
Altera Corporation
AN-391-1.3

July 2008, ver. 1.3
Profiling Nios II Systems
Application Note 391
Introduction This application note describes a variety of ways to measure the
performance of a Nios® II system with three tools: the GNU profiler,
called nios2-elf-gprof, the timestamp interval timer peripheral, and the
performance counter peripheral. Two tutorials give detailed examples of
using these tools to measure performance in the Altera® Nios II software
build tools development flow.

The application note describes the profiler tool first. You can use the
profiler tool without making any hardware changes to your Nios II
system. This tool directs the compiler to add calls to profiler library
functions into your application code.

The performance counter peripheral and the timestamp peripheral are
minimally intrusive hardware methods for measuring the performance of
a Nios II system. The application note describes and compares the two
peripherals. To use these methods, you add the hardware peripherals to
your system, and you add source code changes to start and stop the
peripherals. The hardware peripherals perform accurate measurements.

Compiler speed optimizations affect functions to widely varying degrees.
Compiler size optimizations also affect functions in different ways. These
differences impact cache usage and resource contention, which can
change the relative start times and increase the execution times of
functions. For these reasons, you should perform profiling on code that is
optimized with the compiler switch -O3 to gain the most insight on how
to improve an application in its final form.

Tools The tutorials assume you are familiar with the Nios II software build tools
development flow for Nios II systems, including use of the Quartus® II
software and SOPC Builder. The tutorials use the following tools to
measure the performance of a Nios II system:

■ GNU Profiler
■ Performance Counter Peripheral
■ High Resolution Timer

An additional tool, program counter trace collection, is available for some
Nios II processors. This method is not used in the tutorials.
 1
Preliminary

Profiling Nios II Systems
In general, you use the GNU profiler to identify the areas of code that
consume the most CPU time, and a performance counter or timer
component to analyze functional bottlenecks.

GNU Profiler

Minimal source code changes are required to take measurements for
analysis with the GNU profiler. To implement the required changes,
perform the following steps:

1. In the Nios II software build tools flow, enable the profiler in your
project by turning on the HAL settings for enable_gprof and
enable_exit.

2. Verify that your main() function returns.

1 When main() calls return() or terminates, alt_main()
calls exit() as appropriate for profiling. The exit()
function runs the BREAK 2 instruction, which causes the
profiling data to be written to the gmon.out file on the host
computer.

3. Rebuild the board support package and the application project.

Performance Counter Peripheral

A performance counter peripheral is just a block of big counters in the
hardware that measure the execution time taken by the blocks of code
that you choose. Each block of interest is called a code section. A
performance counter peripheral can track as many as seven measured
code sections. By default, the peripheral tracks three code sections. A pair
of counters tracks each code section:

■ Time—A 64-bit time (clock-tick) counter that counts the number of
clock ticks during which code in the section is running.

■ Occurrences—A 32-bit event counter that counts the number of times
the code section runs.

You can change the maximum number of measured code sections by
editing the performance counter component in SOPC Builder.

These counters let you accurately measure the execution time taken by
designated sections of C/C++ code. Simple, efficient, minimally intrusive
macros enable you to mark the start and end of the blocks of interest in
your program, the measured code sections. The performance counter
peripheral has as many as seven pairs of counters, supporting as many as
seven measured sections of C/C++ code. You must add macros to your
2 Altera Corporation
Preliminary

Use the GNU Profiler to Measure Code Performance
code at the start and end of each measured section. An additional, built-in
pair of counters aggregates the individual code section counters, enabling
you to measure each section as a fraction of a larger program.

Performance counters are best suited for analyzing determinism and
other run-time issues.

High Resolution Timer

A high resolution timer, in contrast to a performance counter component,
does not use a large number of logic elements (LEs) on your FPGA, and
does not require heavy instrumentation of every function call in your
code to obtain performance measurements. Timers require explicit calls to
read the timer in the sections of the source code that you want to measure,
so their use is better suited for pinpointing the performance issues in a
program. You instrument the source code manually, but because this
instrumentation is less pervasive, it is also less intrusive. Many more
processor cycles are required to make two function calls—one to read the
time at the beginning of a measured section, and one to read the time at
the end—than are consumed by the performance counter peripheral
macros.

Program Counter Trace Collection

The Nios II processor can generate complete and accurate program
counter trace information. This information is not used by the GNU
profiler. To generate this information you must have a Nios II processor
configured with a JTAG debug module of level 3 or greater. The level 3
JTAG debug module creates on-chip trace data. Approximately a dozen
instructions can be captured in the on-chip trace buffer. You can obtain a
much larger trace by configuring a Nios II core with a level 4 JTAG debug
module to generate off-chip trace information. Collecting this off-chip
trace data requires the First Silicon Solutions, Inc. (FS2) or Lauterbach
Datentechnik GmBH (Lauterbach) (www.lauterbach.com) hardware.

f For more information about the Lauterbach hardware, refer to the
Lauterbach Trace32 Debugger and PowerTrace Hardware section in the
Debugging Nios II Designs chapter of the Embedded Design Handbook.

Use the GNU
Profiler to
Measure Code
Performance

The following sections explain the advantages and limitations of using
the GNU profiler for performance analysis. A tutorial demonstrates the
use of the profiler to collect and analyze performance data.
Altera Corporation 3
Preliminary

http://www.lauterbach.com
http://www.altera.com/literature/edh/edh_51003.pdf

Profiling Nios II Systems
GNU Profiler Advantage

The major advantage to measuring with the profiler is that it provides an
overview of the entire system. Although the profiler adds some overhead,
this overhead is distributed evenly through the system. The functions the
profiler identifies as consuming the most processor time also consume the
most processor time when the application is run at full speed without
profiler instrumentation.

GNU Profiler Drawback

Adding instructions to each function call for use by the GNU profiler
affects the code’s behavior in the following ways:

■ Each function is slightly larger because of the additional function call
to collect profiling information.

■ Collecting the profiling information increases the entry and exit time
of each function.

■ Pulling the profiling function into instruction cache memory
generates more instruction-cache misses than are generated by the
original source code.

■ Memory used to record the profiling data can change the behavior of
the data cache.

These effects can mask the time-sensitive issue that you are trying to
uncover through profiling.

The profiler determines the percentage of time spent in each function by
interpolation, based on periodic samplings of the program counter. The
periodic samples are tied to the system clock’s timer tick. The profiler can
only take samples when interrupts are enabled, and therefore cannot
record the processor cycles spent in interrupt routines.

The GNU profiler cannot profile individual functions. You can use the
profiler to profile the entire system, or not at all.

The profiling data is a sampling of the program counter taken at the
resolution of the system timer tick. Therefore, it provides an estimation,
not an exact representation, of the processor time spent in different
functions. You can improve the statistical significance of the sampling by
increasing the frequency of the system timer tick. However, increasing the
frequency of the tick increases the time spent recording samples, which in
turn affects the integrity of the measurement.
4 Altera Corporation
Preliminary

Use the GNU Profiler to Measure Code Performance
1 To use the GNU profiler successfully with your custom
hardware design, you must ensure that your design includes a
system clock timer. The profiler requires this peripheral to
produce proper output.

Software Considerations

The profiler instruments your source code with functions to track
processor utilization.

Profiler Mechanics

You enable the GNU profiler by turning on the hal.enable_gprof
switch in the scripts to generate the board support package (BSP).
Turning on this switch automatically turns on the -pg compiler switch
and links profiling library code in the software component
altera_nios2 with the board support package. This code counts the
number of calls to each profiled function.

The -pg compiler option forces the compiler to insert a call to the function
mcount() (located in the file altera_nios2\HAL\src\alt_mcount.S) at
the beginning of every function call. The calls to mcount() track every
dynamic parent and child function call relationship, enabling the
construction of the call graph. The option also installs a function called
nios2_pcsample() (located in the file
altera_nios2\HAL\src\alt_gmon.c) that samples the foreground
program counter at every system clock interrupt. When the program
executes, data is collected on the host in the file gmon.out. The
nios2-elf-gprof utility can read this file and display profiling
information about the program.

The profiling code operates on the target by performing the following
steps:

1. The compiler instruments function prologues with a call to
mcount() to enable it to determine the function call graph. In the
GNU profiler documentation, this data is called the function call
arcs.

2. An alarm is registered with the timer interrupt handler to capture
information about the foreground function that is executing when
the alarm triggers (this data is called histogram data).

3. The profiling data is stored in target memory allocated from the
heap.
Altera Corporation 5
Preliminary

Profiling Nios II Systems
4. When your code exits with a BREAK 2 instruction, the
nios2-download utility copies the profiling data from the target
to the host.

1 The nios2-elf-gprof utility requires both the function call
arc data and the histogram data to work correctly.

f For more information about the GNU profiler, refer to the GNU profiler
documentation at
$SOPC_KIT_NIOS2\documents\gnu-tools\binutils\gprof.html.

Profiler Overhead

Using the profiler impacts both memory and processor cycles.

Memory
The impact of the profiling information on the .text section size is
proportional to the number of small functions in the application. The
code overhead—the size of the .text section—increases when profiling
is enabled, due to the addition of the nios2_pcsample() and
mcount() functions. The system timer is instrumented with a call to
nios2_pcsample(), and every function is instrumented with a call to
mcount(). The .text section increases by the additional function calls
and by the sizes of these two functions. To view the impact to the .text
section, you can compare the .text section in the objdump file when
profiling is enabled and when it is not enabled.

The profiler uses buckets to store data on the heap during profiling. Each
bucket is two bytes in size. Each bucket holds samples for 32 bytes of code
in the .text section. The total number of profiler buckets allocated from
the heap is the size of the .text section divided by 32. The heap memory
consumed by profiler buckets is therefore:

((.text section size) / 32) × 2 bytes

The profiler measures all functions in the object code that are compiled
with profiling information. This set of functions includes the library
functions, which include the run-time library and board support package.

Processor Cycles
The profiler tracks each individual function with a call to mcount().
Therefore, if the application code contains many small functions, the
impact of the profiler on processor time is larger. However, the resolution
of the profiled data is higher. To calculate the additional processor time
consumed by profiling with mcount(), multiply the amount of time that
it takes to execute mcount() by the number of run-time function calls in
your application run.
6 Altera Corporation
Preliminary

Tutorial 1: Use the GNU Profiler to Measure Code Performance
On every clock tick, the function nios2_pcsample()is called. To
calculate the additional processor time that is consumed by profiling with
nios2_pcsample(), multiply the time it takes to execute this function
by the number of clock ticks required by your application, which includes
the time required by the mcount() calls and execution.

To calculate the number of additional processor cycles used for profiling,
add the overhead you calculated for all the calls to mcount() to the
overhead you calculated for all the calls to nios2_pcsample().

Hardware Considerations

The profiler requires only a system timer. No special peripherals are
required. If your Nios II hardware design already includes a system timer
component, you do not need to change the design.

Tutorial 1:
Use the GNU
Profiler to
Measure Code
Performance

For the first tutorial, use the example standard hardware design without
modification. If your Nios development board contains another
hardware design, follow the next few steps to program the standard
hardware design. If the Nios development board already has the standard
hardware design programmed, proceed to “Create the profiler_gnu
Software Design”.

To program the FPGA with the standard hardware design for your Nios
development board, perform the following steps:

1. Create a copy of the standard hardware design directory for your
development board in a new working directory
(<project_directory>).

For example, the standard Verilog HDL hardware design directory
for the Nios II Development Kit, Cyclone® II Edition is located at
$SOPC_KIT_NIOS2\examples\verilog\
niosII_cycloneII_2c35\standard. To use this design, copy this
directory to another named <project_directory>.

2. Start the Quartus II software, version 8.0 or later.

3. In the Quartus II window, on the New menu, click Open Project.

4. Open your new copy of the Quartus II project file for the standard
Nios II hardware design for your board.

5. On the Tools menu, click Programmer.
Altera Corporation 7
Preliminary

Profiling Nios II Systems
6. Turn on Program/Configure, located on the same row as your
standard.sof file, <your board>_standard.sof.

7. Click Start to download the Nios II SRAM Object File
<your board>_standard.sof to the FPGA.

f If the Start button is greyed out, or the USB-Blaster™ cable is not listed in
the Hardware Setup... field, refer to the Introduction to the Quartus II
Software manual for more details on the Programmer tool.

Create the profiler_gnu Software Design

To create the profiler_gnu software project in the Nios II software build
flow, perform the following steps:

1. Open a Nios II command shell.

To start the Nios II command shell on Windows platforms, on the
Start menu, click All Programs. On the All Programs menu, on the
Altera submenu, on the Nios II EDS <version> submenu, click Nios II
<version> Command Shell.

2. Change to the working directory for your hardware and software
projects (<project_directory>).

3. Ensure that the working directory <project_directory> and all of its
subdirectories are write-enabled, by typing the following command:

chmod -R +w . r

4. Download the file profiler_software_examples.zip to
<project_directory>. This .zip file can be found on the Altera
literature pages with this application note, at
www.altera.com/literature/lit-nio2.jsp.

5. Unzip the file profiler_software_examples.zip. The directory
structure shown in Figure 1 appears in <project_directory>.
8 Altera Corporation
Preliminary

http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf

Tutorial 1: Use the GNU Profiler to Measure Code Performance
Figure 1. Directory Structure After Unzipping Files

6. Change to the directory software_examples/app/profiler_gnu.

7. Create and build the application with the create-this-app
script, by typing the following command:

./create-this-app r

The create-this-app script runs the create-this-bsp script,
which reads settings from the parameter_definition.tcl file in
<project_directory>/software_examples/bsp/hal_profiler. This Tcl file
contains the following two lines:

set_setting hal.enable_gprof true
set_setting hal.enable_exit true

The first setting enables the GNU profiler, and the second setting enables
the alt_main() function to call exit() following main().

Run the profiler_gnu Software Design

To run the application and collect the GNU profiler data, perform the
following steps:

1. Open a second Nios II command shell.

2. In the second shell, open a nios2-terminal session by typing the
following command:

nios2-terminal r

 app

 profiler_performance_counter

 profiler_gnu

<project_directory>

 software_examples

 bsp

 hal_profiler
Altera Corporation 9
Preliminary

Profiling Nios II Systems
3. In your original Nios II command shell, write the .elf file to the
development board, run the design, and write the GNU profiler
data to the gmon.out file, by typing the following command:

nios2-download -g --write-gmon gmon.out *.elf r

The GNU profiler writes the data to the gmon.out file when the
application calls the exit() function. Figure 2 shows an example of
the output on the nios2-terminal window.

Figure 2. GNU Profiler Output on nios2-terminal

Create the Profiler Report Based on the profiler_gnu Design

When you run the project, it creates the gmon.out file. Format this file in
a readable format by performing the following steps:

1. In the original Nios II command shell, change directory to
<project_directory>/software_examples/app/profiler_gnu.

2. Type the following command:

nios2-elf-gprof profiler_gnu.elf gmon.out > report.txt r

This command generates a flat profile report and a call graph, which
are captured in the file report.txt.

3. Use any text editor to view the report.txt file.
10 Altera Corporation
Preliminary

Tutorial 1: Use the GNU Profiler to Measure Code Performance
Analyze the Profiler Report

The profiler report contains information in the following two formats:

■ The flat profile portion of the report identifies the child functions in
the order in which they consume processing time.

■ The call graph portion of the report describes the call tree of the
program sorted by the total amount of time spent in each function
and its children. Each entry in this table consists of several lines. The
line with the index number at the left hand margin lists the current
function. The lines above it list the functions that called this function,
and the lines below it list the functions this one called, with
exceptions and conditions that are detailed further in both the report
itself and the full GNU profiler documentation.

The profiler report excerpts shown in Example 1 were generated on a
Nios development board, Cyclone II Edition, containing a
Cyclone II 2C35 device with a Nios II version 8.0 standard hardware
design running at 85 MHz.

Example 1. Flat Profile and Call Graph Example
Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls s/call s/call name
94.01 9.53 9.53 1 9.53 9.58 checksum_test_routine
3.85 9.92 0.39 9 0.04 0.04 alt_busy_sleep
1.28 10.05 0.13 alt_dcache_flush

... (deleted portion) ...

Call graph (explanation follows)

granularity: each sample hit covers 32 byte(s) for 0.10% of 10.14 seconds

index % time self children called name
9.53 0.05 1/1 main [3]

[4] 94.5 9.53 0.05 1 checksum_test_routine [4]
0.00 0.00 300/300 alt_dcache_flush_all [25]

... (deleted portion) ...

0.00 0.00 1024/1024 alt_irq_handler [23]
[22] 0.0 0.00 0.00 1024 alt_avalon_timer_sc_irq [22]
Altera Corporation 11
Preliminary

Profiling Nios II Systems
In Example 1, the call graph report shows that the
checksum_test_routine() function call (index [4]) consumed 94.5%
of the processing time during execution of the profiler_project design.

The granularity statement in the call graph report states that the report
covers 10.14 seconds, or 10,140 milliseconds. Our Nios II system has a
10 millisecond timer, so the timer interrupt handler is called once at the
beginning before a full clock period has elapsed and once every 10
milliseconds thereafter. A precise report would show, therefore, that the
timer interrupt handler is called 1014 times. Index [22] shows that
alt_avalon_timer_sc_irq is called 1024 times, which is within the
precision range of this measurement method.

Use
Performance
Counter and
Timer
Components

After the profiler identifies areas of code that consume the most processor
time, a performance counter or timer component can further analyze
these functional bottlenecks.

The following sections explain the advantages and limitations of using
performance counters and timers for performance analysis. A tutorial
demonstrates the use of performance counters and timers to collect and
analyze performance data.

Performance Counter Advantages

Performance counters are the only mechanism available with the Nios II
development kits that provide measurements with so little intrusion. You
use efficient macros to start and stop the measurement for each measured
section. A performance counter is an order of magnitude faster than the
profiler. The only less intrusive way to collect measurement data would
be a completely hardware-based solution, such as a logic analyzer
configured with triggers on particular bus addresses.

Timer Advantages

Unlike the performance counter, which can track only seven sections of
code simultaneously, the timer has no such limit. The timer can be read
1,000 times and stored in 1,000 different variables as a start time for a
section, and then compared to 1,000 end timer readings. The only
practical limiting factors are memory consumption, processor overhead,
and complexity.

Performance Counter and Timer Hardware Considerations

One disadvantage to measuring performance with a performance
counter is the counter’s large size. The performance counter component
consumes a large number of LEs on the FPGA. On a 1S40 device, a single
12 Altera Corporation
Preliminary

Use Performance Counter and Timer Components
performance counter peripheral with three section counters defined
within a modified standard hardware design consumes 670 logic cells
(LCs), and 420 LC registers. In the same design, a single performance
counter defined with seven section counters consumes 1,345 logic cells
and 808 LC registers.

1 Remove the performance counter from the final version of your
system to save resources.

A timer consumes hardware resources, although substantially fewer than
a performance counter. It also introduces an additional interrupt source
in the system that impacts interrupt latency.

Adding performance counters and timers can also reduce fMAX.

Performance Counter and Timer Software Considerations

A common disadvantage of both performance counters and timers is the
lack of context awareness. If a timer interrupt occurs during the
measurement of a section of code, the time taken by the processor to
process the timer interrupt is improperly added to the total measurement
time. This effect occurs for both simple interrupts and multi-threading
context switching, although it is much more pronounced in a
multi-threaded system. Many threads or interrupt service routines may
execute while the section of code is being measured, resulting in a very
large, skewed measurement. The resulting measurement distortion is
unpredictable, and has no correlation with the behavior of the code block
you are attempting to measure.

To avoid context switch impacts, most multi-threaded operating systems
have a system call to temporarily lock the scheduler. Alternatively,
interrupts can be disabled to completely avoid context switches during
section measurement.

Disabling interrupts or locking the scheduler usually affects the behavior
of your system, so you should use these techniques only as a last resort.

Performance Counter Software Considerations

You must use the PERF_BEGIN and PERF_END performance counter
peripheral macros to record the beginning and ending times of each
measured section.
Altera Corporation 13
Preliminary

Profiling Nios II Systems
PERF_BEGIN and PERF_END are single writes to the performance
counter peripheral. These macros are very efficient, requiring only two or
three machine instructions. They are defined in
altera_avalon_performance_counter.h as follows:

#define PERF_BEGIN(p,n) IOWR((p),(((n)*4)+1),0)

#define PERF_END(p,n) IOWR((p),(((n)*4)),0)

The Global Counter

The performance counter component contains a number of counters. You
can configure the number of measured sections in SOPC Builder.
Normally, you have one pair of counters for each measured section, as
described in “Performance Counter Peripheral” on page 2. In addition,
the performance counter component always has a global counter.

The global counter measures the total time during which measurements
are being taken. None of the other counters are allowed to run when the
global counter is stopped. Special macros—PERF_START_MEASURING
and PERF_STOP_MEASURING—control the global counter. Do not
attempt to manipulate the global counter in any other way.

f For more information about performance counters, refer to the
Performance Counter Core chapter in Volume 5: Embedded Peripherals of the
Quartus II Handbook.

Hardware Considerations

Performance counters and timestamp interval timers are SOPC Builder
peripherals. When you add one to an existing system, you must
regenerate the SOPC Builder system and recompile the .sof file in the
Quartus II software. Timers and performance counters can eventually
overflow, like any hardware counter.

Tutorial 2:
Use
Performance
Counters and
Timers to
Measure Code
Performance

This tutorial demonstrates the use of performance counters and
timestamp interval timers to measure the performance of a Nios II system
more precisely than is possible with the GNU profiler, by identifying the
sections of code that use the most processor time.

In this tutorial, you create the standard_perf_counter design, by
modifying the standard example to change the frequency of the interval
timer and to add the performance counter.
14 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/qts_qii55001.pdf

Tutorial 2: Use Performance Counters and Timers to Measure Code Performance
Alternatively, you can implement the software part of this tutorial
without creating the standard_perf_counter Nios II hardware design, by
using the full-featured hardware example design provided with your
Nios II installation. For information about how to use the full-featured
design in this tutorial, refer to “Appendix A: Full-Featured Reference
Design” on page 21.

Create the standard_perf_counter Hardware Design

To create the standard_perf_counter hardware design, perform the
following steps:

1. Create a copy of the standard hardware design for your Nios
development board.

For example, the standard Verilog HDL example design for the
Nios II Development Kit, Cyclone II Edition is located in the
directory $SOPC_KIT_NIOS2\examples\verilog\
niosII_cycloneII_2c35\standard. To use this design, copy this
directory to another named standard_perf_counter.

1. Start the Quartus II software, version 8.0 or later.

2. In the Quartus II window, on the New menu, click Open Project.

3. Open the Quartus II project file for the hardware design you just
copied. For example, the standard project file for the Cyclone II
development board is the file NiosII_cycloneII_2c35_standard.qpf,
located in your new directory standard_perf_counter.

4. On the Tools menu, click SOPC Builder.

The SOPC Builder window appears.

5. In the System Contents tab, under Peripherals, expand the Debug
and Performance category.

6. Click Performance Counter Unit.

7. Click Add.

8. Leave the default value of Number of simultaneously-measured
sections at 3.

9. Click Finish.

A performance counter module is added to the hardware design.
Altera Corporation 15
Preliminary

Profiling Nios II Systems
10. Under the list of Module Names that make up the hardware design,
select the interval timer named high_res_timer.

11. Right-click high_res_timer and click Edit.

12. Under Timeout Period, set the Initial Period value number to 1 and
the units to usec (microseconds).

13. Click Finish.

Figure 3 shows the SOPC Builder system.

Figure 3. SOPC Builder Window

14. Click the System Generation tab.

15. Click Generate. The generation phase takes a few minutes.
16 Altera Corporation
Preliminary

Tutorial 2: Use Performance Counters and Timers to Measure Code Performance
16. The final message should state "SUCCESS: SYSTEM GENERATION
COMPLETED". When system generation is complete, click Exit. The
hardware design is now ready to be compiled by the Quartus II
software.

17. In the Processing menu, click Start Compilation.

18. When you see the message “Full Compilation was successful”, click
OK. This step generates the file <your_board>_standard.sof.

Program the standard_perf_counter Hardware Design to an
FPGA

Now you can program your new hardware design in the FPGA, by
performing the following steps:

1. On the Tools menu, click Programmer.

2. Turn on Program/Configure, located on the same row as your
standard.sof file, <your board>_standard.sof.

3. Click Start to download <your board>_standard.sof to the FPGA.

f If the Start button is greyed out, or the USB-Blaster cable is not listed in
the Hardware Setup... field, refer to the Introduction to the Quartus II
Software manual for more details on the Programmer tool.

Create the profiler_performance_counter Software Design

To create the profiler_performance_counter software project in the Nios II
software build flow, perform the following steps:

1. Open a Nios II command shell.

To start the Nios II command shell on Windows platforms, on the
Start menu, click All Programs. On the All Programs menu, on the
Altera submenu, on the Nios II EDS <version> submenu, click Nios II
<version> Command Shell.

2. Change to the working directory for your hardware and software
projects (<project_directory>).

3. Ensure that the working directory <project_directory> and all of its
subdirectories are write-enabled, by typing the following command:

chmod -R +w . r
Altera Corporation 17
Preliminary

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf

Profiling Nios II Systems
4. Download the file profiler_software_examples.zip to
<project_directory>. This .zip file can be found on the Altera
literature pages with this application note, at
www.altera.com/literature/lit-nio2.jsp.

5. Unzip the file profiler_software_examples.zip. The directory
structure shown in Figure 1 on page 9 appears in <project_directory>.

6. Change to the directory
software_examples/app/profiler_performance_counter.

7. Create and build the application by typing the following command:

./create-this-app r

The create-this-app script runs the create-this-bsp script,
which reads settings from the parameter_definition.tcl file in
<project_directory>/software_examples/bsp/hal_profiler. This Tcl
file contains the following two lines:

set_setting hal.enable_gprof true
set_setting hal.enable_exit true

The first setting enables the GNU profiler, and the second setting
enables the alt_main() function to call exit() following main().

8. Edit the parameter_definition.tcl file by adding the following two
lines before the two lines described in Step 7:

set_setting hal.sys_clk_timer sys_clk_timer
set_setting hal.timestamp_timer high_res_timer

The new lines set the HAL settings to use the appropriate SOPC
Builder system components.

Run the profiler_performance_counter Software Design

To run the application and collect the GNU profiler data, perform the
following steps:

1. Open a second Nios II command shell.

2. In the second shell, open a nios2-terminal session by typing the
following command:

nios2-terminal r
18 Altera Corporation
Preliminary

http://www.altera.com/literature/lit-nio2.jsp

Conclusion
3. In your original Nios II command shell, write the .elf file to the
development board, run the design, and write the performance data
to the nios2-terminal, by typing the following command:

nios2-download -g *.elf r

Figure 4 shows an example of the output that appears in the
nios2-terminal window. Your output may vary.

Figure 4. Performance Counter Report on nios2-terminal

pc_overhead is the performance counter component overhead due to a
single call to the PERF_BEGIN macro. This number includes the overhead
of executing both this PERF_BEGIN macro and the corresponding
PERF_END macro for this measured section.

ts_overhead is the timestamp overhead—the overhead of a single
function call to read the timer. This number includes the performance
counter overhead to implement the measurement.

Conclusion The Nios II development environment provides several tools to analyze
the performance of your project. The software-only GNU profiler
approach adds minimal overhead. To analyze deterministic real-time
performance issues, you can use a hardware timer or performance
counter. To choose the best tool for your job, consider the class of problem
that you are trying to solve.

Troubleshooting The following sections describe several problems that might occur, and
suggest ways to deal with them.
Altera Corporation 19
Preliminary

Profiling Nios II Systems
nios2-elf-gprof –annotated-source Switch Has No Effect

basic-block-count information is not tracked, so switches such as
–annotated-source will not work.

Writing to the Registers of a Non-Existent Section Counter

The performance counter report in Example 2 shows what happens when
you attempt to use a non-existent section counter of the performance
counter peripheral.

Suppose that a fourth section counter is specified for a performance
counter peripheral that has been defined in SOPC Builder to have only
three section counters (the default value).

In Example 2, the test was performed on a hardware design that did not
have any other peripheral defined with registers mapped immediately
after the performance counter peripheral's registers. Therefore, no other
peripheral was impacted. Depending on how the peripheral register base
addresses are configured in SOPC Builder for a particular hardware
design, unpredictable system behavior could occur.

Example 2. Result of Using a Non-Existent Section Counter
--Performance Counter Report--
Total Time: 5.78751 seconds (289375582 clock-cycles)
+--------------------+--------+-------------+---------------+-----------+
| Section | % | Time (sec) | Time (clocks) |Occurrences|
+--------------------+--------+-------------+---------------+-----------+
|sleep_tests | 49.4| 2.86162| 143081026| 1|
+--------------------+--------+-------------+---------------+-----------+
|perf_begin_overhead | 7.6e-06| 0.00000| 22| 1|
+--------------------+--------+-------------+---------------+-----------+
|timestamp_overhead | 7.6e-06| 0.00000| 22| 1|
+--------------------+--------+-------------+---------------+-----------+
|non_existent_counter|6.37e+12|368934881474.19104| -1| 4294967295|
+--------------------+--------+-------------+---------------+-----------+

Output From a printf() or perf_print_formatted_output() Call
Near the End of main() May Be Prematurely Truncated

This occurs when the Nios II application executes a BREAK instruction to
transfer profiling data to the development workstation during the
exit() or return() from main().

As a workaround, call usleep(500000) before exiting or
returning from main(). This call creates an adequate delay for the
I/O to be transmitted over the JTAG UART before main returns (or calls
20 Altera Corporation
Preliminary

Further Reading
exit()). If the output is still partially truncated, increase the delay value
passed to usleep(). Use #include <unistd.h> for the usleep()
function prototype.

Fitting a Performance Counter in a Hardware Design That
Consumes Most of an FPGA's Resources

The system could be measured in a larger FPGA for development than
the size of the FPGA in a deployed system.

Configure a performance counter to have only one section counter to save
the most resources.

The Histogram for the gmon.out File Is Missing, Even Though
My main() Function Terminates

If no system timer is defined for the system, the nios2_pcsample()
function is not called, and the histogram for the gmon.out file is not
produced. Define a system timer for your system.

Further Reading For information about the GNU profiler, gprof, refer to the
documentation located at
$SOPC_KIT_NIOS2\documents\gnu-tool\gprof.html. Because Altera
has rewritten the lib-gprof library, the information in this manual
about how data is collected deviates somewhat from Altera’s
implementation

f For information about the performance counter, refer to the Performance
Counter Core chapter in Volume 5: Embedded Peripherals of the Quartus II
Handbook.

f For information about the high-speed timer, refer to the Timer Core
chapter in Volume 5: Embedded Peripherals of the Quartus II Handbook.

Appendix A:
Full-Featured
Reference
Design

This section describes the steps to run the profiler_performance_counter
software project on the full_featured Nios II hardware design.

To open the project file, perform the following steps:

1. Create a copy of the full-featured hardware design for your Nios
development board.
Altera Corporation 21
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51008.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55001.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55001.pdf

Profiling Nios II Systems
For example, the full-featured Verilog HDL example design for the
Nios II Development Kit, Cyclone II Edition is located in the
directory $SOPC_KIT_NIOS2\examples\verilog\
niosII_cycloneII_2c35\full_featured. To use this design, copy this
directory to another named <project_directory>.

2. Start the Quartus II software, version 8.0 or later.

3. In the Quartus II window, on the New menu, click Open Project.

4. Open the Quartus II project file for the full-featured Nios II
hardware design project for your board. For example, the
full-featured Verilog HDL project file for the Cyclone II
development board is the file
NiosII_cycloneII_2c35_full_featured.qpf, located in the directory
$SOPC_KIT_NIOS2\examples\verilog\
niosII_cycloneII_2c35\full_featured.

Program the Full-Featured Hardware Design to an FPGA

Now you can program the full-featured hardware design in the FPGA, by
performing the following steps:

1. On the Tools menu, click Programmer.

2. Turn on Program/Configure, located on the same row as your
full_featured.sof file, <your board>_full_featured.sof.

3. Click Start to download <your board>_full_featured.sof to the
FPGA.

f If the Start button is greyed out, or the USB-Blaster cable is not listed in
the Hardware Setup... field, refer to the Introduction to the Quartus II
Software manual for more details on the Programmer tool.

Create and Run the profiler_performance_counter Software
Design

Create and run a software project to test the full-featured hardware
design by performing the Tutorial 2 steps in “Create the
profiler_performance_counter Software Design” on page 17 and in “Run
the profiler_performance_counter Software Design” on page 18.

The output shown in Figure 5 appears in the nios2-terminal window.
22 Altera Corporation
Preliminary

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf

Referenced Documents
Figure 5. Full-Featured Example Performance Output

pc_overhead is the performance counter component overhead due to a
single call to the PERF_BEGIN macro. This number includes the overhead
of executing both this PERF_BEGIN macro and the corresponding
PERF_END macro for this measured section.

ts_overhead is the timestamp overhead—the overhead of a single
function call to read the timer. This number includes the performance
counter overhead to implement the measurement.

Referenced
Documents

This application note references the following documents:

■ Debugging Nios II Designs chapter of the Embedded Design Handbook
■ Introduction to the Quartus II Software
■ Performance Counter Core chapter in Volume 5: Embedded Peripherals of

the Quartus II Handbook
■ Timer Core chapter in Volume 5: Embedded Peripherals of the Quartus II

Handbook
Altera Corporation 23
Preliminary

http://www.altera.com/literature/edh/edh_51003.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55001.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51008.pdf

Profiling Nios II Systems
Document
Revision History

Table 1 shows the revision history for this application note.

Table 1. Document Revision History

Date and Document
Version Changes Made Summary of Changes

July 2008
v1.3

This revision incorporates the following
changes:
● Replaced references to the Nios II IDE

with instructions in the Nios II software
build flow.

● General updates for the Quartus II
software v8.0.

Updated document for the Quartus II
software and Nios II EDS v8.0.

February 2006
v1.2

— Updated document for the Quartus II
software and Nios II EDS v5.1 SP1.

November 2005
v1.1

— Updated document for the Quartus II
software and Nios II EDS v5.1.

August 2005
v1.0

Initial release. —
24 Altera Corporation
Preliminary

101 Innovation Drive
San Jose, CA 95134
www.altera.com
Technical Support:
www.altera.com/support/

Copyright © 2008 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company,
the stylized Altera logo, specific device designations, and all other words and logos that are identified as
trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera
Corporation in the U.S. and other countries. All other product or service names are the property of their re-
spective holders. Altera products are protected under numerous U.S. and foreign patents and pending
applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products
to current specifications in accordance with Altera's standard warranty, but reserves the right to make chang-
es to any products and services at any time without notice. Altera assumes no responsibility or liability
arising out of the application or use of any information, product, or service described
herein except as expressly agreed to in writing by Altera Corporation. Altera customers
are advised to obtain the latest version of device specifications before relying on any pub-
lished information and before placing orders for products or services.

	Profiling Nios II Systems
	Introduction
	Tools
	GNU Profiler
	Performance Counter Peripheral
	High Resolution Timer
	Program Counter Trace Collection

	Use the GNU Profiler to Measure Code Performance
	GNU Profiler Advantage
	GNU Profiler Drawback
	Software Considerations
	Profiler Mechanics
	Profiler Overhead
	Memory
	Processor Cycles

	Hardware Considerations

	Tutorial 1: Use the GNU Profiler to Measure Code Performance
	Create the profiler_gnu Software Design
	Run the profiler_gnu Software Design
	Create the Profiler Report Based on the profiler_gnu Design
	Analyze the Profiler Report

	Use Performance Counter and Timer Components
	Performance Counter Advantages
	Timer Advantages
	Performance Counter and Timer Hardware Considerations
	Performance Counter and Timer Software Considerations
	Performance Counter Software Considerations
	The Global Counter
	Hardware Considerations

	Tutorial 2: Use Performance Counters and Timers to Measure Code Performance
	Create the standard_perf_counter Hardware Design
	Program the standard_perf_counter Hardware Design to an FPGA
	Create the profiler_performance_counter Software Design
	Run the profiler_performance_counter Software Design

	Conclusion
	Troubleshooting
	nios2-elf-gprof -annotated-source Switch Has No Effect
	Writing to the Registers of a Non-Existent Section Counter
	Output From a printf() or perf_print_formatted_output() Call Near the End of main() May Be Prematurely Truncated
	Fitting a Performance Counter in a Hardware Design That Consumes Most of an FPGA's Resources
	The Histogram for the gmon.out File Is Missing, Even Though My main() Function Terminates

	Further Reading
	Appendix A: Full-Featured Reference Design
	Program the Full-Featured Hardware Design to an FPGA
	Create and Run the profiler_performance_counter Software Design

	Referenced Documents
	Document Revision History

