternately released for
one clock cycle and asserted for one clock cycle after framen .

v

36 Verify that data is read from the primary target when trdyn is alternately released for
two clock cycles and asserted for two clock cycles after framen .

v

37 Verify that data is written to the primary target when trdyn is released after the
second rising clock edge and asserted on the third rising clock edge after framen .

v

38 Verify that data is written to the primary target when trdyn is released after the third
rising clock edge and asserted on the fourth rising clock edge after framen .

v

39 Verify that data is written to the primary target when trdyn is released after the third
rising clock edge and asserted on the fifth rising clock edge after framen .

v

 40 Verify that data is written to the primary target when trdyn is released after the fourth
rising clock edge and asserted on the sixth rising clock edge after framen .

v

41 Verify that data is written to the primary target when trdyn is alternately released for
one clock cycle and asserted for one clock cycle after framen .

v

42 Verify that data is written to the primary target when trdyn is alternately released for
two clock cycles and asserted for two clock cycles after framen .

v

Table 16. Test Scenario: 1.8 Multi-Data Phase & trdyn Cycles (Part 2 of 2)

Requirement pci_b

Yes No
126 Altera Corporation

PCI SIG Protocol Chec klists
Table 17. Test Scenario: 1.9 Bus Data Parity Error Single Cycles

Requirement pci_b

Yes No

1 Verify that the IUT sets the parity error detected bit when the primary target asserts
perrn on an IUT memory write.

v

2 Verify that perrn is active two clocks after the first data phase (which had odd parity)
on an IUT memory read.

v

3 Verify that the IUT sets the parity error detected bit when odd parity is detected on an
IUT memory read.

v

4 Verify that the IUT sets the parity error detected bit when the primary target asserts
perrn on an IUT I/O write.

v

5 Verify that perrn is active two clocks after the first data phase (that had odd parity)
on an IUT I/O read.

v

6 Verify that the IUT sets the parity error detected bit when odd parity is detected on an
IUT I/O read.

v

7 Verify that the IUT sets the parity error detected bit when the primary target asserts
perrn on an IUT configuration write.

v

8 Verify that perrn is active two clocks after the first data phase (that had odd parity)
on an IUT configuration read.

v

9 Verify that the IUT sets the parity error detected bit when odd parity is detected on an
IUT configuration read.

v

Altera Corporation 127

PCI SIG Protocol Chec klists
Table 18. Test Scenario: 1.10 Bus Data Parity Error Multi-Data Phase Cycles

Requirement pci_b

Yes No

1 Verify that the IUT sets the parity error detected bit when the primary target asserts
perrn on an IUT multi-data phase memory write.

v

2 Verify that perrn is active two clocks after the first data phase (that had odd parity)
on an IUT multi-data phase memory read.

v

3 Verify that the IUT sets the parity error detected bit when odd. v
4 Verify that the IUT sets the parity error detected bit when the primary target asserts

perrn on an IUT dual-address multi-data phase write. (2)
v

5 Verify that perrn is active two clocks after the first data phase (that had odd parity)
on an IUT dual-address multi-data phase read. (2)

v

6 Verify that the IUT sets the parity error detected bit when odd parity is detected on an
IUT dual-address multi-data phase read. (2)

v

7 Verify that the IUT sets the parity error detected bit when the primary target asserts
perrn on an IUT configuration multi-data phase write.

v

8 Verify that perrn is active two clocks after the first data phase (that had odd parity)
on an IUT configuration multi-data phase read.

v

9 Verify that the IUT sets the parity error detected bit when odd parity is detected on an
IUT configuration multi-data phase read.

v

10 Verify that perrn is active two clocks after the first data phase (that had odd parity)
on an IUT memory read multiple data phase.

v

11 Verify that the IUT sets the parity error detected bit when odd parity is detected on an
IUT memory read multiple data phase.

v

12 Verify that perrn is active two clocks after the first data phase (that had odd parity)
on an IUT memory read line data phase.

v

13 Verify that the IUT sets the parity error detected bit when odd parity is detected on an
IUT memory read line data phase.

v

14 Verify that the IUT sets the parity error detected bit when the primary target asserts
perrn on an IUT memory write and invalidate data phase.

v

128 Altera Corporation

PCI SIG Protocol Chec klists
Table 19. Test Scenario: 1.11 Bus Master Timeout

Requirement pci_b

Yes No

1 Memory write transaction terminates before the fourth data phase is completed. v
2 Memory read transaction terminates before the fourth data phase is completed. v
3 Configuration write transaction terminates before the fourth data phase is completed. v
4 Configuration read transaction terminates before the fourth data phase is completed. v
5 Memory read multiple transaction terminates before the fourth data phase. v
6 Memory read line transaction terminates before the fourth data phase. v
7 Dual address write transaction terminates before the fourth data phase is

completed. (2)
v

8 Dual address read transaction terminates before the fourth data phase is
completed. (2)

v

9 Memory write and invalidate terminates on line boundary. v

Table 20. Test Scenario: 1.13. PCI Bus Master Parking

Requirement pci_b

Yes No

1 IUT drives ad[31.. 0] to stable values within eight PCI clocks of gntn . v
2 IUT drives cben[3..0] to stable values within eight PCI clocks of gntn . v
3 IUT drives par one clock cycle after IUT drives ad[31..0] . v
4 IUT tri-states ad[31..0] , cben[3..0] , and par when gntn is released. v

Table 21. Test Scenario: 1.14. PCI Bus Master Arbitration

Requirement pci_b

Yes No

1 IUT completes transaction when deasserting gntn coincides with asserting framen . v
Altera Corporation 129

PCI SIG Protocol Chec klists
Table 22. Test Scenario: 2.1. Target Reception of an Interrupt Cycle

Requirement pci_b pcit1

Yes No Yes No

1 IUT generates interrupts when programmed. v v

2 IUT clears interrupts when serviced (may include driver-specific actions). v v

Table 23. Test Scenario: 2.2. Target Reception of Special Cycle

Requirement pci_b pcit1

Yes No Yes No

1 The devsel signal is not asserted by the IUT after a special cycle. v v

2 IUT receives encoded special cycle. v v

Table 24. Test Scenario: 2.3. Target Detection of Address & Data Parity Error for Special Cycle

Requirement pci_b pcit1

Yes No Yes No

1 IUT reports address parity errors via serr . v v

2 IUT reports data parity errors via serr . v v
3 IUT keeps serr active for at least one clock cycle. v v

Table 25. Test Scenario: 2.4. Target Reception of I/O Cycles with Legal & Illegal Byte Enables

Requirement pci_b pcit1

Yes No Yes No

1 IUT asserts trdy following second rising edge from framen on all legal
BE'' .

v v

2 IUT terminates with target abort for each illegal BE'' . v v
3 IUT asserts stopn . v v
4 IUT de-asserts stopn after framen deassertion. v v
130 Altera Corporation

PCI SIG Protocol Chec klists
Table 26. Test Scenario: 2.5. Target Ignores Reserved Commands

Requirement pci_b pcit1

Yes No Yes No

1 IUT does not respond to reserved commands. v v
2 Initiator detects master abort for each transfer. v v
3 IUT does not respond to 64-bit cycle (dual address). v v

Table 27. Test Scenario: 2.6. Target Receives Configuration Cycles

Requirement pci_b pcit1

Yes No Yes No

1 IUT responds to all configuration cycles type 0 read/write cycles
appropriately.

v v

2 IUT does not respond to configuration cycles type 0 with idsel inactive. v v
3 IUT responds to all configuration cycles type 1 read/write cycles

appropriately.
v v

4 IUT responds to all configuration cycles type 0 read/write cycles
appropriately.

v v

5 IUT does not respond (master abort) on illegal configuration cycle types. v v

Table 28. Test Scenario: 2.7. Target Receives I/O Cycles with Address & Data Parity Errors

Requirement pci_b pcit1

Yes No Yes No

1 IUT reports address parity errors via serr during I/O read/write cycles. v v
2 IUT reports data parity errors via perr during I/O write cycles. v v

Table 29. Test Scenario: 2.8. Target Receives Configuration Cycles with Address & Data Parity Errors

Requirement pci_b pcit1

Yes No Yes No

1 IUT reports address parity error via serr during configuration read/write
cycles.

v v

2 IUT reports data parity error via perr during configuration write cycles. v v
Altera Corporation 131

PCI SIG Protocol Chec klists
Table 30. Test Scenario: 2.9. Target Receives Memory Cycles

Requirement pci_b pcit1

Yes No Yes No

1 IUT completes single memory read and write cycles appropriately. v v
2 IUT completes memory read line cycles appropriately. v v
3 IUT completes memory read multiple cycles appropriately. v v
4 IUT completes memory write and invalidate cycles appropriately. v v
5 IUT completes one cycle and disconnects on reserved memory

operations.
v v

6 IUT disconnects on burst transactions that cross its address boundary. v v

Table 31. Test Scenario: 2.10. Target Receives Memory Cycles with Address & Parity Errors

Requirement pci_b pcit1

Yes No Yes No

1 IUT reports address parity error via serr during all memory read and
write cycles.

v v

2 IUT reports data parity error via perr during all memory write cycles. v v

Table 32. Test Scenario: 2.11. Target Receives Fast Back-to-Back Cycles

Requirement pci_b pcit1

Yes No Yes No

1 IUT responds to back-to-back memory writes appropriately. v v
2 IUT responds to memory write followed by memory read appropriately. v v
3 IUT responds to back-to-back memory writes with a second write

selecting the IUT.
v v

4 IUT responds to a memory write followed by a memory read with a read
selecting the IUT.

v v
132 Altera Corporation

PCI SIG Protocol Chec klists
Notes to tables:
(1) The lock function is not supported.

(2) The dual address command is not supported.

Table 33. Test Scenario: 2.12. Target Performs Exclusive Address Cycles

Requirement pci_b pcit1

Yes No Yes No

1 IUT responds to exclusive access by initiator and accepts lock. (1) v v
2 IUT responds with a retry when second initiator attempts an access. (1) v v
3 IUT responds to access releasing lock by initiator. (1) v v
4 IUT responds to access by second initiator. (1) v v

Table 34. Test Scenario: 2.13. Target Receives Cycles with irdy Used for Data Stepping

Requirement pci_b pcit1

Yes No Yes No

1 IUT responds appropriately with a wait state inserted on phase 1 of 3
data phases.

v v

2 IUT responds appropriately with a wait state inserted on phase 2 of 3
data phases.

v v

3 IUT responds appropriately with a wait state inserted on phase 3 of 3
data phases.

v v

4 IUT responds appropriately with a wait state inserted on all of 3 data
phases.

v v
Altera Corporation 133

Notes:

Index

June 1999

®

B
base address registers 40, 59

bus commands 51

bus signals 30

C
cache line size register 58

command register 55

compile 16

compliance summary 29

configuration registers 26, 27, 52, 54

D
design flow 4, 6, 14

device configuration 18

directory structure 13

downloading 11

E
EDA tools 6, 19

F
FLEX 10K devices 5, 26

FLEX 6000 devices 5, 26

functional modeling 20

H
hardware testing 25, 29

I
installing 12

interrupt line register 62

interrupt pin register 63

J
JTAG signals 33

L
latency timer register 59

local side

signals 36

unintelligent example 95
Altera Corporation
M
make_acf utility 17

master

abnormal termination 89

arbitration, test scenario 124

checklist 105

DMA interface example 96

features 25

interface signals 31

JTAG signals 33

local-side signals 36

memory interface example 96, 97

operation 80

parking test scenario 124

read transactions 81

sequence 47

signals 46

status register 38

timeout test scenario 124

write transactions 85

MAX+PLUS II software 5

MegaCore functions 3

directory structure 13

installation 12

overview 3, 25

microprocessor interface 97

O
OpenCore feature 4, 11

P
parameters 39

BAR0 - BAR5 40

CLASS_CODE 40

DEVICE_ID 40

HOST_BRIDGE_ENA 40

INTERNAL_ARBITER 40

MAX_LATENCY 41

MIN_GRANT 41
 129

Index
parameters (continued)

NUMBER_OF_BARS 41

REVISION_ID 41

SUBSYSTEM_ID 41

SUBSYSTEM_VEND_ID 41

TARGET_DEVICE 41

VEND_ID 42

PCI

bus commands 51

bus signals 30

checklists 101

compliant devices 5

configuration registers 52

design entry 15

design flow 4, 14

functional compilation and simulation 16

make_acf utility 17

protocol requirements 101

test scenarios 108

timing compilation and analysis 18

verification 7

pci_b

block diagram 43

bus commands 51

compliance summary 29

directory structure 13

example design 95, 96

features 25

functional description 42

general description 26

hardware testing 29

installing 12

intelligent host example 96

JTAG signals 33

local-side signals 34, 36

master mode 52

obtaining 11

operation 80

ordering code 26

parameters 39

signals 30

symbol 28

target operation 64

unintelligent local-side example 95

pcit1

block diagram 44

bus commands 51

compliance summary 29

directory structure 13

features 25

functional description 42

general description 26

hardware testing 29

installing 12

JTAG signals 33

local-side signals 34

obtaining 11

ordering code 26

parameters 39

signals 30

symbol 29

target operation 64

post-route simulation 21

programming hardware

Altera Stand-Alone Programmer 18

BitBlaster 19

ByteBlaster 19

ByteBlasterMV 19

R
registers

base address 59

cache line size 58

class code 58

command 55

configuration 52

configuration address map 54

device ID 55

header 59

interrupt line 62

interrupt pin 63

latency timer 59

maximum latency 63

minimum grant 63

revision ID 58

status 56

subsystem ID 62

subsystem vendor ID 62

transaction 38

vendor ID 54
130 Altera Corporation

Index
S
signals

configuration space output 38

control 46

target 45

simulate 16

status register 56

T

target

abort, test scenario 110, 114

checklist 107

disconnect, multi-data phase test scenario

117

disconnect, single data phase test scenarios

113

features 25

interface signals 31

JTAG signals 33

local-side signals 34

memory interface 98

memory interface example 96

operation 64

read transactions 65

retry, multi-data phase test scenario 116

retry, target test scenarios 112

sequence 45

signals 45

transaction terminations 76

write transactions 70

timing analysis 18

transactions

abnormal termination, master 89

abort, master 91

abort, target 78, 90

burst memory read, master 84

burst memory write, master 88

burst read, target 68

burst write, target 74

configuration read, target 70

configuration write, target 75

disconnect with data, master 90

disconnect without data, master 90

disconnect, target 77

latency timer expires, master 89

master write 85

retry, master 90

retry, target 76

single-cycle read, master 81

single-cycle target read 65

single-cycle write, master 85

single-cycle write, target 71

target read 65

target termination 76

target write 70
Altera Corporation 131

	Contents
	pci_b & pcit1 MegaCore Function User Guide
	About this User Guide
	User Guide Contents
	How to Contact Altera

	Typographic Conventions

	Contents
	Introduction
	PCI MegaCore Functions
	OpenCore Feature
	Altera Devices
	Software Tools
	Verification
	References

	Getting Started
	Before You Begin
	Obtaining MegaCore Functions
	Installing the MegaCore Files
	Windows 3.x & Windows NT 3.51
	Windows 95/98 & Windows NT 4.0
	UNIX

	MegaCore Directory Structure

	Walk-Through Overview
	Design Entry
	Functional Compilation/Simulation
	Run the make_acf Utility
	Timing Compilation & Analysis
	Configuring a Device

	Using Third- Party EDA Tools
	VHDL & Verilog HDL Functional Models
	Synthesis Compilation & Post-Routing Simulation

	MegaCore Overview
	Features...
	General Description
	Compliance Summary
	PCI Bus Signals
	Target Local-Side Signals
	Master Local-Side Signals
	Configuration Space Output Signals

	Parameters
	Functional Description
	Target Device Signals & Signal Assertion
	Master Device Signals & Signal Assertion

	Specifications
	PCI Bus Commands
	Configuration Registers
	Vendor ID Register
	Device ID Register
	Command Register
	Status Register
	Revision ID Register
	Class Code Register
	Cache Line Size Register
	Latency Timer Register
	Header Type Register
	Base Address Registers
	CardBus CIS Pointer Register
	Subsystem Vendor ID Register
	Subsystem ID Register
	Expansion ROM BAR
	Capabilities Pointer
	Interrupt Line Register
	Interrupt Pin Register
	Minimum Grant Register
	Maximum Latency Register

	Target Mode Operation
	Target Read Transactions
	Single-Cycle Read Transaction
	Burst Read Transaction
	Configuration Read Transaction

	Target Write Transactions
	Single-Cycle Write Transaction
	Burst Write Transaction
	Configuration Write Transaction

	Target Transaction Terminations
	Retry
	Disconnect
	Target Abort

	Master Mode Operation
	Master Read Transactions
	Single-Cycle Read Transaction
	Burst Memory Read Transaction

	Master Write Transactions
	Single-Cycle Write Transaction
	Burst Memory Write Transaction

	Abnormal Master Transaction Termination
	Latency Timer Expires
	Retry
	Disconnect Without Data
	Disconnect With Data
	Target Abort
	Master Abort

	Examples
	Example 1: Unintelligent Local Side
	Master DMA Interface
	Master Memory Interface
	Target Memory Interface

	Example 2: Intelligent Host
	Microprocessor Interface
	Master Memory Interface
	Target Memory Interface

	PCI SIG Checklists
	Checklists
	PCI SIG Test Scenarios

	Revision History

