

®

White Paper

Using LVDS in the Quartus Software

signed
f
 in a

he
ily

arious

nd low-
ues.

I/
Mbps

agnetic
swing

at
er,
Shift
ata at

el-to-

 data
erts a
ce.

is

LLs.

 the
ip in

Introduction

Low-voltage differential signaling (LVDS) in APEX™ 20KE devices is Altera’s solution for the continuously
increasing demand for high-speed data-transfer at low power consumption rates. APEX 20KE devices are de
with dedicated LVDS circuitry that supports transfer rates of up to 840 megabits per second (Mbps). A total o
16 transmitter and 16 receiver channels provide up to 27 gigabits per second (Gbps) of total LVDS bandwidth
single device. Designs that take advantage of dedicated APEX 20KE LVDS circuitry are implemented using t
Quartus™ software, Altera’s next-generation development system for programmable logic. LVDS can be eas
implemented in APEX devices using the Quartus software and the altlvds megafunction, saving design time and
reducing board space.

This white paper describes how to use the Quartus development tool with designs that enable LVDS and its v
features in APEX devices. For more information about LVDS in APEX 20KE devices, see the Using LVDS in
APEX 20KE Devices White Paper.

LVDS in APEX 20KE Devices

LVDS is a low-voltage swing I/O standard that meets performance requirements for high-speed, low-power, a
noise applications. LVDS transfers data via differential signaling instead of less efficient single-ended techniq

LVDS is characterized by two IEEE standards: IEEE std. 1596.3 SCI-LVDS and ANSI/TIA/EIA-644. The ANS
TIA/EIA-644 standard defines driver output and receiver input characteristics at a maximum data rate of 655
and a theoretical maximum of 1.923 gigabits per second (Gbps).

A differential scheme is used in LVDS instead of a single-ended scheme because of its immunity to electrom
interference (EMI). Also, because the noise margin is significantly greater for differential signals, the voltage
can be minimized to approximately 350 mV, thereby reducing power consumption.

APEX 20KE devices feature phase-locked loops (PLLs) with enhanced ClockLock™, ClockBoost™, and
ClockShift™ circuitry. The ClockLock circuitry uses a synchronizing PLL with an extended frequency range th
reduces the clock delay and skew within the device. The ClockBoost circuitry, which provides a clock multipli
allows the designer to enhance device area and efficiency by sharing resources within the device. The Clock
feature allows the clock phase and delay to be adjusted. The PLL is the key to enabling the transmission of d
such high rates. More information about PLLs can be found in the Using APEX 20K & APEX 20KE PLLs in the
Quartus Software White Paper.

The device's PLLs generate the high frequency clock signals that are required for serial-to-parallel and parall
serial conversion. The example in Figure 1 shows a block diagram of the LVDS circuitry and how it interfaces with
user logic and the LVDS PLLs. In this case, the LVDS transmitter converts a maximum of 128 CMOS on-chip
bits into 16 LVDS data streams, using an 8-to-1 parallel-to-serial converter. Similarly, the LVDS receiver conv
maximum of 16 LVDS signals into 128 CMOS data bits that feed internal logic elements (LEs) within the devi

Operation can occur in one of four modes: 1×, 4×, 7×, or 8× mode. The mode of conversion is specified by the
deserialization factor. When operation occurs in 1× mode, the dedicated LVDS circuitry is bypassed and the data
fed directly in and out of the internal LEs. When operation occurs in 4×, 7×, or 8× mode, data passes through either
the dedicated serial-to-parallel or parallel-to-serial converters, which have clocks generated by the device's P

The transmitter PLL’s input clock can be driven by an off-chip clock source or internally by the output clock of
receiver PLL via an internal global net. The output LVDS clock of the transmitter PLL can only be driven off-ch
June 2000, ver. 1 1

A-WP-LVDSQUARTUS-01

Altera Corporation Using LVDS in the Quartus Software

1× mode, in-phase with the LVDS data being driven out, and cannot feed internal logic. Similarly, the receiver PLL’s
input clock can be driven from an off-chip source, and its output clock can feed internal logic in 1× mode. However,
the output clock cannot be driven off-chip.

For EP20K200E devices and smaller in ball-grid array (BGA) packages, all devices support LVDS clock inputs.
Devices equipped with PLLs (denoted by a “-X” suffix in the ordering code) can drive out an LVDS clock and accept
LVDS feedback. LVDS inputs and outputs are not supported.

All EP20K300E devices in BGA packages support LVDS clock inputs. All devices support 16 LVDS input and output
channels in 1× mode. Devices with PLLs can drive out an LVDS clock and accept LVDS feedback.

Devices larger than a EP20K300E device support LVDS clock inputs, outputs, and feedback. These devices also
support 16 LVDS input and output channels in 1× mode. For devices with PLLs, full LVDS support is available,
including all operating modes. LVDS support is summarized in Table 1.

Figure 1. LVDS Receiver and Transmitter Interface

EP20K300E devices and larger contain 4 PLLs. Two of the PLLs are available for LVDS applications. PLL 4 is used
for the LVDS transmitter, and PLL 3 is used for the LVDS receiver. Figure 2 displays a block diagram of the LVDS
PLLs.

Table 1. LVDS Support in APEX 20KE Devices

Device Density Feature Devices with PLLs Devices without PLLs

EP20K200E and smaller LVDS Clock Input, output, and feedback Input

LVDS I/O pins Not supported Not supported

EP20K300E LVDS Clock Input, output, and feedback Input

LVDS I/O pins 1× mode 1× mode

EP20K400E and larger LVDS Clock Input, output, and feedback Input

LVDS I/O pins All modes 1× mode

Loadable
Shift Register

Loadable
Shift Register

Synchronization
Registers

8×
PLL 3 1× 8×

1×

User Logic

-
+LVDSRXINCLK1p

LVDSRSINCLK1n

-
+LVDSRX01p

LVDSRX01n
LVDSTX01p
LVDSTX01n

LVDSTXOUTCLK1p
LVDSTXOUTCLK1n

PLL 4

LVDSTXINCLK1p
LVDSTXINCLK1nG0

G1 G2

+
-

2

Altera Corporation Using LVDS in the Quartus Software

bps

re

 to

l

Figure 2. LVDS PLL Block Diagram

The operation frequencies are specified by the limitations of the PLLs in the device at a given deserialization factor.
The input frequency range is limited to 50-80 MHz in the Quartus software version 2000.05 and lower when the
deserialization factor is 4, 30-80 MHz when the deserialization factor is 7, and 30-78 MHz when the deserialization
factor is 8. Although the maximum input frequency in the Quartus software is currently limited to 78 MHz in 8×
mode, APEX 20KE devices support transfer rates of 840 Mbps and input frequencies of up to 105 MHz. 840 M
performance is achieved in APEX 20KE devices by selecting 8× mode for the deserialization factor and 78 MHz for
the input frequency in the Quartus software; the 78 MHz setting only limits simulation support to 622 Mbps. Futu
versions of the Quartus software will support the 105 MHz input clock setting for full simulation capabilities.

LVDS in APEX 20KE devices can be configured in several ways. The device can be used only as an LVDS
transmitter or receiver that accepts parallel CMOS or serialized LVDS data from an off-chip source and outputs
serialized LVDS or parallel CMOS data to an off-chip destination. In both cases, the number of channels is limited
16 or less. Alternatively, the device can accommodate both a single transmitter and a single receiver. Both modules
can receive parallel CMOS or serial LVDS data from an off-chip source and output to an off-chip destination. The
device can also be configured so that the receiver receives inputs from an external source, and outputs to an interna
signal processing logic block that subsequently outputs to the transmitter. The transmitter can then output to an off-
chip destination. This configuration is also limited to 16 channels or less.

The placement of LVDS pin/pads are restricted according to predefined banking rules. LVDS blocks cannot be
located near non-LVDS output pins that share the same VCCIO bus because any switching that occurs on them may
degrade performance. For more information on pin/pad placement, refer to the Using I/O standards in the Quartus
Software White Paper.

Deskew circuitry is also available in APEX 20KE devices, which reduces the effects of channel-to-channel skew and
clock-to-channel skew within the device itself, as seen in Figure 3.

+
-

Dedicated Clocks

4

K K

K

V V

K

(1)

(2) (2)

(1)1x 1x

LVDSTXOUTCLK1p
LVDSTXOUTCLK1n

LVDSTXINCLK1p
LVDSTXINCLK1n

CLK4p

CLK2p

CLKLK_FB2p

CLKLK_OUT2p

PLL3

PLL1PLL2

PLL4

LVDSRXINCLK1p
LVDSRXINCLK1n

CLK3p

CLK1p

CLKLK_FB1

CLKLK_OUT1p

-
+

3

Altera Corporation Using LVDS in the Quartus Software

 which

Figure 3. Channel-to-Channel and Clock-to-Channel Skew

Because of the high bandwidth of the LVDS inputs in 8× and 7× modes, LVDS data is captured with an over-
sampling circuit. These inputs are captured by four separate clocks and subsequently compared to determine
clock successfully captured the data. The deskew circuitry can compensate up to ±25% of the bit time period. For
4× mode, calibration is optional.

To ensure that the data is captured accurately, the LVDS receiver must be calibrated properly. When the deskew pin
is asserted, the receiver is put into calibration mode. A calibration pattern must be applied to every input channel for
at least three clock cycles to phase-align the clock with the incoming LVDS data, as seen in the example for 8× mode
in Figure 4.

Figure 4. Deskew Circuitry Calibration Waveform for 8× Mode

Clock 8x

Channel 1

Channel 2

Channel 3

0 1 1 0 0 1

1 0 0 0 1 1

1 1 0 1 0 0

Channel Skew

0 1 1 0 0 1

1 0 0 0 1 1

1 1 0 1 0 0

To LEs

Data Stream Skewed from Others
Receiver Cannot Capture Data

DESKEW

Input Clock

Input Data

At least 3 cycles

0 0 0 0 0 0 0 0 0 0 0 0 X X1 1 1 1 1 1 1 1 1 1 1 1

First bit of valid data (MSB)
4

Altera Corporation Using LVDS in the Quartus Software

The calibration pattern depends on the deserialization factor as seen in Table 2.

Each LVDS input channel is calibrated separately because of the differences in routing; therefore, the calibration
pattern must be present on each of the LVDS channels. The first bit of the calibration data is the first bit after the input
clock. For more information on APEX 20KE deskew circuitry, see the Using LVDS in APEX 20KE Devices White
Paper.

Data synchronization is necessary for successful data transmission at high frequencies. Figure 5 shows the data bit
orientation for a receiver channel operating in 8× mode. Unlike in calibration mode, the first bit of data for the current
clock cycle is the third bit because the first two bits belong to the previous cycle. Similar positioning exists for the
most significant bits (MSBs) and LSBs after deserialization, as seen in Table 3.

Figure 5. Bit Order for One Channel of LVDS Data

Table 3 shows the conventions for LVDS bit naming.

Table 2. Calibration Data Pattern for Deskew Circuitry

Deserialization F actor Calibration P attern

4 0011

7 0000111

8 00001111

Table 3. LVDS Bit Naming (Sheet 1 of 2)

Rx Data Channel Number Internal CMOS 8-bit P arallel Data

MSB Position LSB Position

1 7 0

2 15 8

3 23 16

4 31 24

5 39 32

6 47 40

7 55 48

8 63 56

9 71 64

10 79 72

11 87 80
5

Altera Corporation Using LVDS in the Quartus Software

Table 4 shows the pin naming convention used with all APEX 20KE devices.

The altlvds Megafunction

Figures 6 and (7) show the symbols for the altlvds Megafunction transmitter and receiver, respectively. Each
module represents the dedicated LVDS silicon present in APEX 20KE devices as well as the dedicated LVDS PLLs
that are present for clock generation. A single module represents either one or multiple LVDS channels.

12 95 88

13 103 96

14 111 104

15 119 112

16 127 120

Table 4. LVDS Pin Naming

Pin Name Function

LVDSRX<number>p Receiver positive data pin

LVDSRX<number>n Receiver negative data pin

LVDSTX<number>p Transmitter positive data pin

LVDSTX<number>n Transmitter negative data pin

LVDSRXINCLK1p Receiver input clock positive pin

LVDSRXINCLK1n Receiver input clock negative pin

LVDSTXINCLK1n Transmitter input clock negative pin

LVDSTXINCLK1n Transmitter input clock positive pin

LVDSTXOUTCLK1p Transmitter output clock positive pin

LVDSTXOUTCLK1n Transmitter output clock negative pin

CLK1p Dedicated clock 1 positive pin (PLL 1)

CLK1n Dedicated clock 1 negative pin (PLL 1)

CLK2p Dedicated clock 2 positive pin (PLL 2)

CLK2n Dedicated clock 2 negative pin (PLL 2)

CLK3p Dedicated clock 3 positive pin (PLL 3)

CLK3n Dedicated clock 3 negative pin (PLL 3)

CLK4p Dedicated clock 4 positive pin (PLL 4)

CLK4n Dedicated clock 4 negative pin (PLL 4)

CLKLK_FB1p Dual-purpose ClockLock feedback positive pin (PLL 1)

CLKLK_FB1n Dual-purpose ClockLock feedback negative pin (PLL 1)

CLKLK_FB2p Dual-purpose ClockLock feedback positive pin (PLL 2)

CLKLK_FB2n Dual-purpose ClockLock feedback negative pin (PLL 2)

CLKLK_OUT1p Dual-purpose ClockLock output positive pin (PLL 1)

CLKLK_OUT1n Dual-purpose ClockLock output negative pin (PLL 1)

CLKLK_OUT2p Dual-purpose ClockLock output positive pin (PLL 2)

CLKLK_OUT2n Dual-purpose ClockLock output negative pin (PLL 2)

Table 3. LVDS Bit Naming (Sheet 2 of 2)

Rx Data Channel Number Internal CMOS 8-bit P arallel Data

MSB Position LSB Position
6

Altera Corporation Using LVDS in the Quartus Software

Figure 6. The altlvds Megafunction Transmitter Module Symbol

Figure 7. The altlvds Megafunction Receiver Module Symbol

The following sample scripts show the AHDL Function Prototype (port name and order also apply to Verilog HDL)
and VHDL Component Declaration for both the LVDS transmitter and receiver.

AHDL Function Prototype (transmitter):

FUNCTION altlvds_tx (tx_in[DESERIALIZATION_FACTOR*NUMBER_OF_CHANNELS-1..0],
tx_inclock, sync_inclock)
 WITH (NUMBER_OF_CHANNELS, DESERIALIZATION_FACTOR, REGISTERED_INPUT,
MULTI_CLOCK, INCLOCK_PERIOD)
 RETURNS (tx_out[NUMBER_OF_CHANNELS-1..0], tx_outclock, tx_locked);

VHDL Component Declaration (transmitter):

COMPONENT altlvds_tx
 GENERIC (NUMBER_OF_CHANNELS: NATURAL;
 DESERIALIZATION_FACTOR: NATURAL;
 REGISTERED_INPUT: STRING := "ON";
 MULTI_CLOCK: STRING := "OFF";
 INCLOCK_PERIOD: NATURAL);
 CLOCK_SETTING: STRING := "UNUSED");
 PORT (tx_in: IN
STD_LOGIC_VECTOR(DESERIALIZATION_FACTOR*NUMBER_OF_CHANNELS-1 DOWNTO 0);
 tx_inclock: IN STD_LOGIC;
 sync_inclock: IN STD_LOGIC := '0';
 tx_out: OUT STD_LOGIC_VECTOR(NUMBER_OF_CHANNELS-1 DOWNTO 0);
 tx_outclock, tx_locked: OUT STD_LOGIC);
END COMPONENT;
7

Altera Corporation Using LVDS in the Quartus Software

AHDL Function Prototype (receiver):

FUNCTION altlvds_rx (rx_in[NUMBER_OF_CHANNELS-1..0], rx_inclock, rx_deskew)
 WITH (NUMBER_OF_CHANNELS, DESERIALIZATION_FACTOR, REGISTERED_OUTPUT,
INCLOCK_PERIOD)
 RETURNS (rx_out[DESERIALIZATION_FACTOR*NUMBER_OF_CHANNELS-1..0],
rx_outclock, rx_locked);

VHDL Component Declaration (receiver):

COMPONENT altlvds_rx
 GENERIC(NUMBER_OF_CHANNELS: NATURAL;
 DESERIALIZATION_FACTOR: NATURAL;
 REGISTERED_OUTPUT: STRING := "ON";
 INCLOCK_PERIOD: NATURAL;
 CLOCK_SETTING: STRING := "UNUSED");
 PORT (rx_in: IN STD_LOGIC_VECTOR(NUMBER_OF_CHANNELS-1 DOWNTO 0);
 rx_inclock: IN STD_LOGIC;
 rx_deskew: IN STD_LOGIC := '0';
 rx_out: OUT STD_LOGIC_VECTOR(DESERIALIZATION_FACTOR*NUMBER_OF_CHANNELS-1
DOWNTO 0);
 rx_outclock, rx_locked: OUT STD_LOGIC);
END COMPONENT;

The altlvds megafunction input and output ports are described in Tables 5 and (6), respectively. Table 7 lists the
parameters that are used to configure the altlvds megafunction.

Table 5. Input Ports of the altlvds Megafunction

Por t Name Required Description Notes

LVDS TRANSMITTER INPUT PORTS

tx_in[] Yes Input data Input port [DESERIALIZATION_FACTOR *
NUMBER_OF_CHANNELS-1..0] wide.

tx_inclock Yes LVDS reference input clock

sync_inclock No Optional clock for the input registers If the MULTI_CLOCK parameter is turned on, you
must use this port.

LVDS RECEIVER INPUT PORTS

rx_in[] Yes LVDS input data channel Input port [NUMBER_OF_CHANNELS-1..0] wide.

rx_inclock Yes LVDS reference input clock

rx_deskew No Specifies whether to activate
calibration mode

For more information on the rx_deskew port,
contact Altera Applications.
8

Altera Corporation Using LVDS in the Quartus Software

Note:
(1) For 840 Mbps transfer rates in the Quartus software version 2000.05 and lower, the deserialization factor must be set to 8× mode and the
input frequency to 78 MHz. Currently, the altlvds megafunction and the Quartus Simulator do not accept input frequencies greater than

78 MHz in 8× mode; however, APEX 20KE devices are capable of supporting input frequencies of up to 105 MHz. Future versions of the Quartus
software will reflect the higher transfer rate capabilities of APEX 20KE devices.

Table 6. Output Ports of the altlvds Megafunction

Por t Name Required Description Notes

LVDS TRANSMITTER OUTPUT PORTS

tx_out[] Yes Serialized LCDS data signal Output port [NUMBER_OF_CHANNELS-1..0] wide.

tx_outclock No External reference clock

tx_locked No Gives the status of the LVDS PLL When the PLL is locked, this signal is VCC. When the
PLL fails to lock, this signal is GND.

LVDS RECEIVER OUTPUT PORTS

rx_out[] Yes Deserialized data signal Output port [DESERIALIZATION_FACTOR *
NUMBER_OF_CHANNELS-1..0] wide.

rx_outclock No Internal reference clock

rx_locked No Gives the status of the LVDS PLL When the PLL is locked, this signal is VCC. When the
PLL fails to lock, this signal is GND.

Table 7. The altlvds Megafunction Parameters

Parameter Type Required Description

LVDS TRANSMITTER PARAMETERS

NUMBER_OF_CHANNELS Integer Yes Specifies the number of LVDS channels.

DESERIALIZATION_FACTOR Integer Yes Specifies the number of bits per channel. Values are 8, 7, or 4.
When you specify 4 bits per channel, the value of the
INCLOCK_PERIOD parameter can be 50-80 MHz. When you
specify 7 bits per channel, the value of the INCLOCK_PERIOD
parameter can be 30-80 MHz. For 8 bits per channel, the
INCLOCK_PERIOD can be 30-78 MHz. (1)

REGISTERED_INPUT String No Indicates whether the tx_out[] and tx_outclock ports should
be registered. Values are "ON" and "OFF". If omitted the default is
"ON".

MULTI_CLOCK String No Indicates whether the sync_inclock port is used for input
registering. Values are "ON" and "OFF". If omitted the default is
"OFF."

INCLOCK_PERIOD String Yes Specifies the period or frequency of the input clock. The default
time unit is ps.

LVDS RECEIVER PARAMETERS

NUMBER_OF_CHANNELS Integer Yes Specifies the number of LVDS channels.

DESERIALIZATION_FACTOR Integer Yes Specifies the number of bits per channel. Values are 8, 7, or 4.
When you specify 4 bits per channel, the value of the
INCLOCK_PERIOD parameter can be 50-80 MHz. When you
specify 7 bits per channel, the value of the INCLOCK_PERIOD
parameter can be 30-80 MHz. For 8 bits per channel, the
INCLOCK_PERIOD can be 30-78 MHz. (1)

REGISTERED_OUTPUT String No Indicates whether the rx_out[] port should be registered. Values
are "ON" and "OFF". If omitted, the default is "ON".

INCLOCK_PERIOD String Yes Specifies the period or frequency of the rx_inclock port. The
default time unit is ps.
9

Altera Corporation Using LVDS in the Quartus Software
The MegaWizar d Interface

The MegaWizard® interface allows users to customize the LVDS megafunction. The MegaWizard Plug-In Manager
automatically generates the following files:

■ Component Declaration File (.cmp) that can be used in VHDL Design Files (.vhd)
■ Include File (.inc) that can be used in Text Design Files (.tdf) and Verilog Design Files (.v)
■ Quartus Block Symbol File (.bsf) that can be used in Quartus Block Design Files (.bdf)
■ Custom Megafunction variation file (TDF, VHD, or V file)

The MegaWizard Plug-In Manager can be invoked in two ways:

■ Choosing the MegaWizard Plug-In Manager command from the Tools menu, as seen in Figure 8.
■ Selecting MegaWizard Plug-In Manager from the symbol dialog box in the Block Editor, as seen in Figure 9.

Figure 8. Invoking the MegaWizard Plug-In Manager from the Tools Menu
10

Altera Corporation Using LVDS in the Quartus Software

le
Figure 9. Invoking the MegaWizard Plug-In Manager from the Block Editor

The MegaWizard Plug-In Manager takes a step-by-step approach to generating customized LVDS transmitter and
receiver modules. Each page of the MegaWizard Plug-In Manager allows the user to select from a set of customizab
features that tailors the modules to the needs of the design.

Figure 10 displays the third page of the altlvds Megafunction in the MegaWizard Plug-In Manager when
instantiating an LVDS transmitter. Figure 11 shows the third page for a receiver instantiation. These pages allow the
user to customize the LVDS transmitter and receiver modules.
11

Altera Corporation Using LVDS in the Quartus Software
Figure 10. Page 3 of the altlvds Transmitter MegaWizard Plug-In Manager

Figure 11. Page 3 of the altlvds Receiver MegaWizard Plug-In Manager
12

Altera Corporation Using LVDS in the Quartus Software

.

.
o

,

the

to
Described below are the various customizable features that are available in the MegaWizard interface:

■ Number of channels – this option allows the user to select the number of LVDS channels to be used in the design
The desired value can be either typed or selected from the pop-up menu, up to a maximum of 16 channelsThis
simplifies the complexity of the design in that only one transmitter or receiver module needs to be instantiated t
represent multiple LVDS channels.

■ Deserialization factor – this option specifies the number of bits per channel. The user can either type or select 4
7 or 8 from the pop-up menu.

■ Clock frequency / period – this option specifies the clock frequency or period of the LVDS input clock. If the
deserialization factor is 4 bits per channel, the clock frequency can be 50-80 MHz. Otherwise, the clock fre-
quency can be 30-80 for 7 bits per channel and 30-78 MHz for 8 bits per channel. (See Note 1 on page 9.)

■ LVDS transmitter / receiver – this option specifies the function of the LVDS module.
■ Register inputs / outputs – specifies whether or not to register the inputs for the transmitter and outputs for the

receiver.
■ Use the tx_locked / rx_locked port – this option enables the use of the locked pin for the transmitter and

receiver. When the phase-locked loop (PLL) locks onto the incoming clock and generates an internal clock,
locked signal is driven high. It remains high as long as the input clock remains within specification.

■ Use a synchronization clock – this option activates the synchronization clock for the transmitter. If this option is
activated, the synchronization clock must have the same frequency and phase as the transmitter clock in order
avoid hold time violations.

■ Use the rx_deskew input port – this option activates the deskew input port for the receiver which is used to cal-
ibrate the module.

MegaWizar d Examples

Figure 12 shows an altlvds transmitter module generated by the MegaWizard Plug-In Manager with an input
frequency of 50 MHz. 16 channels are used with a deserialization factor of 4. In this example, the sync_inclock
input and the tx_locked output are both used as well as the input registers.

Figure 12. 50 MHz 16-Channel 4× LVDS Transmitter

Figure 13 shows the instantiation of an LVDS receiver with 16 channels and an input frequency of 50 MHz. The
deserialization factor is set to 4. The rx_deskew , rx_outclock and output registers are all used in this example.

Figure 13. 50 MHz 16-Channel 4× LVDS Receiver
13

Altera Corporation Using LVDS in the Quartus Software

.
HDL Examples

The following examples show the altlvds megafunction in transmitter mode and receiver mode, respectively, in
both VHDL and Verilog. These examples instantiate the LVDS modules and connect them to input and output pins

VHDL HDL

The LVDS transmitter is a 16-channel module operating in 8× mode with an input clock of 70 MHz. The transmitter's
output clock is fed out of the module in 1× mode through the tx_outclock pin. The status of the PLL can be
monitored from the tx_locked pin. The input registers are also used.

lvds_tx.vhd

library ieee;
use ieee.std_logic_1164.all;

entity lvds_tx is
port

(tx_in: in std_logic_vector(127 downto 0);
tx_inclock: in std_logic;
sync_inclock: in std_logic;
tx_out: out std_logic_vector(15 downto 0);
tx_outclock: out std_logic;
tx_locked: out std_logic

);
end lvds_tx;

architecture apex of lvds_tx is
component altlvds_tx
generic

(number_of_channels: positive;
deserialization_factor: positive;
registered_input: string := "ON";
multi_clock: string := "OFF";
inclock_period: positive;
clock_setting: string := "UNUSED"

);
port

(tx_in: in std_logic_vector
(deserialization_factor*number_of_channels-1 downto 0);
tx_inclock: in std_logic;
sync_inclock: in std_logic := '0';
tx_out: out std_logic_vector
(number_of_channels-1 downto 0);
tx_outclock: out std_logic;
tx_locked: out std_logic

);
end component;
begin
U0:altlvds_tx

generic map (number_of_channels => 16,
deserialization_factor => 8,
inclock_period => 14285
14

Altera Corporation Using LVDS in the Quartus Software
)
port map (tx_in => tx_in,

tx_inclock => tx_inclock,
sync_inclock => sync_inclock,
tx_out => tx_out,
tx_outclock => tx_outclock,
tx_locked => tx_locked

);
end apex;

lvds_rx.vhd

The LVDS receiver is a 16-channel module operating in 8× mode with an input clock of 70 MHz. The receiver's
output clock cannot be fed out directly to an output pin; therefore, it feeds the clock port of a dff register.

library ieee;
use ieee.std_logic_1164.all;

entity lvds_rx is
port

(rx_in:instd_logic_vector(15 downto 0);
rx_inclock:instd_logic;
rx_deskew:instd_logic;
rx_out:outstd_logic_vector(127 downto 0);
rx_outclock:outstd_logic;
rx_locked:outstd_logic;
inpin:instd_logic;
outpin:outstd_logic;
clear:instd_logic;
preset:instd_logic

);
end lvds_rx;

architecture apex of lvds_rx is
component altlvds_rx

generic
(number_of_channels:positive;

deserialization_factor :positive;
registered_output:string = "ON";
inclock_period:positive;
clock_setting:string := "UNUSED"

);
port

(rx_in:instd_logic_vector(number_of_channels-1 downto 0);
rx_inclock:instd_logic;
rx_deskew:instd_logic := '0';
rx_out:out std_logic_vector(deserialization_factor *
number_of_channels-1 downto 0);
rx_outclock:outstd_logic;
rx_locked:outstd_logic

);
end component;
15

Altera Corporation Using LVDS in the Quartus Software
component dff
 port

(
d : in std_logic;
clk : in std_logic;
clrn: in std_logic;
prn : in std_logic;
q : out std_logic
);

end component;

signal clock: std_logic;
begin
U0: altlvds_rx

generic map
(number_of_channels => 16,

deserialization_factor => 8,
inclock_period => 14285

)
port map

(rx_in => rx_in,
rx_inclock => rx_inclock,
rx_deskew => rx_deskew,
rx_out => rx_out,
rx_outclock => clock,
rx_locked => rx_locked

);

U1: dff
port map (d => inpin,

clk => clock,
clrn => clear,
prn => preset,
q => outpin);

end apex;

Verilog HDL

The following examples show the altlvds megafunction in Verilog HDL for both the transmitter and receiver,
respectively. The LVDS transmitter is a 16-channel module, operating with an input clock of 70 MHz and a
deserialization factor of 8×. The output clock of the PLL is fed directly to the tx_outclock output pin.

lvds_tx.v

module lvds_tx (tx_in, tx_inclock, tx_out, tx_outclock, tx_locked);
input[127:0] tx_in;
input tx_inclock;
output[15:0] tx_out;
output tx_outclock;
output tx_locked;

altlvds_tx U0 (.tx_in (tx_in), .tx_inclock (tx_inclock), .tx_out (tx_out),
.tx_outclock (tx_outclock), .tx_locked (tx_locked));
16

Altera Corporation Using LVDS in the Quartus Software

ack
n
defparam
U0.number_of_channels = 16,
U0.deserialization_factor = 8,
U0.registered_input = "On",
U0.multi_clock = "Off",
U0.inclock_period = 14285;

endmodule

lvds_rx.v

The receiver is also a 16-channel module with an input clock frequency of 70 MHz and a deserialization factor of 8×.
The output clock of the PLL is fed to the clock port of register D1 since it cannot be fed directly to an output pin.

module lvds_rx (rx_in, rx_inclock, rx_deskew, rx_out, rx_locked, inpin,
outpin);

input[15:0] rx_in;
input rx_inclock;
input rx_deskew;
output[127:0] rx_out;
output rx_locked;
input inpin;
output outpin;

reg pll_out;
altlvds_rx U0 (.rx_in (rx_in), .rx_inclock (rx_inclock), .rx_deskew
(rx_deskew), .rx_out (rx_out), .rx_outclock (pll_out), .rx_locked
(rx_locked));
defparam

U0.number_of_channels = 16,
U0.deserialization_factor = 8,
U0.registered_output = "ON",
U0.inclock_period = 14285;

dff D1 (.d(inpin), .q(outpin), .clk(pll_out));
endmodule

Synthesis with Thir d Party Tools

To synthesize the design successfully in third party tools such as Synplify, FPGA Compiler/II, FPGA Express, and
LeonardoSpectrum, the LVDS design component must be treated as a black box. By declaring the module a bl
box, synthesis tools will refrain from synthesizing the module. However, the correct port connections will be made i
the output EDIF netlist file (.edf) or verilog Quartus mapping file (.vqm). When the netlist file is brought into the
Quartus software, native synthesis on the black-boxed module is automatically performed.

The LVDS module must first be generated by the MegaWizard Plug-In Manager which involves specifying the name
of the module and the ports that are used. Below are examples of an LVDS transmitter design in VHDL and Verilog

for several 3rd party tools. The file named mylvds_tx is the MegaWizard-generated file.

VHDL: lvds_tx.vhd

Synplicity Synplify and Synopsys FPGA Compiler II/FPGA Express/FPGA Compiler II Altera Edition

library ieee;
use ieee.std_logic_1164.all;
17

Altera Corporation Using LVDS in the Quartus Software
entity lvds_tx is
port

(tx_in: in std_logic_vector(127 downto 0);
tx_inclock: in std_logic;
sync_inclock: in std_logic;
tx_out: out std_logic_vector(15 downto 0);
tx_outclock: out std_logic;
tx_locked: out std_logic

);
end lvds_tx;

architecture apex of lvds_tx is
component mylvds_tx

port
(tx_in: in std_logic_vector(127 downto 0);

tx_inclock: in std_logic;
sync_inclock: in std_logic;
tx_out: out std_logic_vector(15 downto 0);
tx_outclock: out std_logic;
tx_locked: out std_logic

);
end component;

attribute black_box: boolean;
attribute black_box of mylvds_tx: component is true;

begin

U0:mylvds_tx
port map (tx_in => tx_in, tx_inclock => tx_inclock, sync_inclock =>
sync_inclock, tx_out => tx_out, tx_outclock => tx_outclock, tx_locked =>
tx_locked);

end apex;

Exemplar Leonar doSpectrum: lvds_tx.vhd

library ieee;
use ieee.std_logic_1164.all;

entity lvds_tx is
port

(tx_in: in std_logic_vector(127 downto 0);
tx_inclock: in std_logic;
sync_inclock: in std_logic;
tx_out: out std_logic_vector(15 downto 0);
tx_outclock: out std_logic;
tx_locked: out std_logic

);
end lvds_tx;

architecture apex of lvds_tx is
component mylvds_tx
18

Altera Corporation Using LVDS in the Quartus Software
port
(tx_in: in std_logic_vector(127 downto 0);

tx_inclock: in std_logic;
sync_inclock: in std_logic;
tx_out: out std_logic_vector(15 downto 0);
tx_outclock: out std_logic;
tx_locked: out std_logic

);
end component;

attribute noopt: boolean;
attribute noopt of mylvds_tx: component is true;

begin
U0:mylvds_tx

port map (tx_in => tx_in, tx_inclock => tx_inclock, sync_inclock =>
sync_inclock, tx_out => tx_out, tx_outclock => tx_outclock, tx_locked =>
tx_locked);
end apex;

Verilog: lvds_tx.v

The code below demonstrates black-boxing in Verilog using the same transmitter module generated by the
MegaWizard Plug-In Manager.

Synplicity Synplify and Synopsys FPGA Compiler II/FPGA Express/FPGA Compiler II Altera Edition

module mylvds_tx (tx_in, tx_inclock, tx_out, tx_outclock, tx_locked);
/*synthesis black_box*/

input[127:0] tx_in;
input tx_inclock;
output[15:0] tx_out;
output tx_outclock;
output tx_locked;

endmodule

module lvds_tx (tx_in, tx_inclock, tx_out, tx_outclock, tx_locked);
input[127:0] tx_in;
input tx_inclock;
output[15:0] tx_out;
output tx_outclock;
output tx_locked;

mylvds_tx U0 (.tx_in (tx_in), .tx_inclock (tx_inclock), .tx_out (tx_out),
.tx_outclock (tx_outclock), .tx_locked (tx_locked));

endmodule
19

Altera Corporation Using LVDS in the Quartus Software
Exemplar Leonar doSpectrum: lvds_tx.v

module mylvds_tx (tx_in, tx_inclock, tx_out, tx_outclock, tx_locked);
input[127:0] tx_in;
input tx_inclock;
output[15:0] tx_out;
output tx_outclock;
output tx_locked;

endmodule
// higher level file
module lvds_tx (tx_in, tx_inclock, tx_out, tx_outclock, tx_locked);

input[127:0] tx_in;
input tx_inclock;
output[15:0] tx_out;
output tx_outclock;
output tx_locked;

mylvds_tx U0 (.tx_in (tx_in), .tx_inclock (tx_inclock), .tx_out (tx_out),
.tx_outclock (tx_outclock), .tx_locked (tx_locked));
//exemplar attribute U0 NOOPT TRUE
endmodule

The Quartus software must be configured so that it recognizes the EDF or VQM netlist file from the third party
synthesis tool. The synthesis tool can be selected from the EDA Tool Settings dialog box (Project menu) in the
Quartus software, as seen in Figure 14. More information regarding the Quartus software’s integration with third
party tools can be found on the Altera web site at http://www.altera.com/html/nativelink/nativelink.html.

Figure 14. EDA Tool Settings in the Quartus Software
20

Altera Corporation Using LVDS in the Quartus Software

Testbenc hes

The following testbench examples, which can be used in third party simulators such as ModelSim, show the
functionality of the LVDS behavioral model. The receiver’s output is connected directly to the transmitter’s input. The
deskew pin is asserted, and the calibration pattern is applied first. If this is not done correctly, the model will not allow
data to exit the transmitter. The test pattern inputs to the receiver’s input port and subsequently leaves the transmitter’s
output port after two clock cycles of latency. When running this test bench, ensure that the time resolution of the
simulator is set to picoseconds. More information on receiver calibration can be found in the following VHDL HDL
and Verilog HDL testbench examples.

VHDL HDL: lvds_test.vhd

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;
USE work.apex20ke_mf_components.ALL;
USE std.textio.ALL;

ENTITY lvds_test IS
END lvds_test;

ARCHITECTURE testbench OF lvds_test IS

SIGNAL rx_in : std_logic_vector(3 downto 0) := "0000";
SIGNAL rx_inclock : std_logic := '1';
SIGNAL rx_deskew : std_logic := '0';
SIGNAL synch_inclock : std_logic := '0';
SIGNAL tx_out : std_logic_vector(3 downto 0);
SIGNAL tx_outclock : std_logic;
SIGNAL rx_out : std_logic_vector(31 downto 0);
SIGNAL rx_outclock : std_logic;
SIGNAL lvds_data_clk : std_logic := '1';

TYPE rx_buffer IS ARRAY(0 to 17, 0 to 3) OF std_logic;

BEGIN

-- Instantiate the LDVS Receiver
L0: altlvds_rx

GENERIC MAP (number_of_channels => 4,
deserialization_factor => 8,
inclock_period => 128000,
registered_output => "ON")

PORT MAP (rx_in => rx_in,
rx_inclock => rx_inclock,
rx_deskew => rx_deskew,
rx_out => rx_out,
rx_outclock => rx_outclock);

-- Instantiate the LVDX Transmitter
L1: altlvds_tx
21

Altera Corporation Using LVDS in the Quartus Software
GENERIC MAP (number_of_channels => 4,
deserialization_factor => 8,
inclock_period => 128000,
registered_input => "ON")

PORT MAP (tx_in => rx_out,
tx_inclock => rx_inclock,
sync_inclock => synch_inclock,
tx_out => tx_out,
tx_outclock => tx_outclock);

-- Create a 7,812,500 Hz clock
PROCESS(rx_inclock)
BEGIN

rx_inclock <= NOT rx_inclock AFTER 64 ns;
END PROCESS;

-- Create a 62,500,000 lvds data clock to synch data inputs
PROCESS(lvds_data_clk)
BEGIN

lvds_data_clk <= NOT lvds_data_clk AFTER 8 ns;
END PROCESS;

PROCESS
VARIABLE deskew_pattern : std_logic_vector(23 downto 0) :=

"000011110000111100001111";
VARIABLE test_pattern : std_logic_vector(15 downto 0) :=

"0000011000000001";
VARIABLE cnt : integer range 0 to 15 := 0;
VARIABLE deskew_cnt: integer range 0 to 48 := 0;

BEGIN
IF deskew_cnt < 48 THEN

IF deskew_cnt > 23 THEN
rx_deskew <= '1';
rx_in(0) <= deskew_pattern(deskew_cnt -24);
rx_in(1) <= deskew_pattern(deskew_cnt -24);
rx_in(2) <= deskew_pattern(deskew_cnt -24);
rx_in(3) <= deskew_pattern(deskew_cnt -24);

END IF;
deskew_cnt := deskew_cnt + 1;
wait until ((lvds_data_clk'event) and (lvds_data_clk = '1'));

ELSIF cnt < 15 THEN
rx_deskew <= '0';
rx_in(0) <= test_pattern(cnt);
rx_in(1) <= test_pattern(cnt);
rx_in(2) <= test_pattern(cnt);
rx_in(3) <= test_pattern(cnt);
cnt := cnt + 1;
wait until ((lvds_data_clk'event) and (lvds_data_clk = '1'));

ELSE cnt := 0;
END IF;

END PROCESS;
22

Altera Corporation Using LVDS in the Quartus Software
END testbench;

Verilog HDL: lvds_test.v

`timescale 1ps/1ps

module lvds_test();
reg [3:0] rx_in;
reg rx_inclock;
reg rx_deskew;
reg synch_inclock;
wire [3:0] tx_out;
wire tx_outclock;
wire [31:0] rx_out;
wire rx_outclock;
reg lvds_data_clk;

reg [23:0] deskew_pattern;
reg [15:0] test_pattern;

reg [3:0] cnt;
reg [5:0] deskew_cnt;

altlvds_rx L0(.rx_in(rx_in), .rx_inclock(rx_inclock), .rx_deskew(rx_deskew),
.rx_out(rx_out), .rx_outclock(rx_outclock));
defparam L0.number_of_channels = 4;
defparam L0.deserialization_factor = 8;
defparam L0.registered_output = "ON";
defparam L0.inclock_period = 128000;

altlvds_tx L1(.tx_in(rx_out), .tx_inclock(rx_inclock),
.sync_inclock(synch_inclock), .tx_out(tx_out), .tx_outclock(tx_outclock));
defparam L1.number_of_channels = 4;
defparam L1.deserialization_factor = 8;
defparam L1.registered_input = "ON";
defparam L1.inclock_period = 128000;

initial
begin

rx_in = 4'b0000;
rx_deskew = 1'b0;
synch_inclock = 1'b0;
deskew_cnt = 6'b000001;
cnt = 4'b0000;
deskew_pattern = 24'b000011110000111100001111;
test_pattern = 16'b1000011110000001;

end

initial
begin

rx_inclock = 1'b1;
forever #64000 rx_inclock = ~rx_inclock;
23

Altera Corporation Using LVDS in the Quartus Software
end

initial
begin

lvds_data_clk = 1'b1;
forever #8000 lvds_data_clk = ~lvds_data_clk;

end

always@(posedge lvds_data_clk)
begin

if (deskew_cnt < 48)
begin
if (deskew_cnt > 23)

begin
rx_deskew = 1'b1;
rx_in[0] = deskew_pattern[deskew_cnt-24];
rx_in[1] = deskew_pattern[deskew_cnt-24];
rx_in[2] = deskew_pattern[deskew_cnt-24];
rx_in[3] = deskew_pattern[deskew_cnt-24];
end

deskew_cnt = deskew_cnt + 1;
end

else if (cnt <= 15)
begin
#1 rx_deskew = 1'b0;
rx_in[0] = test_pattern[cnt];
rx_in[1] = test_pattern[cnt];
rx_in[2] = test_pattern[cnt];
rx_in[3] = test_pattern[cnt];
cnt = cnt + 1;
end

else cnt = 0;
end
endmodule

Quar tus LVDS Repor ting

The Quartus software reports LVDS usage in the compilation report file. The report file documents all information
pertaining to LVDS resource usage and placement in the APEX device under the following categories:

■ All Package Pins
■ Control Signals
■ Global and Other Fast Signals
■ LVDS
■ ClockLock

This section briefly describes each category.

All Package Pins

This category of the report file indicates the function and location of all package pins. LVDS pins are displayed with
their names and pin numbers, as seen in the Figure 15 example.
24

Altera Corporation Using LVDS in the Quartus Software

Figure 15. All Package Pins Section of the Report File

The Quartus software adheres to the previously-discussed banking rules and will not place non-LVDS outputs in
LVDS-enabled banks. In such configurations, the design yields a no-fit, indicating that these non-LVDS outputs are
illegally placed.

For more information on using I/O standards in the Quartus software, refer to the Using I/O Standards in the Quartus
Software White Paper.

Contr ol Signals

The Control Signals category reports the control signals that are present in the design. LVDS control signals, such as
input clocks and PLL output clocks, are reported as seen in Figure 16. PLL output clocks are denoted as either
pll_clk0 or pll_clk1 . pll_clk1 can be fed directly out of the transmitter in 1× mode.

Figure 16. Control Signals Section of the Report File

Global and Other F ast Signals

The Global and Other Fast Signals section displays the globally routed signals in the design. When LVDS is used,
only the PLL-generated clocks and the synchronization clocks are routed globally as seen in Figure 17. The number
of fan-out nodes for the global signal is also displayed.
25

Altera Corporation Using LVDS in the Quartus Software

Figure 17. Global and Other Fast Signals Section of the Report File

LVDS

This category reports LVDS usage in the design, as seen in Figure 18. The instance name is displayed along with its
function and deserialization factor. Both PLL output clocks for the LVDS modules are also shown. The LVDS
category is omitted when LVDS is not used in the APEX device.

Figure 18. LVDS Section of the Report File

Cloc kLoc k

The ClockLock category of the report file, as seen in Figure 19, gives the specifications of each PLL that was used.
The input frequency is indicated as well as the various resulting clock frequencies after multiplication by the
deserialization factor.

Figure 19. ClockLock Section of the Report File

Floorplanner

The Floorplanner gives a visual representation of the internal routing and placement of logic within the device.

Figure 20 shows the Floorplan view for an LVDS transmitter. The transmitter is divided between two or more colored
blocks: the LVDS PLL is located adjacent to the transmitter output clock pins (LVDSTXOUTCLK1p and
LVDSTXOUTCLK1n), and the individual parallel-to-serial converters are located adjacent to each pair of LVDS data-
out pins (e.g. LVDSTX01p and LVDSTX01n).
26

Altera Corporation Using LVDS in the Quartus Software

s

Figure 20. Floorplanner View of LVDS Transmitter

In Figure 20, the PLL appears in the equations as LVDS_PLLTX_1, and the single parallel-to-serial converter
appears as LVDSTX_1. The logic cells that appear to the right of the LVDS modules represent additional logic that i
consumed during implementation. The transmitter’s locked PLL clock (pll_clk1) can be driven off-chip in 1×
mode through the transmitter output clock pins.

The Quartus software displays the LVDS receiver module in a similar fashion, as seen in Figure 21. The receiver is
divided between two or more colored blocks: the LVDS PLL is located adjacent to the receiver input clock pins
(LVDSRXINCLK1p and LVDSRXINCLK1n), and the individual serial-to-parallel converters are located adjacent to
the LVDS data-in pins (LVDSRX01p and LVDSRX01n). The PLL appears as LVDS_PLLRX_1, and the serial-to-
parallel converter appears as LVDSRX_1 in this example. The logic cells that appear to the left of the LVDS modules
represent additional logic that is consumed during implementation. Because the PLL receiver output clock cannot be
fed externally, it does not fan-out to any I/O pins in the Floorplan view.
27

Altera Corporation Using LVDS in the Quartus Software

Figure 21. Floorplanner View of LVDS Receiver

Simulation in Quar tus

The Quartus development tool provides users with the capability to conveniently and efficiently simulate the LVDS
design. Vector waveform files (.vwf), which are used as inputs to the native simulation tool, can be created within the
Quartus software. The simulation model for the LVDS receiver is essentially a serialization shift-register that is driven
by an LVDS data channel and clocked by an LVDS PLL multiplied by the serialization value. The shift-register drives
a bank of data registers clocked by the original clock. The LVDS transmitter module is the inverse of the receiver. A
data register is driven by internal parallel data signals and clocked by the original LVDS clock. It then loads a shift-
register that drives the LVDS output pin and is clocked by the multiplied output of the LVDS PLL. For more
information on simulation in the Quartus software, see Quartus Help.

Figure 22 shows the results of an example functional simulation of an LVDS transmitter. The 16-channel transmitter
is operating at 60 MHz with the synchronization clock activated and a deserialization factor of 8.

Figure 22. Example Functional Simulation Waveform of LVDS Transmitter

The locked pin tx_locked remains high as long as the input frequency is valid. The input clock tx_inclock and
the synchronization clock syn_inclock must have the exact same phase and frequency for the module to function
correctly. The clocks must also have the same frequency specified in the design files. If the frequency differs, the
Simulator will warn that the PLL was unable to lock onto the incoming clocks.
28

Altera Corporation Using LVDS in the Quartus Software

 1

 the

The incoming data tx_in is synchronized with the input clocks tx_inclock and syn_inclock . The output
data tx_out is synchronized with the output clock tx_outclock that has the same frequency as the input clock.
The output clock has the same frequency as the input clock, (not the internally multiplied clock), because only the×
version of the PLL-generated clock can be fed out. The output data transitions 8 times within one period of the 1×
clock, indicating that the deserialization factor is 8.

Figure 23 shows the results of an example functional simulation of the deskew circuitry in the LVDS receiver. The
deskew pin rx_deskew is asserted for at least three clock cycles after the PLL locks onto the incoming clock and
the deskew calibration pattern is applied to all channels. If the deskew pin is prematurely de-asserted or the deskew
calibration pattern is incorrect, the Quartus software will warn that the deskew pin was de-asserted at an invalid time.

Figure 23. Example Functional Simulation Waveform of Receiver Calibration

Figure 24 shows the results of an example functional simulation of an LVDS receiver. The locked pin rx_locked is
asserted as long as the incoming clock signal is valid. The valid frequency is determined by the value that is set in the
MegaWizard. If this frequency does not correspond, the simulation will indicate that the PLL could not lock onto
incoming clock signal.

Figure 24. Example Functional Simulation Waveform of LVDS Receiver

The incoming data is synchronized with the incoming clock signal rx_inclock . The input data transitions 8 times
within one incoming clock period, indicating that the deserialization factor is 8. The output data is synchronized with
the output clock of the receiver module, which is not displayed in the figure.

Figure 25 indicates the bit mapping performed by the Quartus software for a single receiver channel operating in 8×
mode at 60 MHz. The functional simulation waveforms show that the data for the current clock cycle of
rx_inclock (beginning at 41.66ns) map to the appropriate positions, as indicated in Table 3 on page 5. The first bit
of data for the current clock cycle is not accepted until 45.83ns, which is immediately after the last two bits of the
previous cycle are accepted.
29

Altera Corporation Using LVDS in the Quartus Software

Copyright 2000 Altera Corporation. Altera, APEX, APEX 20K, APEX 20KE, ClockBoost, ClockLock, ClockShift, EP20KE200E, EP20KE300E,
EP20K400E, MegaWizard, and Quartus are trademarks and/or service marks of Altera Corporation in the United States and other countries.
Other brands or products are trademarks of their respective holders. The specifications contained herein are subject to change without notice.
Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except
as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before
relying on any published information and before placing orders for products or services. All rights reserved.

®

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

Figure 25. Bit Mapping Sample Waveform

Summar y

The dedicated LVDS circuitry in APEX 20KE devices can be easily controlled by using the Quartus software.
Internal LVDS PLLs work in conjunction with this circuitry to provide adequate clock speeds for serial-to-parallel
and parallel-to-serial conversion while minimizing the required input clock frequency. The Quartus MegaWizard
Plug-In Manager interface greatly simplifies the potentially complex task of LVDS module instantiation in designs
with its easy-to-use graphical interface. Simulation can be easily performed in standard third party EDA tools as well
as within the Quartus software, permitting the user to calibrate the LVDS module and to verify the accuracy of the
design.

Following the guidelines provided in this document eases the difficult task of designing circuits for high-speed data
transmission.
30

	Contents
	Using LVDS in the Quartus Software White Paper
	Introduction
	LVDS in APEX 20KE Devices
	The altlvds Megafunction
	The MegaWizard Interface
	MegaWizard Examples
	HDL Examples
	VHDL HDL
	lvds_tx.vhd
	lvds_rx.vhd
	Verilog HDL
	lvds_tx.v
	lvds_rx.v
	Synthesis with Third Party Tools
	VHDL: lvds_tx.vhd
	Exemplar LeonardoSpectrum: lvds_tx.vhd
	Verilog: lvds_tx.v
	Exemplar LeonardoSpectrum: lvds_tx.v
	Testbenches
	VHDL HDL: lvds_test.vhd
	Verilog HDL: lvds_test.v
	Quartus LVDS Reporting
	All Package Pins
	Control Signals
	Global and Other Fast Signals
	LVDS
	ClockLock
	Floorplanner
	Simulation in Quartus
	Summary

