

®

White Paper

Using APEX 20KE CAM with the Quartus

. If the
ttern is

ation

th

tion

Software Design Tool
Introduction

Content-addressable memory (CAM) is a form of memory that can be used to accelerate search applications
input pattern that is given to CAM matches one of the stored patterns, the address of the matching stored pa
presented at its outputs. Altera® APEXTM 20KE family of devices supports ternary CAM, meaning that the stored
patterns can also contain “don’t care” bits along with binary 1 and 0 bits. CAM is implemented in the QuartusTM
software (version 1999.10 and above) through the altcam megafunction.

This white paper describes how to use the Quartus software tool to implement CAM in your design. For inform
on how CAM can be used to optimize your design, see AN 119 (Implementing High-Speed Search Applications wi
APEX CAM).

The altcam Megafunction

Figure 1 shows the symbol for the altcam Megafunction. The set of parameters used to configure this megafunc
is listed in Table 3.

Figure 1. The altcam Megafunction
February, 2000 1

M-WP-CAM-01.01

Altera Corporation Using APEX 20KE CAM with the Quartus Software Design Tool

Table 1 describes the input pins of the altcam megafunction.

Table 2 describes the output pins of the altcam megafunction.

Table 1. Input Ports of the altcam Megafunction

Por t Name Required Description Notes

pattern[] Yes Input data pattern for searching or writing Input port WIDTH wide.

wrx[] No Pattern “don’t care” bits (indicated with 1s),
for writing only

Input port WIDTH wide.

wrxused No Indicates whether wrx[] should be used. If false, writing takes two clock cycles to
complete; if true, writing takes three clock cycles.
If asserted during a write cycle, the value of the
wrx[] port is used. Otherwise, the value of the
wrx[] port has no effect.

wrdelete No Indicates that the pattern at wraddress[]
should be deleted.

Deleting a pattern takes two clock cycles.
pattern[], wrx[] , and wrxused are ignored
during delete cycles.

wraddress[] No Address for writing Input port WIDTHAD wide.

wren No Write enable Assert wren to start a write or delete operation.
De-assert wren for a read (match) operation.

inclock Yes Clock for most inputs

inclocken No Clock enable for inclock

inaclr No Asynchronous clear for registers that use
inclock

mstart No Multi-match mode only: indicates that a
new CAM read is starting and forces
maddress[] to first match

This port is not available for single-match mode
but required for multiple-match modes. In fast
multiple-match mode, this port is required if the
mnext port is used.

mnext No Multi-match only: advances maddress[]
to next match

This port is not available for single-match mode.

outclock No Clock for mstart , mnext , and outputs Used only if OUTPUT_REG="OUTCLOCK". If
OUTPUT_REG="UNREGISTERED" or
“INCLOCK" this port must remain unconnected.

outclocken No Clock enable for outclock Used only if OUTPUT_REG="OUTCLOCK". If
OUTPUT_REG ="UNREGISTERED" or
"INCLOCK" this port must remain unconnected.

outaclr No Asynchronous clear for registers that use
outclock

Table 2. Output Ports of the altcam Megafunction

Por t Required Description Comments

maddress[] No Encoded address of current match. Output port WIDTHAD wide. One of the output ports
must be used. Altera recommends using either a
combination of the maddress[] and mfound output
ports, or the mbits[] output port.

mbits[] No Address of the found match. Output port with width [NUMWORDS-1..0] . One of the
output ports must be present. Altera recommends using
either a combination of the maddress[] and mfound
output ports, or the mbits[] output port.

mfound No Indicates at least one match. Used with the maddress[] port. One of the output
ports must be present. Altera recommends using either
a combination of the maddress[] and mfound output
ports, or the mbits[] output port.

mcount[] No Total number of matches. Output port WIDTHAD wide. One of the output ports
must be present. Altera recommends using either a
combination of the maddress[] and mfound output
ports, or the mbits[] output port.

rdbusy No Indicates that read input ports must
hold their current value.

One of the output ports must be present.

wrbusy No Indicates that write input ports must
hold their current value.

One of the output ports must be present.
2

Altera Corporation Using APEX 20KE CAM with the Quartus Software Design Tool

d
Table 3 list the parameters that are used to configure the altcam megafunction.

Writing P atterns into CAM

Writing a new pattern in altcam or replacing its stored patterns with new patterns involves the use of the
pattern[] , wrx[] , wrxused , wrdelete , wren , and wraddress[] ports. Patterns without “don’t care” bits
can be written in two clock cycles, and those with “don’t care” bits require three clock cycles. During all write cycles,
wren must be asserted and wraddress[] and pattern[] must remain unchanged.

If the pattern does not contain “don’t care” bits, then asserting pattern[] , wren , and wraddress[] for two
clock cycles is sufficient. “Don’t care” bits can be added by using the wrx[] port. Bits with 0 in wrx[] mark valid
pattern bits, and bits with 1 in wrx[] mark “don’t care” pattern bits. When the wrx[] port is used, the wrx[] ,
wrxused , pattern[] , wren , and wraddress[] must be asserted for three clock cycles.

CAM entries can also be deleted by asserting wrdelete and wren for two clock cycles, during which
wraddress[] should indicate the address containing the data that is to be deleted. The pattern[] , wrx[] , and
wrxused inputs are ignored during delete cycles.

CAM can be initialized using MIF or Intel HEX format files during device configuration. The MIF format supports
“don’t care” and “never match” bits. These extra bits are also supported in the Intel HEX format by using a secon

Table 3. The altcam Megafunction Parameters

Parameter Type Required Description

WIDTH Integer Yes Width of the input pattern and stored patterns.

WIDTHAD Integer Yes Width of wraddress[] port. WIDTHAD should be equal to CEIL
[LOG2(NUMWORDS)].

NUMWORDS Integer Yes Number of words stored in memory. It indicates the width of the mbits[]
port. In general, mbits[] value should be
2^ (WIDTHAD-1) < NUMWORDS <= 2^ WIDTHAD .

LPM_FILE String No Name of the Memory Initialization File (.mif) or Hexadecimal (Intel-format)
File (.hex) containing RAM initialization data (<file name>), or UNUSED. If
omitted, contents default to "never match".

LPM_FILEX String No Name of the second HEX File containing RAM initialization data
(<filename_xu.hex>). If omitted the default is UNUSED. Bits that are 1 in this
file change the meaning of the bits in the first HEX File such that the 0 bits in
the first file become “don't care” bits, and the 1 bits become "never match"
bits in CAM patterns. The 0 bits in this file preserve the normal meaning of
the bits in the first HEX File.

MATCH_MODE String Yes Selects between single-match mode and one of two multiple-match modes.
The values are SINGLE, MULTIPLE, and FAST_MULTIPLE. If omitted, the
default is MULTIPLE.

OUTPUT_REG String No Indicates whether the outputs should be registered. Values are
UNREGISTERED, INCLOCK, and OUTCLOCK. If omitted, the default is
UNREGISTERED.

OUTPUT_ACLR String No Indicates whether the outaclr port should affect the output registers.
Values are ON and OFF. If omitted, the default is ON.

PATTERN_REG String No Indicates whether pattern[] should be registered. Values are
UNREGISTERED and INCLOCK. If omitted, the default is INCLOCK.

PATTERN_ACLR String No Indicates whether the inaclr port should affect the pattern[] registers.
Values are ON and OFF. If omitted, the default is ON.

WRADDRESS_ACLR String No Indicates whether the inaclr port should affect the wraddress[]
registers. Values are ON and OFF. If omitted, the default is ON.

WRX_REG String No Indicates whether the wrx[] and wrxused ports should be registered.
Values are UNREGISTERED, and INCLOCK. If omitted, the default is
INCLOCK.

WRX_ACLR String No Indicates whether the inaclr port affects the wrx[] and wrxused
registers. Values are ON and OFF. If omitted, the default is ON.

WRCONTROL_ACLR String No Indicates whether the inaclr port affects the wren register. Values are ON
and OFF. If omitted, the default is ON.
3

Altera Corporation Using APEX 20KE CAM with the Quartus Software Design Tool

ss
ogic
HEX file. One file is used to initialize the data (0 and 1), and a second file is used to set the “don’t care” and “never
match” bits. If the optional second initialization file is used, it must be named <file_xu>.hex if the first initialization
file is named <file>.hex. The bits that are to be matched exactly are defined by the values 0 or 1 in <file>.hex and 0 in
<file_xu>.hex. All “don’ t care” bits that are matched in the CAM must have a value of 0 in <file>.hex and a value of 1
in <file_xu>.hex. If a word in <file>.hex contains a 1 that has a corresponding bit in the <file_xu>.hex that is also set
to 1, that word will never be matched. This is shown in Table 4.

Reading fr om CAM

To read patterns/addresses from altcam , three different modes can be used:

■ Single-match mode
■ Multiple-match mode
■ Fast Multiple-match mode

In multiple-match and fast multiple-match mode, an external priority encoder generates the encoded match addre
output maddress[] . As a result, when reading patterns in either of the multiple-match modes, the encoding l
will generally result in higher logic utilization than with single-match mode.

In all three modes, both encoded (maddress[]) and unencoded (mbits[]) outputs are available. External logic
generates the mfound and mcount[] signals, which give the total number of matches.

Single-Matc h Mode

In single-match mode (MATCH_MODE = ”SINGLE”), only one inclock clock cycle is needed to read stored data
from altcam .

When an input pattern matches one of the stored patterns in altcam , match flag mfound will be asserted, and the
address of the match will be presented on maddress[] . Output port mbits[] gives the unencoded version of the
match. The output that indicates the number of matches (mcount[]) is always either the value 0 or 1 in this mode.

It is very important to note that in the single-match mode, altcam will not operate properly if there are multiple
patterns stored that match the same input pattern. If this situation occurs, the Quartus software will give a warning
during simulation indicating that CAM contains multiple matches.

In single-match mode, the altcam megafunction will support CAMs deeper than 32 words by using multiple
embedded system blocks (ESBs). For input patterns with widths greater than 32 bits, altcam will automatically
switch to fast multiple- match mode.

In order to write “don’t care” bits into altcam , wrused should be asserted high, and waddress[] , pattern[]
and wren[] should be valid for three clock cycles. The bits in wrx[] with 1 indicate “don’t care” bits. For
example, in Figure 2, at waddress[] 010 the wrx[] is 100 , which means that the third bit is a “don’t care” bit.
As a result, reading 110 or 010 flag a match at maddress[] 010 .

Table 4. Format of HEX and MIF Initialization Files

<file>.hex <file_xu>.hex <file>.mif Equiv alent

0 0 0

1 0 1

0 1 X

1 1 U
4

Altera Corporation Using APEX 20KE CAM with the Quartus Software Design Tool

ck

e
 by
Figure 2. Waveform for Single-Match Mode with “Don’t Care’” Bits

 Multiple-Matc h Mode

In multiple-match mode (MATCH_MODE = ”MULTIPLE”), the megafunction takes two inclock clock cycles to
read from altcam and generate valid outputs. This happens because the ESB generates 16 outputs at each clo
cycle. As a result, two cycles are required to generate all 32 outputs from an ESB.

To search altcam for a new pattern, the pattern data should be applied to the pattern[] port, and the mstart
input should be asserted high for the first clock cycle during the read cycle. If the input pattern matches any of the
stored patterns, mfound asserts high, and maddress[] gives the address of the first match (after a two-cycle
delay). Other match addresses can be generated on subsequent clock cycles by asserting mnext and holding it high
for no more than two clock cycles after mstart . Output port mbits[] gives the unencoded version of the matches.
Output port mcount[] counts the total number of matches.

In this mode, each ESB supports 31 bits of data because the most significant bit (MSB) is used to select between th
even or odd outputs of ESB at each clock cycle. But multiple-match mode supports both deeper and wider CAMs
cascading 32-word × 31-bit ESBs.

Figure 3 shows the functional simulation waveform for multiple-match mode. In multiple-match mode, the mstart
provides the lowest match address location, and mnext provides the consequent match locations on maddress[] .
Signal mnext should be asserted not more than two clock cycles after mstart is asserted. In this example, data 1
has been written in two locations: 6 and 10 . Asserting mstart provides address location 6 on the maddress[]
port, and asserting mnext enables CAM to read out the consequent location, 10 .
5

Altera Corporation Using APEX 20KE CAM with the Quartus Software Design Tool

e

Figure 3. Waveform for Multiple-Match Mode

Fast Multiple-Matc h Mode

Fast multiple-match mode (MATCH_MODE = ”FAST_MULTIPLE”) is identical to multiple-match mode except
that fast multiple-match mode only takes one inclock clock cycle to read from altcam and generate valid
outputs. However, this quick generation uses only half of the memory available in each ESB. As a result, ESB
utilization is higher, but data can be read out of altcam in one cycle.

Most of the input and output ports used in fast multiple-match mode are identical to multiple-match mode with a fw
exceptions. Ports such as maddress[] , mcount[] , mfound , pattern[] , wrx[] , and wren function the same
as in multiple-match mode. The rbusy port is not used in fast multiple-match mode because the read does not
exceed one clock cycle. Ports such as mstart and mnext are not required for this mode if the location of the
matched address is not required (if maddress[] is not used), and only the mbits[] output gives the unencoded
version of a matching address. If the maddress[] output port is used, mstart and mnext must be used to give
the first and next matching addresses.

In this mode, the altcam megafunction supports CAMs deeper and wider than 32 words and bits by cascading the
ESBs. Figure 4 shows the functional simulation result of a fast multiple-match mode.
6

Altera Corporation Using APEX 20KE CAM with the Quartus Software Design Tool
Figure 4. Waveform for Fast Multiple-Match Mode

CAM Mode Comparison

In order to compare the performance and utilization of the different CAM modes, a 32-word × 32-bit CAM was
compiled for an EP20K200E-1 device. Table 5 shows the results of this comparison.

Resour ce Usage

One ESB can implement a 32-word × 32-bit CAM. Table 6 shows the resource usage for the altcam megafunction.

MegaWizar d Interface

The MegaWizardTM allows users to specify options for the custom megafunction variations. The MegaWizard asks
questions about the preferred values for parameters or optional ports.

Table 5. CAM Mode Comparison (32x32)

Feature Single-Matc h Mode Multiple-Matc h Mode Fast Multiple-Matc h
Mode

ESBs used 1 1 2

Logic Element used 35.0 98 79

fMAX 198.89 (MHz) 94.45 (MHz) 190.91 (MHz)

Table 6. Resource Usage for the altcam Megafunction (32x32)

Match Mode CAM Patterns per ESB CAM Pattern Bits per ESB

Single-match mode 32 32

Multiple-match mode 32 31

Fast multiple-match mode 16 32
7

Altera Corporation Using APEX 20KE CAM with the Quartus Software Design Tool
The MegaWizard Plug-In Manager automatically generates a Component Declaration file (.cmp) that can be used in
VHDL Design Files (.vhd) and an Include File (.inc) that can be used in Text Design Files (.tdf) and Verilog Design
Files (.v).

Users can start the MegaWizard Plug-In Manager in one of the following ways:

■ Choose the MegaWizard Plug-In Manager command (Tools menu).
■ When working in the Block Editor, click MegaWizard Plug-In Manager in the symbol dialog box (Insert

menu).

Figure 5 shows page 1 of the altcam MegaWizard Plug-In Manager.

Figure 5. Page 1 of altcam MegaWizard Plug-In Manager

Data Input Bus Width

This option allows users to select the width of the input pattern[] of the designed altcam . The pull-down menu
shows the value, which goes up to 256 bits. For widths higher than 256 bits, the value must be typed in.

Depth of CAM

This option specifies the number of word lines to the altcam megafunction. Two options are available: entering the
number by its entries (word lines) or by the width of address bits.

Operation Mode of CAM

There are three options for altcam operation mode.

■ Single match mode: Read occurs in one clock cycle, but it does not support multiple match
■ Multiple match mode: Read occurs in two-clock cycles and supports multiple matches
■ Fast multiple match mode: Read occurs in one clock cycle and supports multiple matches, but it only uses half of

an ESB
8

Altera Corporation Using APEX 20KE CAM with the Quartus Software Design Tool

Figure 6 shows the different options that can be selected on page 2 of the MegaWizard Plug-in Manager.

Figure 6. Page 2 of the altcam MegaWizard

Optional Input P or ts

Wrxused and wrx[] are the inputs that are used to write “don’t care” bits into the altcam megafunction. When
wrxuxed is asserted, “don’t care” bits will be written into altcam .

wrdelete is the input that used to delete patterns from altcam .

mnext and mstart are an input pair that indicates the location of the first and subsequent matches on the
maddress[] outputs. In fast multiple-match mode, the mstart and mnext pair are optional, but selecting mnext
on page 2 of the MegaWizard will add the mstart input into the wizard. mstart is automatically included in the
wizard upon selection of multiple-match mode.

Output P or ts

maddress[] gives the address of the match entry.

mbits[] gives the unencoded version of the match location. In multiple-match mode or in fast multiple-match
mode, only selecting mbits[] (instead of maddress[]) will reduce the logic cell utilization because the external
logic used to encode the unencoded outputs will not be implemented.

When in multiple-match mode or fast multiple-match mode, mcount[] gives the total number of matches found in
altcam . In single-match mode, mcount[] only has a value of 0 or 1 because multiple match is not supported in
this mode.

mfound is the output that indicates whether any match was found.

Fig 7 shows page 7 of the altcam MegaWizard, in which you can specify the memory initialization file.
9

Altera Corporation Using APEX 20KE CAM with the Quartus Software Design Tool

t

 X
-

Figure 7. Page 4 of the altcam MegaWizard

Specifying the Initial Contents of altcam

If you select to specify the initial contents of altcam , then the initial memory file should be generated. If you selec
not to specify the initial contents of altcam , then data should be written to altcam after configuring the device.

Two types of memory files exist: Memory Initialization Files (.mif) and Hexadecimal Files (.hex).

■ MIFs specify the pre-loaded pattern in the altcam . Only one file is needed to load patterns incorporating 1, 0,
(“don’t care” bits) and U (“never match” bits). This is an Altera file format and can only be used for CAM func
tions that are implemented in the Quartus software. MIFs are not compatible with external simulators.

■ HEX files require two files to be created:
 <file_name>.hex for 1 and 0 patterns
 <file_name>_ux.hex for U and X

HEX files allow users to use the CAM function in third-party behavioral simulation.

Examples

Figure 8 shows an altcam MegaWizard instantiation in single-match mode. In this example, “don’t care” bits will
be written into the altcam through “don’t care” ports. Also, the outputs have been registered.
10

Altera Corporation Using APEX 20KE CAM with the Quartus Software Design Tool
Figure 8. Single-Match Mode altcam With “Don’t Care” Ports

Figure 9 shows the instantiation of fast multiple-match mode. In this example, only 1 and 0 will be written into
altcam .

Figure 9. Fast Multiple-Match Mode altcam .

When selecting multiple-match mode in the altcam MegaWizard (Figure 10), the mstart input will be
automatically selected as one of input ports. The user has the option of selecting mnext as an input in the
MegaWizard if detecting the address of all matches is required.
11

Altera Corporation Using APEX 20KE CAM with the Quartus Software Design Tool
Figure 10. Multiple-Match Mode altcam MegaWizard

VHDL Instantiation

The following example code instantiates the altcam .vhd behavioral model for the altcam megafunction. This
particular example instantiates the function, passes parameters and connects the ports of the altcam to input and
output pins to demonstrate the functionality of the CAM. The altcam function can be directly instantiated as shown
here along with other RTL code for simulation. This example uses files called cam.hex and cam_xu.hex to
initialize the contents. Both files are shown at the end of this document.

Cam32 × 8 instantiates the altcam behavioral function. This can contain code other than just the altcam function
call.

Cam32×8.vhd

library ieee;
use ieee.std_logic_1164.all;

entity cam32x8 is
 port
 (pattern: in std_logic_vector(7 downto 0);
 wrx: in std_logic_vector(7 downto 0);
 wrxused: in std_logic;
 wrdelete: in std_logic;
 wraddress: in std_logic_vector(4 downto 0);
 wren: in std_logic;
 inclock: in std_logic;
 mstart: in std_logic;
 mnext: in std_logic;
 maddress: out std_logic_vector(4 downto 0);
 mbits: out std_logic_vector(31 downto 0);
 matchfound: out std_logic;
 mcount: out std_logic_vector(4 downto 0);
 rdbusy: out std_logic;
 wrbusy: out std_logic);
end cam32x8;

architecture apex of cam32x8 is
12

Altera Corporation Using APEX 20KE CAM with the Quartus Software Design Tool
component altcam
 generic
 (width: positive;
 widthad: positive;
 numwords: natural := 0;
 lpm_file: string := "UNUSED";
 lpm_filex: string := "UNUSED";
 match_mode: string := "SINGLE";
 output_reg: string := "UNREGISTERED";
 output_aclr: string := "OFF";
 pattern_reg: string := "INCLOCK";
 pattern_aclr: string := "Off";
 wraddress_aclr: string := "Off";
 wrx_reg: string := "INCLOCK";
 wrx_aclr: string := "off";
 wrcontrol_aclr: string := "OFF");

 port
 (pattern: in std_logic_vector(width -1 downto 0);
 wrx: in std_logic_vector(width -1 downto 0);
 wrxused: in std_logic;
 wrdelete: in std_logic;
 wraddress: in std_logic_vector(widthad-1 downto 0);
 wren: in std_logic;
 inclock: in std_logic;
 inclocken: in std_logic := '1';
 inaclr: in std_logic := '0';
 mstart: in std_logic;
 mnext: in std_logic;
 outclock: in std_logic := '0';
 outclocken: in std_logic := '1';
 outaclr: in std_logic := '0';
 maddress: out std_logic_vector(widthad-1 downto 0);
 mbits: out std_logic_vector(numwords-1 downto 0);
 mfound: out std_logic;
 mcount: out std_logic_vector(widthad-1 downto 0);
 rdbusy: out std_logic;
 wrbusy: out std_logic);

end component;
begin
U0: altcam
 generic map (width => 8, widthad => 5, lpm_file => "cam.hex",
lpm_filex => "cam_xu.hex", numwords => 32, match_mode => "MULTIPLE",
output_reg => "UNREGISTERED")
port map (pattern => pattern, wrx => wrx, wrxused => wrxused,
wrdelete => wrdelete, wraddress => wraddress, wren => wren, inclock => inclock,
mstart => mstart, mnext => mnext,
maddress => maddress, mbits => mbits, mfound => matchfound, mcount => mcount,
rdbusy => rdbusy, wrbusy => wrbusy);
end apex;
13

Altera Corporation Using APEX 20KE CAM with the Quartus Software Design Tool
Testbenc h for 32 X 8 CAM in VHDL

Cam_testbench.vhd is an example testbench that demonstrates the functionality of the altcam in multiple-
match mode with “don’t care” bits.

cam_testbenc h.vhd

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE std.textio.ALL;

ENTITY CAM_testbench IS
END CAM_testbench;

ARCHITECTURE testbench OF CAM_testbench IS

SIGNAL countclock :std_logic := '0';

COMPONENT cam32x8
PORT(

 pattern: in std_logic_vector(7 downto 0);
 wrx: in std_logic_vector(7 downto 0);
 wrxused: in std_logic;
 wrdelete: in std_logic;
 wraddress: in std_logic_vector(4 downto 0);
 wren: in std_logic;
 inclock: in std_logic;
 mstart: in std_logic;
 mnext: in std_logic;
 maddress: out std_logic_vector(4 downto 0);
 mbits: out std_logic_vector(31 downto 0);
 mfound: out std_logic;
 mcount: out std_logic_vector(4 downto 0);
 rdbusy: out std_logic;
 wrbusy: out std_logic);
END COMPONENT;

SIGNAL pattern : std_logic_vector(7 downto 0) := "00000000";
SIGNAL wrx : std_logic_vector(7 downto 0) := "00000000";
SIGNAL wrxused : std_logic := '0';
SIGNAL wrdelete : std_logic := '0';
SIGNAL wraddress : std_logic_vector(4 downto 0) := "00000";
SIGNAL wren : std_logic := '0';
SIGNAL inclock : std_logic := '1';
SIGNAL mstart : std_logic := '0';
SIGNAL mnext : std_logic := '0';
SIGNAL maddress : std_logic_vector(4 downto 0);
SIGNAL mbits : std_logic_vector(31 downto 0);
SIGNAL mfound : std_logic;
SIGNAL mcount : std_logic_vector(4 downto 0);
SIGNAL rdbusy : std_logic;
14

Altera Corporation Using APEX 20KE CAM with the Quartus Software Design Tool
SIGNAL wrbusy : std_logic;

BEGIN

Create a 10MHz-clock signal
Clockin: PROCESS
BEGIN

inclock <= NOT(inclock);
WAIT FOR 50 ns;

END PROCESS;

Create a 5MHz clock signal for the counter
clockcount: PROCESS
BEGIN

countclock <= NOT(countclock);
WAIT FOR 250 ns;

END PROCESS;

Generate the pattern inputs using an 8-bit counter
PROCESS

variable cnt : integer range 0 to 256 := 88;
BEGIN

IF cnt = 256 THEN
cnt := 0;
END IF;
cnt := cnt + 1;
wait until ((countclock'event) and (countclock = '0'));
pattern <= conv_std_logic_vector(cnt,8);

END PROCESS;

PROCESS
BEGIN

WAIT FOR 300 ns;
mstart <= '1';
WAIT FOR 100 ns;
mstart <= '0';
WAIT FOR 200 ns;
mnext <= '1';
WAIT FOR 100 ns;
mnext <= '0';

END PROCESS;

u1: cam32x8
PORT MAP(

pattern => pattern, wrx => wrx, wrxused => wrxused,
wrdelete => wrdelete, wraddress => wraddress, wren => wren,
inclock => inclock, mstart => mstart, mnext => mnext,
maddress => maddress, mfound => mfound, mcount => mcount,
rdbusy => rdbusy, wrbusy => wrbusy, mbits => mbits);

END testbench;
15

Altera Corporation Using APEX 20KE CAM with the Quartus Software Design Tool
Verilog Instantiation

This example instantiates the altcam.v behavioral model for the altcam megafunction. This particular example
instantiates the function, passes parameters and connects the ports of the altcam to input and output pins to
demonstrate the functionality of the CAM. The altcam function can be directly instantiated as shown here along
with other RTL code for simulation. This example uses files called cam.hex and cam_xu.hex to initialize the contents.
Both files are shown at the end of this document. Cam32×8.v instantiates the altcam behavioral function. This can
contain code other than just the altcam function call.

Cam32x8.v

module cam32x8 (pattern, wraddress, wren, mstart, wrx, wrxused, wrdelete,
mnext, inclock, inclocken, maddress, mbits, mfound, mcount, rdbusy, wrbusy);

input [7:0] pattern;
input [4:0] wraddress;
input wren;
input mstart;
input [7:0] wrx;
input wrxused;
input wrdelete;
input mnext;
input inclock;
input inclocken;
//input inaclr;
output [4:0] maddress;
output [31:0] mbits;
output mfound;
output [4:0] mcount;
output rdbusy;
output wrbusy;

altcam U0 (.wrxused (wrxused), .inclocken (inclocken), .wren (wren), .inclock
(inclock), .mstart (mstart), .wrx (wrx),
.pattern (pattern), .mnext (mnext), .wraddress (wraddress), .wrdelete
(wrdelete), .mcount (mcount),
.wrbusy (wrbusy), .maddress (maddress), .mfound (mfound), .rdbusy (rdbusy),
.mbits (mbits));
defparam

U0.width =8,
U0.widthad = 5,
U0.numwords = 32,
U0.match_mode = "MULTIPLE",
U0.pattern_reg = "INCLOCK",
U0.wrx_reg = "INCLOCK",
U0.pattern_aclr = "Off",
U0.wrx_aclr = "Off",
U0.wrcontrol_aclr = "Off",
U0.wraddress_aclr = "Off",
U0.output_aclr = "Off",
U0.lpm_file = "cam.hex",
U0.lpm_filex = "cam_xu.hex";

endmodule
16

Altera Corporation Using APEX 20KE CAM with the Quartus Software Design Tool
Verilog TestBenc h

The Verilog testbench demonstrates the functionality of the altcam Megafunction. If the Modelsim simulator is
used with the Verilog model, and hexadecimal initialization files are used, an extra step is required to simulate the
models. A conversion must be done in order for the simulator to correctly convert the hexadecimal initialization files
to a usable format when simulating Verilog code. This is done through the convert_hex2ver utility. These files need to
be compiled before the simulation can be run. The following steps describe how this conversion is done.

■ Obtain the convert_hex2ver.c and convert_hex2ver_lib.c files from the Altera web site at http://www.altera.com.
■ Compile and link the source code into a library.

The following example code shows how to compile the source code within Microsoft Visual C/C++ (version 4.1 and
above) on the Windows NT/98/95 operating systems.

cl -c -I<modelsim_dir>\include convert_hex2ver.c convert_hex2ver_lib.c

link -dll -export:init_usertfs convert_hex2ver.obj convert_hex2ver_lib.obj

<modelsim_dir>\win32\mtipli.lib

The following example code shows how to compile the source code with Sun C compiler on Solaris.

gcc -c -I<modelsim_dir>/include convert_hex2ver.c convert_hex2ver_lib.c

ld -G -B symbolic -o convert_hex2ver.so convert_hex2ver.o

convert_hex2ver_lib.o

■ Modify modelsim.ini under the [vsim] section.

For Windows NT/98/95 operating systems, add the following line of code:

Veriuser = <DLL_dir>\convert_hex2ver.dll

For the Sun C compiler on Solaris, add the following line of code:

Veriuser = <SO_dir>/convert_hex2ver.so

The following cam_testbench.v code shows an example testbench that demonstrates the functionality of the altcam

megafunction in multiple-match mode with “don’t care” bits.

`timescale 1 ps / 1 ps

module cam_testbench();

wire [7:0] pattern;
reg [7:0] wrx;
reg wrxused;
reg wrdelete;
reg [4:0] wraddress;
reg wren;
reg inclock;
reg inclocken;
reg mstart;
17

Altera Corporation Using APEX 20KE CAM with the Quartus Software Design Tool
reg mnext;
wire [4:0] maddress;
wire [31:0] mbits;
wire mfound;
wire [4:0] mcount;
wire rdbusy;
wire wrbusy;

reg [6:0] cnt;
reg clock_count;

cam32x8 L0(.pattern(pattern), .wrx(wrx), .wrxused(wrxused),
.wrdelete(wrdelete), .wraddress(wraddress), .wren(wren), .inclock(inclock),
.mstart(mstart), .mnext(mnext), .maddress(maddress),
.mbits(mbits), .mfound(mfound), .mcount(mcount), .rdbusy(rdbusy),
.wrbusy(wrbusy), .inclocken(inclocken));

initial
begin

assign inclocken = 1'b1;
wrmask = 8'b00000000;
wrmaskused = 1'b0;
wrdelete = 1'b0;
mstart = 1'b0;
mnext = 1'b0;

end

initial cnt = 88;
assign pattern = cnt;

initial
begin

inclock = 1'b0;
forever #50000 inclock = ~inclock;

end

initial
begin

clock_count = 1'b0;
forever #250000 clock_count = ~clock_count;

end

always@(posedge clock_count)
begin

if (cnt == 256)
cnt = 0;

cnt = cnt + 1;
end

initial
begin

mstart = 1'b0;
18

Altera Corporation Using APEX 20KE CAM with the Quartus Software Design Tool
mnext = 1'b0;
#300000 mstart = 1'b1;
#100000 mstart = 1'b0;
#200000 mnext = 1'b1;
#100000 mnext = 1'b0;

end

endmodule

Initialization fi le (cam.he x) for 32 × 8 bits CAM

Cam.hex contains the data to initialize the altcam . Note that address 0003 and 0007 contain the same data 59
(highlighted in blue). This indicates that multiple match exists in this example.

The initialization file (hex) for 32 × 8 bits CAM is as follows:

:0100000009f6
:0100010022dc
:01000200A25b
:0100030059a3
:0100040001fa
:01000500B04a
:0100060003f6
:01000700599f
:0100080035c2
:0100090009ed
:01000a0020d5
:01000b001Ada
:01000c0003f0
:01000d0028ca
:01000e0045ac
:01000f0024cc
:0100100009e6
:010011000De1
:0100120018d5
:010013007874
:0100140003e8
:0100150025c5
:010016001Bce
:0100170023c5
:01001800796e
:0100190033b3
:01001a001Fc6
:01001b0003e1
:01001c0011d2
:01001d0009d9
:01001e0006db
:01001f000Fd1
:00000001ff
19

Altera Corporation Using APEX 20KE CAM with the Quartus Software Design Tool
cam_ xu.he x

Cam_xu.hex contains “don’t care” information to initialize the altcam . Whenever the data in the file_ xu.hex file
contains 0, it indicates that “don’t care” does not exist in that specific location. In this example, addresses 0003 and
0007 contain non-zero data, 02, indicating “don’t care” condition (highlighted in blue). These addresses will be
matched when either data h59 or h5b is presented on the pattern[] input. This is due to the “don’t care” condition
on the first bit (2) of addresses 0003 and 0007.

:0100000000ff
:0100010000fe
:0100020000fd
:0100030002fa
:0100040000fb
:0100050000fa
:0100060000f9
:0100070002f6
:0100080000f7
:0100090000f6
:01000a0000f5
:01000b0000f4
:01000c0000f3
:01000d0000f2
:01000e0000f1
:01000f0000f0
:0100100000ef
:0100110000ee
:0100120000ed
:0100130001eb
:0100140000eb
:0100150000ea
:0100160000e9
:0100170000e8
:0100180001e6
:0100190000e6
:01001a0000e5
:01001b0000e4
:01001c0000e3
:01001d0000e2
:01001e0000e1
:01001f0000e0
:00000001ff
END
20

Altera Corporation Using APEX 20KE CAM with the Quartus Software Design Tool
Copyright 2000 Altera Corporation. Altera, APEX, APEX 20K, EP20K200E, Quartus, and MegaWizard are trademarks and/or service marks
of Altera Corporation in the United States and other countries. Other brands or products are trademarks of their respective holders. The
specifications contained herein are subject to change without notice. Altera assumes no responsibility or liability arising out of the application
or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers
are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for
products or services. All rights reserved.

®

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

Conc lusion

The CAM feature on APEX 20KE devices provides a powerful tool for accelerating search applications in
communications designs. By using the techniques described in this white paper, you can easily integrate high-speed
CAM into your design.
21

	Contents
	Using APEX 20KE CAM with the Quartus Software Design Tool White Paper
	Introduction
	The altcam Megafunction
	Writing Patterns into CAM
	Reading from CAM
	Single-Match Mode
	Multiple-Match Mode
	Fast Multiple-Match Mode
	CAM Mode Comparison
	Resource Usage
	MegaWizard Interface
	Data Input Bus Width
	Depth of CAM
	Operation Mode of CAM
	Optional Input Ports
	Output Ports
	Specifying the Initial Contents of altcam
	Examples
	VHDL Instantiation
	Cam32¥8.vhd
	Testbench for 32 X 8 CAM in VHDL
	cam_testbench.vhd
	Verilog Instantiation
	Cam32x8.v
	Verilog TestBench
	Initialization file (cam.hex) for 32 ¥ 8 bits CAM
	cam_ xu.hex
	Conclusion

