
Altera Corporation
AN-350 - 1.1

July 2006 - ver 1.1
Upgrading Nios Processor
Systems to the Nios II

Processor

Application Note 350
Overview The purpose of this document is to guide you through the process of
migrating to the Nios® II CPU in an existing embedded system with the
Nios embedded processor. This document discusses all necessary
hardware and software changes to use the Nios II CPU, as well as
optional changes that can be made to further enhance system
performance and functionality.

Audience This document is intended for both hardware and software developers
who have used the Altera® Nios development kit and have created one or
more functioning designs with the first-generation Nios processor.

Software developers should note that this document discusses topics
such as:

■ Minimal C and assembly source code modifications
■ GNU tool chain behavior, such as the treatment of the volatile

keyword and its effect on compiler behavior
■ Software development tool flow for the Nios processor (such as the

use of integrated development environments (IDE), and command
line tools such as nios-build, nios-run, nios-debug, etc.)

Hardware developers should note that this document discusses topics
such as:

■ Use of SOPC Builder (adding and removing components in a design)
■ Possible interrupt request (IRQ) reassignments
■ Possible modification of any previously-designed custom instruction

hardware
■ Simulation using an RTL simulator such as ModelSim

Readers who may not be proficient in the above topics are encouraged to
review documents such as the Nios II Hardware Development Tutorial and
the online Nios II Software Development Tutorial or other relevant Altera®
documentation to re-familiarize themselves with the above bulleted
topics.

Throughout this document it is assumed that you have an existing first-
generation Nios system that is functional and that you have all SOPC
Builder and Quartus II project files necessary to successfully recompile
your existing system.
 1

Upgrading Nios Processor Systems to the Nios II Processor
Before You
Begin

Before beginning you should ensure that the following tools are installed
on the computer where you develop with Nios/Nios II:

■ Quartus II 4.0 Service Pack 1, or higher
■ SOPC Builder 4.0, or higher (included with Quartus II Service Pack 1)
■ Nios II Development Kit, 1.0, or higher
■ (Optional) ModelSim® Altera 5.7e or higher, or ModelSim PE,SE,EE

Additionally, it is assumed that you have basic familiarity of the Nios II
processor and the contents of the following documents:

■ Nios II Development Kit Getting Started Guide
■ Nios II Hardware Development Tutorial
■ Nios II IDE Software Development Tutorials (online)

Introduction The Nios development kit and embedded processor have been adopted
by engineering teams worldwide in part because of its ease of use in
development and implementation of system-on-a-programmable-chip
(SOPC) designs.

Nios II represents the next revolutionary step in embedded design.
Compared to the first-generation Nios processor it delivers higher
performance, lower FPGA resource utilization, closer integration with
real time operating systems (RTOS) such as Micrium MicroC/OS-II, and
the Nios II IDE. To make these features possible, the Nios II processor
introduces significant architectural changes in the microprocessor core,
compiler and tool chain, and development methodology.

Upgrading a system from the first-generation Nios processor requires
certain system changes that will be covered in detail later in this
document. These steps include replacing the Nios CPU with a Nios II
CPU in SOPC Builder, possible interrupt request (IRQ) reassignments,
and upgrading certain other peripherals for Nios II compatibility.

Overview of
Migration to
Nios II Features

The Nios II processor introduces many new advances, including:

■ The Nios II IDE for integrated code development and debugging.
■ The hardware abstraction layer (HAL) system library replaces the

Nios software development kit (SDK). The HAL provides a robust
runtime environment, including support for the familiar ANSI C
standard library functions, such as printf(), fopen(),
gettimeofday(), etc.

■ An instruction set simulator

Migration involves updating your existing application code to take
advantage of the new features provided by the Nios II processor.
2 Altera Corporation

Upgrading Nios Processor Systems to the Nios II Processor
This upgrade has the following benefits:

■ Full use of Nios II IDE, tailored to support the new Altera hardware
abstraction layer (HAL) software development flow, allowing
automatic creation and management of new software development
projects, and close integration of MicroC-OS/II RTOS and LWIP
network stack software.

■ ANSI C standard library support through the Altera HAL.
■ Support of new common flash interface (CFI), JTAG UART, and

System ID peripherals, as well as new peripherals in future Nios II
releases.

■ Support for all Nios II cores, including the Nios II/f core.

This upgrade has the following limitations:

■ Existing Nios source code will need to be modified using a five-step
process (with examples) described in this document.

■ On-chip memory contents and off-chip memory simulation model
contents are no longer generated in SOPC Builder. You will need to
build software in the Nios II IDE to generate memory content files.

Requisite
Upgrade Steps

This section describes the steps necessary to upgrade. These steps will
largely discuss the minimal hardware changes required to replace
existing Nios CPU(s) with the Nios II CPU.

Preliminary Steps — Backup & Open Project Files

1 Before you begin, you should backup your existing Quartus II
project folder containing your existing Nios design, including
all sub-directories. This backup will allow you to refer to your
design later if needed.

1. Rename or delete any existing SDK directories within your Quartus
project folder.

2. Open your Quartus project file (.quartus or .qpf).

1 If your project was created prior to Quartus II 4.0, and you
have not since opened it, you will be prompted to upgrade
your Quartus project and associated files to be compatible
with Quartus II 4.0.

3. Open SOPC Builder to view and edit your design containing Nios
CPU(s).
Altera Corporation 3

Upgrading Nios Processor Systems to the Nios II Processor
SOPC Builder — Hardware Modifications

Once you have opened your design in SOPC Builder, any existing Nios
CPUs need to be replaced with Nios II CPUs. The following steps will
guide you through first adding Nios II CPU core(s) to replace existing
Nios cores; and then removing previously instantiated Nios core(s). This
flow is helpful in copying over various system settings in SOPC Builder.
Steps 1 through 9 in this section should be performed to complete this
process.

Step 1

Select your target board from the Target pull-down menu. See Figure 4–1.

Figure 4–1. Selecting Target Development Board

Step 2

Note the Nios CPU’s master port connections to other peripherals in your
system. From the View menu, select Show Connections and expand the
Nios CPU to view master port connections to its Avalon slaves as shown
in Figure 4–2 on page 4–5. If you have made any arbitration priority
assignments between the Nios CPU and other peripherals, choose Show
Arbitration Priorities from the View menu.
4 Altera Corporation

Upgrading Nios Processor Systems to the Nios II Processor
You will need to connect the Nios II CPU’s master ports to the same
Avalon slave ports as the original Nios CPU(s) being replaced.

Figure 4–2. Viewing Avalon Connections for existing Nios CPU

Step 3

Add Nios II CPU(s) to your system to replace each Nios CPU. The Nios II
Wizard allows you to select a number of CPU architecture options that
vary in performance and logic utilization.

1. In the Nios II core (see Figure 4–3), choose the Nios II core
appropriate to your design. If appropriate, select the cache and
hardware divider options as well.
Altera Corporation 5

Upgrading Nios Processor Systems to the Nios II Processor
f If you are not sure of the core that meets your design needs, refer to the
“Nios II Core Implementation Details” chapter in the Nios II Processor
Handbook for details on each Nios II CPU core.

Figure 4–3. Nios II Wizard - CPU Selector

2. In the JTAG Debug Module (see Figure 4–4 on page 4–7), select the
debug core applicable to your system’s debug needs.
6 Altera Corporation

Upgrading Nios Processor Systems to the Nios II Processor
Figure 4–4. Nios II Wizard – Debug Configuration

Debug levels 1 — 4 are available with the Nios II development kit and are
as follows:

■ Level 1 — unlimited software breakpoints
■ Level 2 — hardware breakpoints and limited software trace

capability
■ Level 3 — hardware breakpoints and full software trace capability
■ Level 4 — additional hardware breakpoints, off-chip instruction, and

data trace capability

For the full software trace capacity of debug level 3 and all the features of
debug level 4, an additional license and/or hardware from First Silicon
Solutions is required. For more information, see the First Silicon Solutions
website at www.fs2.com.

Extensive debugging tools, including trace capabilities and analysis tools
are also available from Lauterbach. For more information, see the
Lauterbach website at www.lauterbach.com.

On the first-generation Nios processor, the on-chip instrumentation (OCI)
debug module used for JTAG-based debugging could also be used for
host communication. For Nios II systems, JTAG host communication uses
the new JTAG UART peripheral included with the Nios II development
kit.
Altera Corporation 7

Upgrading Nios Processor Systems to the Nios II Processor
3. If necessary, re-add any custom instructions to your Nios II CPU
that were present in your previous Nios CPU (see Figure 4–5).

Figure 4–5. Nios II Wizard – Custom Instructions

f Refer to the Nios II Custom Instruction User Guide for details on upgrading
your existing Nios custom instructions.

4. Once you have configured each Nios II CPU core, click Finish to
add the CPU core to your system.

If your Nios II CPU has the JTAG debug core enabled, the CPU core
will contain an Avalon slave port. Compared to the first-generation
Nios CPU, the debug core’s addressable span has increased to
0x800. If you notice any address conflicts with other peripherals, re-
assign the Nios II CPU base address, or use the SOPC Builder Auto-
Assign Base Addresses feature (accessible by right-clicking on the
list of peripherals in the system) to resolve any address conflicts.

1 This change will not alter the behavior of automatically-
generated software because references to peripherals and
memory are based on symbols rather than fixed addresses.
8 Altera Corporation

Upgrading Nios Processor Systems to the Nios II Processor
Step 4

After adding each Nios II CPU to your system, give each CPU a unique
name in the table of components in your design.

Step 5

Reassign IRQ numbers to slave peripherals as necessary. IRQ settings for
all slave peripherals must be in the range of 0-31, or NC for no connect.

The Nios II CPU’s method of handling interrupts has changed
significantly. Previously, a Nios CPU had 64 vectored interrupts,
numbered 0-63, of which 0-15 were reserved for the system. Nios II CPUs
allow a maximum of 32 vectored interrupts, ranging from 0-31. IRQ 0
remains the highest priority interrupt when using the built-in Nios II
software interrupt support.

f For additional details on Nios II interrupt handling, see the “Exception
Handling” chapter in the Nios II Software Developer’s Handbook.

Step 6

Update memory components (on-chip memory, SRAM, and Flash). Note
that these changes are not binding and can be changed if you re-generate
the system.

1. You must replace existing memory components (on-chip memory
and SRAM) with updated components that do not include memory
contents. To do so, delete each existing memory peripheral from the
system and re-add the component from the pool of SOPC Builder
peripherals. You may elect to first add a replacement memory
component and then delete the old one. Ensure that the same
memory settings are used.

2. Delete any peripherals in your system used only for the GERMS
boot monitor.

3. Replace flash memory components. Delete existing flash memory
instantiations from your system and use the Flash Memory
(Common Flash Interface) component from SOPC Builder to add
replacement flash memory interfaces.

f Refer to the “Common Flash Interface Controller Core with Avalon
Interface” in the Nios II Processor Handbook for details on the new flash
interface.
Altera Corporation 9

Upgrading Nios Processor Systems to the Nios II Processor
Memory peripheral replacement is necessary because memory contents,
whether actual contents for on-chip memory, or simulation model
contents for off-chip memory, are now generated by the Nios II IDE
software build process. As a result, the SOPC Builder components that
define the various memory interfaces have been updated.

It is no longer necessary to have a boot monitor present in your system.
See “Overview of Migration to Nios II Features” on page 4–2. New
utilities included with the Nios II IDE allow you to send code to the CPU
and begin execution, as well as program flash, without the use of a
GERMS monitor. Unless explicitly required, you may delete the on-chip
boot memory present in your previous system to save FPGA memory
resources.

Step 7

Double-click on any existing PIO peripherals in your system. Specify
simulation stimulus in the Stimulation tab as shown in Figure 4–6.

Figure 4–6. PIO Simulation Settings
10 Altera Corporation

Upgrading Nios Processor Systems to the Nios II Processor
Step 8

Re-establish the Avalon interconnections that were present before
removing the old Nios CPU(s) and any memory peripherals. During this
step, re-enter any arbitration priorities settings from “Step 2” and apply
them to the new Nios II Avalon master ports.

SOPC Builder will automatically re-connect many Avalon
interconnections. Typically, the Nios II instruction master will be
connected to all memory slaves, and the data master will be connected to
all Avalon slaves in the system. You may need to add/remove
connections for your system’s architecture.

Step 9

To remove the previous Nios CPU(s) from your system, select the CPU
and then click Delete, or right-click on the CPU and click Delete.

SOPC Builder – Additional Nios II CPU Settings

After replacing the CPU and any other peripherals in your system,
proceed to the SOPC Builder tab More <CPU Name> Settings (see
Figure 4–7). There will be a separate tab for each Nios II CPU in your
system.

Figure 4–7. Nios II CPU Settings for Reset & Exception Locations

1. Set the Reset Location to the memory device in your system that
you wish to boot from. You may optionally specify an offset within
this device; this is helpful if booting from a specific area of flash
memory containing a boot copier.
Altera Corporation 11

Upgrading Nios Processor Systems to the Nios II Processor
c The Nios II CPU Reset Location offset, if any, must be at a 32-byte
(0x20) aligned boundary. Unless your system forces reset code
to a custom address during software link, offset 0x0 should be
selected.

1 For systems that have the JTAG debug core enabled, you can set
the reset location to an area of blank memory (such as erased
flash). Once software is compiled, the Nios II IDE, or nios2-
download command line utility may be used to send executable
files to Nios II.

2. Set the Exception Location (and offset from base address, if
applicable) to the memory device where your interrupt exception
handler code will be placed. Typically this is where program
memory also resides, but it may be located in a separate, lower-
latency memory device such as an on-chip Memory peripheral for
lower interrupt latency.

c The Nios II Exception Location offset, must be at a 32-byte
(0x20) aligned boundary (e.g., offsets 0x0, 0x20, 0x40…). Again,
the default offset is recommended for most users.

Upon completion of the above steps, the hardware portion of your
upgrade is complete. You can safely re-generate your system’s HDL in the
SOPC Builder System Generation tab.

The following sections will discuss the software portion of the upgrade
process.

Software
Migration to
Nios II

This section describes the software upgrade process to fully migrate your
application to Nios II and associated features. Before completing this
section, ensure that the “Requisite Upgrade Steps ” on page 4–3 are
completed. Before proceeding, ensure that you have access to the
directory where your SOPC Builder project resides. You need not have a
hardware target (Nios development or other board) available, but having
one accessible will prove helpful in demonstrating runtime features as
you progress.

The upgrade process to migrate to full Nios II support involves
modifying your existing C/C++ source code (assembly code must be re-
written as the Nios and Nios II instruction sets are different) to use the
Nios II HAL. The HAL provides access to hardware in the system via the
ANSI C standard library functions, such as printf() and fopen(). The
actual source code modifications that need to be performed fall into a
five-step process:
12 Altera Corporation

Upgrading Nios Processor Systems to the Nios II Processor
1. Replace existing header file inclusion (excalibur.h, etc.) with new
header files for the system, peripherals, and any standard C libraries
required for use of the ANSI C library use in conjunction with the
HAL.

2. Change existing API calls to legacy SDK functions with their HAL
equivalents (these are usually the nr_() functions provided with
Nios and associated peripherals in the legacy SDK).

3. (Optional) Change generic data types (unsigned char, short,
etc.) to Nios II-specific data types.

4. Replace peripheral registers accesses declared as structs and
pointers with I/O macros for each register. With the HAL, each
peripheral has a simple read and write macro to address each
register. Generic I/O macros exist for accessing user-defined
peripherals.

5. Update memory buffer access for Nios II data cache operation (if
applicable to your system).

Later in this application note, source code examples developed using
legacy SDK support will be modified to use the HAL environment. See
“Upgrading Your Application Code to Nios II & HAL” on page 4–15.

An Introduction to the HAL Environment

The Altera HAL, is a lightweight runtime environment for software
running on the Nios II processor. The HAL provides a simpler device
driver interface for applications to communicate with hardware. This
interface has been closely integrated with the Newlib standard C library
such that devices and files can be accessed using the ANSI C I/O
functions.

f Throughout this section, references will be made to certain HAL
concepts and implementations. Details are documented in the Nios II
Software Developer’s Handbook. It is highly recommended that you refer to
this document to assist you in explaining how to migrate code from
legacy SDK support to the HAL.

Before proceeding, please see “Overview of the HAL System Library” in
the Nios II Software Developer’s Handbook for a detailed introduction to the
HAL.
Altera Corporation 13

Upgrading Nios Processor Systems to the Nios II Processor
Definition of System Peripheral Addresses & Parameters

In the legacy Nios SDK, the file excalibur.h was automatically generated
and contained definitions of each peripheral’s address, data structure and
interrupt request (IRQ) numbers. With the HAL, system library projects
are generated with a single system include file, system.h, which defines
all system peripherals and base addresses. The content of system.h
parallels excalibur.h in many ways, but with additional information for
enabling ANSI C file-descriptor-based access to hardware resources, and
additional definitions of the parameterized hardware for each peripheral.

Some of the key differences between system.h and excalibur.h include
the following (In these examples, a fictitious peripheral named
MY_PERIPHERAL in SOPC Builder is assumed):

■ Base address
● Legacy SDK: na_my_peripheral
● HAL: MY_PERIPHERAL_BASE

■ IRQ number (if applicable):
● Legacy SDK: na_my_peripheral_irq
● HAL: MY_PERIPHERAL_IRQ

■ Name (for file descriptor use):
● Legacy SDK: n/a
● HAL: /dev/my_peripheral

In addition to the above differences, system.h defines specific features of
your system that can be very useful in ensuring that your application is
running on the correct target platform, or information that may be useful
in establishing conditional compilation statements to make your
application code generic, and run on multiple Nios II system variants.
This information includes (to name a few): FPGA family targeted, CPU
architecture, cache sizes, clock speed, the types of peripherals in the
system (regardless of their assigned names in SOPC Builder), and a
unique system ID (for use with the Altera System ID peripheral) that
allow runtime verification of software application versus hardware
target.

The system.h file does not include several of the features formerly present
in excalibur.h. They have been replaced with functionality in the HAL in
the form of additional C header files. See “Upgrading Your Application
Code to Nios II & HAL” on page 4–15 for details. Examples of these
include:
14 Altera Corporation

Upgrading Nios Processor Systems to the Nios II Processor
■ Register bit-masks and struct definitions for each peripheral. The
register map and any bit-masks for each Altera Avalon peripheral are
now defined in a peripheral-specific regs.h file included with each
peripheral. For example, the Altera Avalon Timer peripheral
registers are declared by including altera_avalon_timer_regs.h

■ Peripheral driver function prototypes. The HAL equivalents for each
driver are now prototyped in the appropriate header file for each
peripheral. For example, the Altera Avalon UART peripheral’s driver
prototype are declared by including altera_avalon_uart.h.

Software Development Tool & RTOS Use with the HAL

Included with the introduction of Nios II is the Nios II IDE. The Nios II
IDE includes functionality that creates and manages software
development projects. Each source code project must have an associated
library project, which references relevant libraries from the HAL and
system description files. For software build, GNU makefiles are
automatically generated to build both the user’s application code and
associated library (HAL).

Developers using existing third-party software development and debug
tools may still use the new software functionality provided by Nios II and
the full migration path. All source files for system libraries (the HAL
environment) are included with the Nios II kit and the HAL may be used
to build an application provided that the user or tool being used for
development refers to these source files (for example, using a Makefile
and GNU make). You should contact your third-party software
development tool vendor to see whether updates have been provided to
automate Nios II software development.

Developers using third-party real time operating systems (RTOSs) should
contact the RTOS vendor for a port supporting Nios II. Included with the
Nios II release is a fully-functional port of the Micrium MicroC/OS-II
RTOS.

Upgrading Your Application Code to Nios II & HAL

This section discusses the process of converting your existing C/C++
code from legacy Nios SDK support to work with the HAL environment.
The examples show several source code excerpts from the
peripheral_test example application to change it from relying on the
legacy Nios SDK to the HAL environment. The peripheral_test
application is an example program provided with the first-generation
Nios development kit’s SDK. It is a simple program that exercises several
Altera Corporation 15

Upgrading Nios Processor Systems to the Nios II Processor
hardware components on the Nios development board, making it perfect
for demonstrating the process of converting legacy SDK-based programs
to use the HAL.

As stated in “Overview of Migration to Nios II Features” on page 4–2 the
process to fully migrate software from legacy Nios to Nios II consists of
five steps. In the following section we will discuss these steps in greater
detail.

Step 1: Update Included Header Files

The HAL system library projects are generated with a single system
include file, system.h, which defines all system peripherals, base
addresses, etc. The system file is similar to excalibur.h or nios.h in the
legacy SDK; you should first replace these old include files with system.h.

Each peripheral in your system will have a corresponding header file that
defines the associated HAL device driver routines. These associated
routines are documented in the “Developing Device Drivers for the
HAL” in the Nios II Software Developer’s Handbook. Register offsets and
I/O access are defined in a second include file. For example, if your
system has a UART, altera_avalon_uart.h should be included for the
HAL device driver access, and altera_avalon_uart_regs.h included for
register access. If your system has a DMA controller
altera_avalon_dma.h and altera_avalon_dma_regs.h would be included.

In addition, the file alt_types.h is included to allow for directly
referencing 8, 16, and 32-bit signed and unsigned data types “Step 3:
Optional -- Change Generic Data Types to Nios II Specific Data Types” on
page 4–18 describes the associated changes.

Code example – Include File Modification:
In the example below, excalibur.h is removed and system.h is added.
Later in the source, the board’s LEDs are accessed directly (via a PIO
peripheral), so the PIO registers include file is added as well:

Application include files – Legacy SDK:
#include "excalibur.h"
#include "peripheral_test.h"

Application include files – using Nios II & the HAL:
#include "system.h"
#include "peripheral_test.h"
#include "altera_avalon_pio_regs.h"
#include "alt_types.h"
16 Altera Corporation

Upgrading Nios Processor Systems to the Nios II Processor
Step 2: Replace Legacy API Calls with HAL & ANSI C Calls

Next, existing calls to library routines provided in the legacy SDK are
replaced with their HAL and ANSI C counterparts. The most commonly
used API calls from the legacy SDK include nr_installuserisr(),
which installs and enables an interrupt service routine for a particular
IRQ number, and UART routines to send and receive characters, such as
nr_uart_rxchar() and nr_uart_txchar().

The next step is to locate and replace any legacy nr_ calls with their HAL
equivalents. Table 4–2 in “Nios II Legacy SDK vs. the HAL API” on
page 4–23 summarizes each legacy SDK API call provided with previous
releases of the Nios kit. Refer to it, in conjunction with the Nios II Software
Developer’s Handbook and related peripheral chapters in the Nios II
Processor Reference Manual to determine the exact changes necessary in
your application.

Code example – Pausing Application Execution:
The legacy nr_delay() routine pauses program execution by the
specified number of milliseconds. In this example, it is replaced with
usleep(), which pauses for the specified number of microseconds.

Pausing application execution – Legacy SDK:
nr_delay(100);// Pause 100 milliseconds

Pausing application execution – using Nios II & the HAL:
usleep(100000);// Pause 100,000 microseconds

Code example – Interrupt Service Routine Setup:
The legacy nr_installuserisr() was called to associate an ISR with
a specific IRQ number. This is replaced with the HAL equivalent,
alt_irq_register():

ISR initialization – Legacy SDK:
nr_installuserisr(na_timer1_irq,MyTimerISR,(long)&gC);

ISR Initialization – using Nios II & the HAL:
alt_irq_register(TIMER1_IRQ, (long)&gC, MyTimerISR);

Note that the order of the parameters has changed, with the context being
passed before ISR routine. Additionally, na_timer1_irq, previously
defined in the legacy SDK, is replaced with TIMER1_IRQ, defined in
system.h.
Altera Corporation 17

Upgrading Nios Processor Systems to the Nios II Processor
Step 3: Optional -- Change Generic Data Types to Nios II Specific Data
Types

To accommodate ANSI C, the HAL includes type definitions specific to
Nios II for accessing signed and unsigned 8, 16, and 32 bit values
explicitly. Altera recommends using these types in place of short, long,
etc. The benefit of this recommendation is that migration to future
architectures will ensure that data accesses which must be 8, 16, or 32 bits
continue to operate as expected. These definitions are declared by
including the alt_types.h file in your application source code. The HAL
source code and device drivers have been created following this
convention and may be referred to for many examples. Table 4–1 below
summarizes the data types and their meanings.

The ANSI C standard recognizes types int, unsigned int, and
signed int (the same as int). Other commonly-used data types, such
as signed and unsigned char, short, and long are machine-
dependant. For example, a long on one processor architecture may mean
32 bits, while it may mean 64 bits on another. The int type is recognized
as the data type providing the “best fit” for the architecture in question
(32 bits for Nios II).

Step 4: Change Peripheral Register Access to use HAL I/O Macros

Access to Nios peripherals with the legacy SDK was usually performed
by declaring a data structure, defined for each peripheral in the system,
and assigning the pointer representing the start of that structure to the
peripheral’s base address. In the HAL environment, this mechanism is
being replaced with I/O macros that define each register of a peripheral
explicitly. This change is being made, in part so that access to peripheral
registers uses Nios II CPU I/O-specific instructions. These instructions
bypass the CPU’s data cache, if any, and provide for uniform operation
across all Nios II CPU cores.

Table 4–1. Nios II Data Type Definitions

Nios II alt_type.h Definition Data Type Meaning

alt_8 Signed 8-bit value

alt_u8 Unsigned 8-bit value

alt_16 Signed 16-bit value

alt_u16 Unsigned 16-bit value

alt_32 Signed 32-bit value

alt_u32 Unsigned 32-bit value
18 Altera Corporation

Upgrading Nios Processor Systems to the Nios II Processor
The next step is to remove code that declares a structure, such as
np_uart *uart. Access to individual structure members, such as
uart->rxdata will be replaced with an I/O macro defined in
altera_avalon_uart_regs.h, such as
IORD_ALTERA_AVALON_UART_RXDATA. The two methods of accessing
a peripheral register yield the same result: the register is simply read from
or written to as appropriate. In addition, the defined I/O macros account
for peripheral register width (byte vs. half-word vs. word).

Code Example – Avalon PIO Peripheral Data Register Access
This example writes to a PIO peripheral’s data register using the np_pio
structure method. This code will be replaced by calling the I/O macro for
writing to the PIO’s data register:

PIO Register access – Legacy SDK:
np_pio *pio = na_seven_seg_pio;
pio->np_piodata = bits;

PIO Register access – using Nios II & the HAL:
IOWR_ALTERA_AVALON_PIO_DATA(SEVEN_SEG_PIO_BASE, bits);

The IOWR_ALTER_AVALON_PIO_DATA macro is defined in
altera_avalon_pio_regs.h, included during “Step 1: Update Included
Header Files” on page 4–16. SEVEN_SEG_PIO_BASE is defined in
system.h as the base address of the seven_seg_pio peripheral. This
was previously defined as na_seven_seg_pio in the legacy SDK.

Reading from a peripheral register is accomplished in a similar fashion.
This example reads the data register of the button_pio peripheral:

PIO register access – Legacy SDK:
buttons = pio->np_piodata;

PIO register access – Using Nios II & the HAL:
buttons = IORD_ALTERA_AVALON_PIO_DATA(BUTTON_PIO_BASE);

The above example illustrates direct register access to peripherals
included with Nios II. Additional routines provided with the HAL and its
ANSI C support may be better suited to your application’s needs. For
example, the HAL supports UART access with ANSI C printf(),
getchar(), fopen(), and fprintf(). Use of these routines is highly
recommended in favor of direct peripheral register access for most
applications because accessing peripheral registers directly in one area of
your application may interfere with the HAL driver access elsewhere (for
example, in another RTOS thread, or in an interrupt service routine). For
more information on the HAL and ANSI C support included with Nios II,
refer to the Nios II Software Developer’s Handbook.
Altera Corporation 19

Upgrading Nios Processor Systems to the Nios II Processor
Code Example – User-Defined Peripheral Register Access
Accessing registers in user logic is also straight-forward and done via the
IORD() and IOWR() macros. Example 4–1 illustrates reading from,
modifying, and writing back the contents of a 16-bit peripheral register in
a user-defined peripheral named my_peripheral.

In this example, the register in question is the second from the base
address; it is therefore offset one word into the peripheral’s address
space (as per Avalon Native addressing) by adding 0x4 to the base
address. When replacing such a register access with the HAL I/O access
macros, only the register number needs to be specified; the offset is
calculated in the macro automatically.

Example 4–1. User-defined register access – Legacy SDK:
unsigned char *reg = na_my_peripheral + 0x4; // Set offset in peripheral
unsigned short temp = 0;

temp = *reg; // Read 16-bit register to temp
temp |= 0x8000; // Set most significant bit
*reg = temp; // Write data back to peripheral

Example 4–2. User-Defined peripheral register access – using Nios II & the HAL:
alt_u16 temp = 0;

temp = IORD(MY_PERIPHERAL_BASE, 1); // Read 16-bit register to temp
temp |= 0x8000; // Set most significant bit
IOWR(MY_PERIPHERAL_BASE, 1, temp); // Write data back to peripheral

Step 5: Update Memory Buffer Access for Nios II Data Cache Operation

This step is required for all users of Nios II CPU cores with Data Cache,
such as the Nios II/f core. This step is suggested for all Nios II CPU core
types for consistent operation if the CPU is later upgraded.

Accesses to explicit areas of memory (previously done with volatile
pointer dereferencing in first-generation Nios systems containing data
cache) must be updated to ensure that data written to main memory does
not remain in the Nios II data cache. In the first-generation Nios CPU,
volatile meant do not cache – in Nios II, volatile follows its ANSI C
definition of do not optimize.
20 Altera Corporation

Upgrading Nios Processor Systems to the Nios II Processor
c This change is of vital importance in systems where data is
shared between multiple masters. For example, a memory
buffer that is accessed by a second CPU, DMA controller, or
other external master needs assurance that data “touched” by
the Nios II CPU is written back to memory after modification.
Additionally, memory that may be modified outside of the CPU
must not be cached so that the processor fetches the correct data
rather than a private cached copy.

There are three basic tools available to the user for managing data cache
coherency in Nios II. Use of these tools will depend on the requirements
of your software (the details of all of these can be found in the Cache
Memory chapter of the Nios II Software Developer’s Handbook. The three
basic tools are:

1. alt_dcache_flush(void* start, alt_u32 len) — Flushes
the specified range of cached memory in the CPU data cache. This
will write out cache information to external memory.

2. I/O Read and Write macros for access to memory:
IORD_<8|16|32>DIRECT & IOWR_<8|16|32>DIRECT.

These macros are designed to load or store 8, 16, or 32 bits of memory
while bypassing the data cache. Care must be taken with these
macros if some variable or data structure in your code is already
cached. In such cases, the data cache should be flushed.

3. The HAL includes non-cacheable alt_uncached_malloc() and
alt_uncached_free() routines to obtain an un-cacheable region
of memory which you can then refer to later in your application
without worrying about cache. These regions will not be cached and
you will suffer a performance loss accordingly.

Use of these tools will be dependent on your application code and system
architecture. Therefore no source-code examples are being provided. You
should familiarize yourself with general concepts of working with a
write-back data cache if you are not already familiar with its operation.
However, the following general concepts apply:

■ Data accessed only by the Nios II CPU, residing on the stack or heap
with other application data will not need any special modification to
work with the data cache.

■ Accessing specific peripheral registers must be performed with the
I/O access macros described in step #4 above. These macros use
special I/O instructions in the Nios II CPU to bypass the data cache.
Altera Corporation 21

Upgrading Nios Processor Systems to the Nios II Processor
■ A buffer that is constructed in your application and then accessed by
another master in the system may be created and modified without
special modifications for the data cache; however, the data cache
must be flushed before any external master accesses the data. This
flush allows the performance benefits of using the data cache to
construct and manipulate data.

■ If the un-cached malloc/free routines are used to obtain a region of
memory that is not cached, no other special modifications are
required. However, accesses to this region of memory will reduce
system performance as the data cache is bypassed.

HAL Migration Summary

Following the above five-step procedure, you may build your code and
run on the Nios II CPU making full use of the HAL environment. Refer to
the Nios II Software Developer’s Handbook and related peripheral chapters
in the Nios II Processor Reference Handbook to determine the exact changes
necessary in your application.

Importing Source Code to the Nios II IDE

This section discusses how to import your existing source code into a
Nios II IDE project where the source modifications will be made.

f It is recommended that you complete the steps in the online Nios II
Software Tutorial to gain familiarity with Nios II IDE before proceeding.

1 The instructions below assume that you will edit your source
code in Nios II IDE, and as such, the first steps are to import
your existing source code to a Nios II IDE project. However, you
can use the editor of your choice for the source code
modifications described later. You may elect to import your
source code to a Nios II IDE project at any time, and continue to
edit and develop in the environment of your choice.

1. Create a new Nios II IDE project to build and run your application.
You may elect to choose one of the software example templates,
such as the “Hello World” or “Hello LED” template to get a ready-to
build starting point.

When creating a project, you will also need a system library project
for your hardware system’s library files; a HAL system library
project is typically created automatically when you create your
application project.
22 Altera Corporation

Upgrading Nios Processor Systems to the Nios II Processor
2. Copy (using the console, Windows Explorer, etc.) your existing
source code and header files into the directory where your project
exists. You may keep subdirectories intact, as long as all source and
header files are copied into the new project folder.

When importing source code from a previously-generated Nios SDK
directory structure, copy in only your source and include files; library
files and any previously-generated software from SOPC Builder
should not be imported.

3. In Nios II IDE, press F5 or right-click your project and select refresh.
to complete the source code import process and automatically add
your source code to the managed makefile of the Nios II IDE project.

You can now use the Nios II IDE editor to modify your code and build
your application. You may continue to edit the source files in other
applications as well.

Nios II Legacy
SDK vs. the HAL
API

Table 4–2, below, describes API differences between the legacy SDK and
the HAL. Refer to it, in conjunction with the Nios II Software Developer’s
Handbook and related peripheral chapters in the Nios II Processor Reference
Handbook when updating your system’s source code.

In addition, the HAL equivalent functions shown, include files (specific
to the HAL or ANSI C) will need to be added to your application. Refer
to the Nios II Software Developer’s Handbook and a good ANSI C reference
for information on each ANSI C library’s contents.

Table 4–2. Nios Legacy SDK API vs. HAL API (Part 1 of 8)

Legacy SDK Call HAL Equivalent(s) API Changes & Notes

Altera Nios CPU – Cache Controls

nr_icache_invalidate_lines alt_icache_flush Legacy: address
range to invalidate
passed in
HAL: start address
and length (bytes)
passed in

nr_dcache_invalidate_lines alt_dcache_flush Legacy: address
range passed in
HAL: start address
and length passed in

Altera Nios CPU -- Interrupt Control
Altera Corporation 23

Upgrading Nios Processor Systems to the Nios II Processor
nr_installuserisr alt_irq_register Legacy: IRQ, ISR
address, context
HAL: IRQ, context,
ISR address

nr_setirqenable alt_irq_disable_all
alt_irq_enable_all

Legacy: Passed
argument controls
enable/disable
HAL: See Nios II
Software Developer’s
Handbook.

Nios “C Stubs”

atexit atexit Properly handled in
Legacy SDK and in
the HAL

close close Did nothing in legacy
SDK; properly
handled in HAL

exit exit Did nothing in legacy
SDK; properly
handled in HAL

fstat fstat Did nothing in legacy
SDK; properly
handled in HAL

getpid getpid Did nothing in legacy
SDL; does nothing in
HAL

isatty isatty Did nothing in legacy
SDK; properly
handled in HAL

kill kill Did nothing in legacy
SDK; properly
handled in HAL

lseek lseek Did nothing in legacy
SDK; properly
handled in HAL

read read UART-specific in
legacy SDK; properly
handled in the HAL.

write write UART-specific in
legacy SDK; properly
handled in the HAL.

Table 4–2. Nios Legacy SDK API vs. HAL API (Part 2 of 8)

Legacy SDK Call HAL Equivalent(s) API Changes & Notes
24 Altera Corporation

Upgrading Nios Processor Systems to the Nios II Processor
sbrk sbrk Same in both legacy
SDK & the HAL.

Altera Nios CPU – Misc.

nr_copyrange memcpy Included in ANSI C
library

nr_zerorange memset Included in ANSI C
library

nr_delay usleep Legacy: Delay in
milliseconds passed
in
HAL: Delay in
microseconds passed
in

nr_fprintf fprintf Legacy:
Implementation is
UART-specific;
properly handled in
the HAL.

nr_jumptoreset N/A HAL: not
implemented

nr_callfromreset N/A HAL: not
implemented

nr_jumptostart N/A HAL: Handled in
crt0.s

nr_printf printf Included in ANSI C
library

nr_sprintf sprintf Included in ANSI C
library

First-Generation Altera Nios CPU-Specific – (does not apply to Nios II)

nr_icache_init N/A With the HAL, Nios II
instruction cache (if
present) is initialized
in the default boot-
strap code in crt0.s

nr_dcache_init N/A With the HAL, Nios II
instruction cache (if
present) is initialized
in the default boot-
strap code in crt0.s

nr_icache_enable N/A The Nios II instruction
cache (if present) is
always enabled

Table 4–2. Nios Legacy SDK API vs. HAL API (Part 3 of 8)

Legacy SDK Call HAL Equivalent(s) API Changes & Notes
Altera Corporation 25

Upgrading Nios Processor Systems to the Nios II Processor
nr_icache_disable N/A The Nios II instruction
cache (if present) is
always enabled

nr_dcache_enable N/A The Nios II instruction
cache (if present) is
always enabled

nr_dcache_disable N/A The Nios II instruction
cache (if present) is
always enabled

Various (nios_debug.c) N/A Used with SRAM-
debug add-on to the
original Nios and
APEX™ boards

Various (nios_gdb_stub.c) N/A Replaced with GDB
server and JTAG
debug core

Various (nios_gdb_stub_io.c) N/A Replaced with GDB
server and JTAG
debug core

Various (nios_gdb_stub_isr.s) N/A Replaced with GDB
server and JTAG
debug core

Everything in nios_germs_monitor.s N/A GERMS monitor not
supported outside of
legacy SDK

nr_getctlreg NIOS2_READ_STATUS
NIOS2_WRITE_STATUS
NIOS2_READ_ESTATUS
NIOS2_READ_BSTATUS
NIOS2_READ_IENABLE
NIOS2_WRITE_IENABLE
NIOS2_READ_IPENDING

Direct access via
macros to all Nios II
CPU registers
(status,
estatus,
bstatus,
ienable,
ipending)

Various (nios_gprof.c) N/A Replaced with GDB
server & JTAG debug
core

Various (nios_math.s) Handled in crt0.s Handles optional HW
multiplication and
division. Not user-
called

Altera Avalon UART

HAL device drivers model maps standard ANSI C routines to control the UART peripheral. Refer to the Nios II
Software Development Handbook & the Nios II Processor Reference Handbook for details.

Table 4–2. Nios Legacy SDK API vs. HAL API (Part 4 of 8)

Legacy SDK Call HAL Equivalent(s) API Changes & Notes
26 Altera Corporation

Upgrading Nios Processor Systems to the Nios II Processor
nr_rxchar getchar() Legacy: nr_rxchar ()
returns NULL if no RX
data waiting
HAL: getchar() blocks
until RX data is valid;
STDIN device used

nr_txchar putchar() HAL: STDOUT device
used

nr_txcr printf(“\n”); Included in ANSI C
library

nr_uart_txhex printf(“%2x”, val_8); Included in ANSI C
library

nr_uart_txhex16 printf(“%4x”, val_16); Included in ANSI C
library

nr_uart_txhex32 printf(“%8x”, val_32); Included in ANSI C
library

nr_uart_txstring printf(“%s”, *str); Included in ANSI C
library

Old OCI UART/New Altera Avalon JTAG UART

HAL device drivers model maps standard ANSI C routines to control the JTAG UART peripheral. Refer to the
Nios II Software Development Handbook & the Nios II Processor Reference Handbook for details.

nr_jtag_rxchar getchar() Legacy: nr_rxchar ()
returns NULL if no RX
data waiting
HAL: getchar() blocks
until RX data is valid;
STDIN device used

nr_jtag_txchar putchar() HAL: STDOUT device
used

nr_jtag_tx_ready N/A First-generation Nios
OCI-core specific

nr_jtag_txcr N/A Included in ANSI C
library

nr_jtag_txhex N/A Included in ANSI C
library

nr_jtag_txhex16 N/A Included in ANSI C
library

nr_jtag_txhex32 N/A Included in ANSI C
library

nr_jtag_txstring N/A Included in ANSI C
library.

Table 4–2. Nios Legacy SDK API vs. HAL API (Part 5 of 8)

Legacy SDK Call HAL Equivalent(s) API Changes & Notes
Altera Corporation 27

Upgrading Nios Processor Systems to the Nios II Processor
Altera Avalon Timer

nr_timer_milliseconds alt_nticks HAL gives more
control – it can set
ticks per second.HAL
also includes
timestamp (high-
resolution) and alarm
(callback) timing
features

Altera Avalon SPI

nr_spi_rxchar alt_avalon_spi_command Refer to the “SPI Core
with Avalon Interface”
chapter in the Nios II
Processor Reference
Handbook.

nr_spi_txchar alt_avalon_spi_command Refer to the “SPI Core
with Avalon Interface”
chapter in the Nios II
Processor Reference
Handbook.

Altera Avalon DMA

nr_dma_copy_1_to_1 N/A Refer to the “DMA
Core with Avalon
Interface” chapter in
the Nios II Processor
Reference Handbook

nr_dma_copy_1_to_range N/A Refer to the “DMA
Core with Avalon
Interface” chapter in
the Nios II Processor
Reference Handbook

nr_dma_copy_range_to_range N/A Refer to the “DMA
Core with Avalon
Interface” chapter in
the Nios II Processor
Reference Handbook

nr_dma_copy_range_to_1 N/A Refer to the “DMA
Core with Avalon
Interface” chapter in
the Nios II Processor
Reference Handbook

Altera Avalon PIO

Table 4–2. Nios Legacy SDK API vs. HAL API (Part 6 of 8)

Legacy SDK Call HAL Equivalent(s) API Changes & Notes
28 Altera Corporation

Upgrading Nios Processor Systems to the Nios II Processor
nr_pio_showhex N/A HAL: Not
implemented

Altera Avalon ASMI

HAL device driver model maps standard ANSI C routines to control the EPCS Serial Flash controller peripheral.
Refer to the Nios II Software Development Handbook & the Nios II Processor Reference Handbook for details.

nr_asmi_protect_region N/A Supported with HAL
flash routines. Refer
to the Nios II Software
Developer’s
Handbook

nr_asmi_lowest_protected_address N/A Supported with
HAL flash routines.
Refer to the Nios II
Software Developer’s
Handbook

nr_asmi_read_byte N/A Supported with
HAL flash routines.
Refer to the Nios II
Software Developer’s
Handbook

nr_asmi_write_byte N/A Supported with
HAL flash routines.
Refer to the Nios II
Software Developer’s
Handbook

nr_asmi_erase_sector N/A Supported with
HAL flash routines.
Refer to the Nios II
Software Developer’s
Handbook

nr_asmi_erase_bulk N/A Supported with
HAL flash routines.
Refer to the Nios II
Software Developer’s
Handbook

nr_asmi_read_buffer N/A Supported with
HAL flash routines.
Refer to the Nios II
Software Developer’s
Handbook

Table 4–2. Nios Legacy SDK API vs. HAL API (Part 7 of 8)

Legacy SDK Call HAL Equivalent(s) API Changes & Notes
Altera Corporation 29

Upgrading Nios Processor Systems to the Nios II Processor
Conclusion Using this document, you can migrate a first-generation Nios embedded
system design to one using the Nios II CPU. The upgrade process
involves making hardware and software changes to use the Nios CPU, as
well as optional changes that you can make to further enhance your
system’s performance and functionality.

nr_asmi_write_buffer N/A Supported with
HAL flash routines.
Refer to the Nios II
Software Developer’s
Handbook

nr_asmi_past_config N/A Supported with
HAL flash routines.
Refer to the Nios II
Software Developer’s
Handbook

Table 4–2. Nios Legacy SDK API vs. HAL API (Part 8 of 8)

Legacy SDK Call HAL Equivalent(s) API Changes & Notes
30 Altera Corporation

Upgrading Nios Processor Systems to the Nios II Processor
31 Altera Corporation

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
www.altera.com
Applications Hotline:
(800) 800-EPLD
Literature Services:
lit_req@altera.com

Copyright © 2004 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company,
the stylized Altera logo, specific device designations, and all other words and logos that are identified as
trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera
Corporation in the U.S. and other countries. All other product or service names are the property of their re-
spective holders. Altera products are protected under numerous U.S. and foreign patents and pending
applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products
to current specifications in accordance with Altera's standard warranty, but reserves the right to make chang-
es to any products and services at any time without notice. Altera assumes no responsibility or liability
arising out of the application or use of any information, product, or service described
herein except as expressly agreed to in writing by Altera Corporation. Altera customers
are advised to obtain the latest version of device specifications before relying on any pub-
lished information and before placing orders for products or services.

Printed on recycled paper

Upgrading Nios Processor Systems to the Nios II Processor
32 Altera Corporation

	Upgrading Nios Processor Systems to the Nios II Processor
	Overview
	Audience
	Before You Begin
	Introduction
	Overview of Migration to Nios II Features
	Requisite Upgrade Steps
	Preliminary Steps - Backup & Open Project Files
	SOPC Builder - Hardware Modifications
	SOPC Builder - Additional Nios II CPU Settings

	Software Migration to Nios II
	An Introduction to the HAL Environment
	Definition of System Peripheral Addresses & Parameters
	Software Development Tool & RTOS Use with the HAL

	Upgrading Your Application Code to Nios II & HAL
	Importing Source Code to the Nios II IDE

	Nios II Legacy SDK vs. the HAL API
	Conclusion

