
Altera Corporation 1
AN-440-1.0 Preliminary

Application Note 440

Accelerating Nios II
Networking Applications

Introduction Ethernet has become a standard data transport paradigm for embedded
systems across all applications. The reason for selecting Ethernet is
simple—the transport technology is (relatively) cheap, abundant
(networks are everywhere), mature, and reliable.

The primary goal of this application note is to provide you with
techniques to accelerate the performance of your Nios® II networking
application, and to show how certain key optimizations can improve the
overall performance of the system. The result of applying these
optimizations is noted in the benchmarking results section of this
application note. The secondary goal is to provide you with a better
understanding of how the different parts of a Nios II Ethernet-enabled
system work together, and how the interaction of these parts correspond
to the total networking performance of the system.

The Structure of
Networking
Applications

This section describes the different parts of a general networking
application.

Ethernet System Hierarchy

Figure 1 shows the flow of information from an embedded networking
application to the Ethernet.

Figure 1. The Ethernet System Hierarchy

The structure presented in Figure 1 shows a typical embedded
networking system. In general, a user application performs a job that
defines the goal of the embedded system (for example, controlling the
speed of a motor, serving as the UI for an embedded kiosk, and so forth).
The application uses an API (generally Sockets) provided by the
networking stack to send networking data to and from the embedded
system.

May 2007, ver. 1.0

2 Altera Corporation
Preliminary

Accelerating Nios II Networking Applications

The stack itself is a software library that converts data from the user
application into networking packets, and sends the packets via the
networking device. Networking stacks tend to be very complicated
software state machines that must be able to send data using a wide
variety of networking protocols (ARP, TCP, UDP, and so forth). These
stacks generally require a significant amount of processing power from
the CPU to get their job done.

The Ethernet device is used by the stack to move data across the physical
media. Most of a networking stack's interaction with the networking
device consists of shuttling Ethernet packets to and from the Ethernet
device.

The link layer, or physical media upon which the Ethernet datagrams
traverse, cannot be ignored when constructing a network enabled system.
Depending on the location of the embedded system, the Ethernet
datagrams may be traversing over a wide variety of physical links
(10/100 Mbit twisted pair, fiber optic, and so forth). Additionally, the
datagrams may experience latency if traversing long distances or need to
be broadcast through many network switches in order to arrive at their
destination.

Inter-Relationship of Elements

The total throughput performance of an embedded networking system is
highly dependent on the interaction of the user application, networking
stack, Ethernet device (and driver), as well as the physical connection for
the networking link. Making substantial performance improvements in
the network throughput often depends on optimizing the performance of
all these elements simultaneously.

In general, your networking application has some criteria for
performance that are either achieved or not. However, a good first order
approximation for determining the viability of your networking
application is to remove the user application from the system and
measure the total networking performance. This provides you with an
“upper bound” of total network performance, which you can use to
create your networking application. This application note uses a simple
benchmark program that determines the “raw” throughput rate of TCP
and UDP data transactions. This benchmark application does very little
apart from sending or receiving data through the networking stack. It
therefore provides us with a good approximation of the maximum
networking performance achievable.

Altera Corporation 3
Preliminary

The User Application

Finding the Performance Bottlenecks

There are a wide variety of tools available for analyzing the performance
of your Nios II embedded system and finding system bottlenecks. In this
application note, many of the techniques presented to increase overall
system (and networking) performance were discovered through the use
of these tools. While this application note doesn't explore the use of these
tools, and how they were applied to find networking bottlenecks in the
system, they are listed here for your information:

■ GNU Profiler
■ SOPC Builder Timer Peripheral
■ SOPC Builder Performance Counters

f For more information about finding general performance bottlenecks in
your Nios II embedded system, refer to AN 391: Profiling Nios II Systems.

The User
Application

In an embedded networking system, the application layer is the part of
the system where your “key task” is being completed. In general, this
application layer performs some work and then uses the network stack to
send and receive data. In a classic embedded networking system, your
application is being executed on the same CPU as the network stack, and
is also vying for computation resources.

To increase the throughput of your networking system, decrease the time
your application spends completing its task between the function calls it
makes to the networking stack. There is a two-fold benefit to doing this.
First, the faster your application runs to completion before sending or
receiving data, the more function calls it can make to the networking
stack (Sockets API) to move data across the network. Second, if the
application takes less of the processor's time to run, the more time the
processor has to operate the networking stack (and networking device)
and transmit the data.

User Application Optimizations

This section describes some effective ways to decrease the amount of time
your application uses the Nios II CPU.

Software Optimizations

■ Compiler Optimization Level—Compile your application with the
highest compiler optimization possible, –03. Higher optimizations
result in denser, more highly optimized code, thereby increasing the
computational efficiency of the processor.

4 Altera Corporation
Preliminary

Accelerating Nios II Networking Applications

■ MicroC/OS-II Thread Priority—Make sure that your application
task has the right MicroC/OS-II priority level assigned to it. In
general, the higher the priority of the application, the faster it runs to
completion. The application's priority levels should be balanced
against the priority levels assigned to the NicheStack's core tasks
discussed in “Structure of the NicheStack Networking Stack” on
page 8.

1 This suggestion assumes that your application is using
Altera’s recommended method for operating the
NicheStack Networking Stack, which requires using the
MicroC/OS-II operating system.

Hardware Optimizations

■ Processor Performance—The performance of the Nios II processor
can be increased in several ways:
● Computational Efficiency—Selecting the most

computationally efficient Nios II processor core is the quickest
way to improve overall application performance. The available
Nios II processor cores, in order of performance, are the
Nios II/f core (fastest), the Nios II/s core (standard), and the
Nios II/e core (slowest).

● Memory Bandwidth—Using low-latency, high speed memory
decreases the amount of time required by the processor to fetch
instructions and move data. Additionally, increasing the
processor's arbitration “share” of the memory via SOPC Builder
increases the processor's performance by allowing the Nios II
processor to perform more transactions to the memory before
another Avalon master can assume control of the memory.

● Instruction/ Data Caches—Adding an instruction and data
cache is an effective way to decrease the amount of time the
Nios II processor spends performing operations, especially in
systems that have slow memories (DDR SDRAM, SDRAM, and
so forth). In general, the larger the cache size selected for the
Nios II processor, the greater the performance improvement.

● Clock Frequency—Increasing the speed of the processor's clock
results in more instructions being executed per unit of time. To
gain the best performance possible, you should ensure that the
processor's execution memory is on the same clock domain as
the processor, to avoid the use of clock-crossing FIFOs.

One of the easiest ways to increase the operational clock
frequency of the processor and memory peripherals is to use an
SOPC Builder FIFO bridge peripheral to isolate the slower
peripherals of the system. With this peripheral, the processor,
memory, and Ethernet device are connected on one side of the

Altera Corporation 5
Preliminary

The User Application

bridge. On the other side of the bridge are all of the peripherals
that are not performance dependent. The optimized Ethernet
design, which appears in the benchmark section of this
document, uses a FIFO bridge for this reason.

■ Hardware Acceleration—Hardware acceleration can provide
tremendous performance gains by moving time-intensive processor
tasks to dedicated hardware blocks in the system. The three most
common ways to accelerate application level algorithms are as
follows:
● Custom Instruction—Off-loads the Nios II CPU by using

hardware to implement a custom instruction.
● C2H (C to Hardware) Accelerator—Accelerates processor

execution by converting C algorithms into hardware
subroutines.

● Custom Peripheral—Create a block of hardware that performs
a specific algorithmic task, controllable from the Nios II CPU, as
a peripheral.

Because every application has different computational needs, this
application note does not focus on these technologies in any great detail.

The Sockets API

After “tuning” your application to become more computationally
efficient (thereby freeing more of the CPU’s time for operating the
networking stack), the next area of optimization comes from how your
application uses the networking stack. This section describes how to
select the best protocol for use by your application and the most efficient
way to use the Sockets API.

Selecting the “Right” Networking Protocol
When using the Sockets API, you must also select which protocol to use
for transporting data across the network. There are two main protocols
used to transport data across networks: TCP (Transmission Control
Protocol) and UDP (User Datagram Protocol). Both of these protocols

6 Altera Corporation
Preliminary

Accelerating Nios II Networking Applications

perform the basic function of moving data across Ethernet networks, but
they have very different implementations and performance implications.
Table 1 compares the two protocols.

In terms of just throughput performance, the UDP protocol is much faster
than TCP because it has very little overhead. The UDP protocol makes no
attempt to validate that the data being sent arrived at its destination (or
even that the destination is capable of receiving packets), so the network
stack needs to perform much less work in order to send or receive data
using this protocol.

However, aside from very specialized cases where your embedded
system can tolerate losing data (for example, streaming multi-media
applications), use the TCP protocol.

1 Design Tip: Use the UDP protocol to gain the fastest
performance possible; however, use the TCP protocol when you
must guarantee the transmission of the data.

Improving Send/Recv Performance
Proper use of the Sockets API in your application can also increase the
overall networking throughput of your system. Following are several
ways to optimally use the Sockets API:

■ Minimize Send/ Recv function calls—The Sockets API provides
two sets of functions for sending and receiving data through the
networking stack. For the UDP protocol these functions are sendto
and recvfrom. In the TCP protocol these functions are send and
recv.

Depending on which transport protocol you use (TCP or UDP), your
application uses one of these sets of functions. To increase overall
performance, avoid calling these functions repetitively to handle
small units of data. Every call to these functions incurs a fixed time

Table 1. The UDP and TCP Protocols

Parameter
Protocol

UDP TCP

Connection Mode Connection-Less Connection-Oriented

In Order Data Guarantee No Yes

Data Integrity and Validation No Yes

Data Retransmission No Yes

Data Checksum Yes; Can be disabled Yes

Altera Corporation 7
Preliminary

The User Application

penalty for execution, which can compound quickly when these
functions are called multiple times in rapid succession. Instead, you
should aggregate data you want to send (or receive) and call these
functions with the largest possible amount of data at one time to send
or receive.

1 Design Tip: Call the Socket's send and receive functions
with larger buffer sizes to minimize system call overhead.

■ Minimize Latency in Sending Data—Although the TCP Sockets
send function can accept an arbitrary number of bytes, those bytes
may not be immediately sent as a packet. This is especially true when
send is called with a small number of bytes because the networking
stack attempts to coalesce these small data “chunks” into a larger
packet. This is done to avoid congesting the network with many
small packets (using the Nagle Algorithm for congestion avoidance).
There is a solution, however, through the use of the
TCP_NO_DELAY flag.

When a socket has its TCP_NO_DELAY flag set via the setsockopt
function call, the Nagle Algorithm is disabled and the socket
immediately sends whatever bytes are passed in as a TCP packet.
This can be a useful way to increase network throughput in the case
where your application must send many small “chunks” of data very
quickly.

1 Design Tip: If you need to accelerate the transmission of
small TCP packets, use the TCP_NO_DELAY flag on your
socket. An example of setting the TCP_NO_DELAY flag can
be found in the benchmarking application software, found
in the downloadable reference design.

1 While disabling the Nagle Algorithm should cause smaller
packets to be immediately sent over the network, the
networking stack may still coalesce some of the packets into
larger packets. This is especially true in the case of the
Windows workstation platform. The networking stack
should, however, do so with much lower frequency than if
the Nagle Algorithm was enabled.

The “Zero Copy” API
The NicheStack networking stack provides a further optimization to
accelerate the data transfers to and from the stack called the “Zero Copy”
API. The “Zero Copy” API increases overall system performance by
eliminating the buffer management scheme performed by the Socket

8 Altera Corporation
Preliminary

Accelerating Nios II Networking Applications

API’s read and write function calls. The send and receive data buffers are
directly managed by the user’s application, thereby eliminating an extra
level of data copying performed by the Nios II CPU.

This performance optimization is not covered in detail in this application
note. Refer to the “Appendix” on page 25 for pointers to more
information.

1 Design Tip: Using the NicheStack “Zero Copy” API may
accelerate your network application's throughput by
eliminating an extra layer of copying.

Structure of the
NicheStack
Networking
Stack

The NicheStack networking stack is a highly configurable software
library designed for communicating over TCP/IP networks. The version
that Altera ships in the Nios II EDS has been optimized for use with the
MicroC/OS-II Real Time Operating System (RTOS), and includes device
driver support for the LAN91C111 and Altera® Triple Speed Ethernet
(TSE) MAC.

The NicheStack networking stack is extremely configurable, with the
entire software library utilizing a single configuration header file, called
ipport.h.

General Optimizations

Because this application note focuses on a single Nios II system, most of
the optimizations described in “User Application Optimizations” on
page 3 also improve the performance of the NicheStack networking stack.
The following optimizations also help increase your overall network
performance.

Software optimizations:

■ Compiler Optimization Level

Hardware optimizations:

■ Processor Performance

● Computational Efficiency
● Memory Bandwidth
● Instruction/ Data Caches
● Clock Frequency

Altera Corporation 9
Preliminary

Structure of the NicheStack Networking Stack

NicheStack Specific Optimizations

There are several targeted optimizations that can be used to increase the
performance of the NicheStack networking stack directly. These
improvements are described below.

NicheStack Thread Priorities

Altera's version of the NicheStack networking stack relies on the
MicroC/OS-II operating system's threads to drive two critical tasks to
properly service the networking stack. These tasks (threads) are
tk_nettick, which is responsible for time-keeping, and tk_netmain,
which is used to drive the main operation of the stack.

When building a NicheStack-based system in the Nios II EDS, the default
run-time thread priorities assigned to these tasks are: tk_netmain = 2 and
tk_nettick = 3. These thread priorities have been selected to provide the
best networking performance possible for your system. However, in your
embedded system you may need to override these priorities because your
application task (or tasks) run more frequently than these tasks. Doing
this, however, may result in performance degradation of network
operations, as the NicheStack networking stack has less processor cycles
to complete its tasks.

Therefore, if you need to increase the priority of your application tasks
above that of the NicheStack tasks, make sure to yield control whenever
possible to ensure that these tasks get some processor time. Additionally,
ensure that the tk_netmain and tk_nettick tasks have priority levels that
are just slightly less than the priority level of your critical system tasks.

When you yield control, your application task is placed from a “running”
state into a “waiting” state by the MicroC/OS-II scheduler, which then
takes the next “ready” task and places it into a running “state.” If
tk_netmain and tk_nettick are the higher priority tasks, they are allowed
to run more frequently, which in turn increases the overall performance
of the networking stack.

1 Design Tip: If your MicroC/OS-II based application tasks run
with a higher priority level (lower priority number) than the
NicheStack tasks, remember to yield control periodically so the
NicheStack tasks can run. Tasks using the NicheStack services
should call the function tk_yield. If they are not using the
NicheStack services, the tasks should call the function
OSTimeDly.

10 Altera Corporation
Preliminary

Accelerating Nios II Networking Applications

Disabling Non-Essential NicheStack Modules

Because the NicheStack networking stack is highly configurable, it is
possible to include many modules (for example, FTP client/server, web
server, and so forth). Every module included in your system may result
in some performance degradation due to the overhead associated with
having the Nios II processor service these modules.

This degradation can happen because the main NicheStack task,
tk_netmain periodically polls each of these modules. Also, these modules
may insert time-based, call back functions, which further decrease the
overall performance of the networking stack.

You can control what is enabled or disabled in the NicheStack networking
stack through a series of macro definitions in the ipport.h configuration
file. Additionally, some settings are inserted in the Nios II processor’s
system.h file through the NicheStack's software component GUI. A list of
NicheStack features and modules to disable, which may increase system
performance, follows. (To disable a particular feature or module, ensure
that its #define statement is not present in ipport.h or the system.h
configuration files.)

The NicheStack features to disable include the following:

■ IN_MENUS (enable NicheTool command interface)
■ NPDEBUG (enable debugging aids)
■ MEM_WRAPPERS (debugging aid to validate memory)
■ QUEUE_CHECKING (debugging aid to validate memory queues)
■ MULTI_HOMED (not needed if only one networking device)
■ IP_ROUTING (not needed if only one networking device)

The NicheStack modules to disable include the following:

■ PING_APP (enable ping support)
■ UDPSTEST, TCP_ECHOTEST (enable echotest programs)
■ FTP CLIENT, FTP SERVER (enable ftp client/server)
■ TELNET_SVR (enable Telnet server)
■ USE_SYSLOG_TASK (enable statistics collection)
■ SMTP_ALERTS (enable email client)
■ INCLUDE_SNMP (enable SNMP server)
■ DNS_SERVER (enable DNS server)

1 Design Tip: Disabling unused NicheStack networking stack
features and modules in your system helps increase overall
system performance.

Altera Corporation 11
Preliminary

Structure of the NicheStack Networking Stack

1 The NicheStack networking stack also supports a wide variety
of features and modules not listed here. Refer to the NicheStack
documentation and your ipport.h file for more information.

Using Faster Packet Memory

The performance of the NicheStack networking stack can be increased by
using fast, low-latency memory for storing Ethernet packets. This section
describes this optimization and explains how it works.

Background
The NicheStack networking stack uses a memory queue to assemble and
receive network packets. To send a packet, the NicheStack removes a free
memory buffer from the queue, assembles the packet data into it, and
passes this buffer memory location to the Ethernet device driver. To
receive the data, the Ethernet device driver removes a free memory buffer,
loads it with the received packet, and passes it back to the networking
stack for processing. The NicheStack networking stack allows you to
specify where its queue of buffer memory is located and how this
memory allocation is implemented.

By default, the Altera version of the NicheStack networking stack
allocates this pool of buffer memory using a series of calloc function
calls that use the system's heap memory. Depending on the design of the
system, and where the Nios II system memory is located, this could
impact overall system performance. A potential scenario in which this
could occur is in cases where your Nios II processor's heap segment has
been placed in high latency or slow memory.

Additionally, in the case where the Ethernet device utilizes DMA
hardware to move the packets and the Nios II processor is not directly
involved in transmitting or receiving the packet data, then this buffer
memory must exist in an “uncached” region. This further degrades the
performance because the Nios II processor's data cache is not able to
offset any performance issues due to the “slow” memory.

The solution is to use the fastest memory possible for the networking
stacks buffer memory, preferably a separate memory not used by the
Nios II processor for programmatic execution.

Solution
The ipport.h file defines a series of macros for allocating and deallocating
big and small networking buffers. The macro names begin with BB_ (for
“big buffer”) and LB_ (for “little buffer”). Following is the block of macros
with the definitions in place for TSE driver support.

12 Altera Corporation
Preliminary

Accelerating Nios II Networking Applications

#define BB_ALLOC(size) ncpalloc(size)
#define BB_FREE(ptr) ncpfree(ptr)
#define LB_ALLOC(size) ncpalloc(size)
#define LB_FREE(ptr) ncpfree(ptr)

You can use these macros to allocate/deallocate memory any way you
choose. In the case of the example design that accompanies this
application note, these macros are redefined to allocate memory from
MRAM memory (a fast memory structure inside the FPGA). This faster
memory resulted in a 4% to 45% performance increase, depending on the
system.

1 The Altera version of NicheStack does not use the BB_FREE or
LB_FREE function calls. Therefore, any memory allocated via
the BB_ALLOC and LB_ALLOC function calls occurs at run
time, and is never freed.

1 Design Tip: Using fast, low latency memory for NicheStack's
packet storage can improve the overall performance of the
system.

Accelerating the Packet Checksum

The network checksum is a critical bottleneck to increasing the overall
networking performance of the system. However, by using the Altera
C2H compiler to accelerate the network checksum, you can increase the
the system’s networking performance.

Background
Ethernet networks use a checksum routine for guaranteeing the validity
of transmitted data. This checksum is applied to the IP header, and is also
used by the ICMP, IGMP, UDP, and TCP protocols for their own data
headers and data.

The checksum operates by taking the 1's complement sum of the data
octets of the packet (including the checksum field), where each octet is
paired to form a 16-bit operand. When data is transmitted, the checksum
field is set to all 0's, the 1's complement sum is taken of all the 16-bit
coupled octets, and the 1's complement of the resultant value is stored in
the checksum field. When packet data is received, however, the 1's
complement sum is taken of all the 16-bit coupled octets (including the
checksum field). If the result is equal to all 0's, the packet is valid.

While the algorithmic “work” being performed by this checksum does
not seem to be very computationally intensive, the effect of running this
checksum on every sent or received packet and their respective protocol
data sections, can have the aggregate effect of degrading overall

Altera Corporation 13
Preliminary

Structure of the NicheStack Networking Stack

networking performance. Because of this, most checksum routines are
often written in “hand optimized” assembly code, which is the case in the
NicheStack networking stack. However, further performance gains can
be achieved by accelerating the checksum algorithm with FPGA
hardware resources.

Optimizing the Packet Checksum
In the NicheStack networking stack, the checksum routine is configurable
by setting a macro in the ipport.h configuration file, as follows:

#define cksum <function you want to call for the checksum>

You can set this macro to install any checksum implementation you want.

However, Altera's version of the NicheStack networking stack contains
additional source code to enable three different checksums for
experimentation and benchmarking (C source, Nios II assembly, and
“hooks” for a C2H hardware checksum). More information, including
detailed instructions, about how to create and use the C2H hardware
checksum can be found in the readme.doc file, present in the example
design zip file that accompanies this document.

In this application note, a C source code implementation of the network
checksum has been optimized using Altera's C2H compiler. The results
for accelerating the checksum via C2H can be found in the benchmark
results table (Table 4 on page 22). In most cases, a C2H-optimized
checksum routine yields a 6% to 40% performance improvement over the
optimized assembly routine, depending on the configuration of the
system.

1 Design Tip: Accelerating the performance of the network
checksum routine, via dedicated hardware resources on the
FPGA, can greatly accelerate overall network performance.

“Super Loop” Mode

Although the Altera-supported version of the NicheStack networking
stack requires MicroC/OS-II for its operation, the stack can be enabled to
run without an operating system. In this mode of operation,
MicroC/OS-II is replaced with a single, never-ending software loop that
services the stack and runs the user application.

Removing the MicroC/OS-II operating system from your system can
result in slightly higher networking performance, but this comes at the
expense of additional complexity in the software design of your system.
It can be very easy to create “pathological” systems where your

14 Altera Corporation
Preliminary

Accelerating Nios II Networking Applications

application code consumes all of the processor’s time, and without
frequent calls to a stack servicing function, the effective networking
performance deteriorates.

This application note does not attempt to benchmark the “Super Loop”
system, but it is mentioned here as another possible area of optimization.
General details of how to create the “Super Loop” system can be found in
the NicheStack reference manuals (mentioned in the “Appendix” on
page 25).

1 Design Tip: Although not officially supported by Altera, the
NicheStack networking stack can be utilized without the
MicroC/OS-II operating system. Doing so may provide
additional networking performance benefits.

Ethernet Device An important parameter in the total performance of your Ethernet
application is the function and capabilities of the network interface device
itself. Because the function of this device is to translate the physical
Ethernet packets into datagrams that can be accessed by the stack, its
performance is critical to the overall performance of your networking
application.

Link Speed

For most embedded networking applications, the network physical layer
is composed of either 100BASE-TX or 1000BASE-T Ethernet, which uses
twisted copper wires for the transport medium. The maximum data
transport rate (in one direction) for 100BASE-TX is 100 Mbits/sec, while
1000BASE-T can accommodate 1000 Mbits/sec.

It is very difficult for an embedded networking device to completely use
a 100 Mbit link (much less a 1000 Mbit link), but a faster link provides
better performance most of the time. This is because the 1000 Mbit link
has a larger overall carrying capacity for data. The improvement is
especially noticeable in cases where the link is shared among several
different devices that are using the link simultaneously.

Selecting the Right Hardware

Two supported Ethernet device solutions present in the Nios II
Embedded Development are the LAN91C111 (by SMSC) and the Altera
TSE MAC. Apart from the obvious difference in supported Ethernet
speeds, with the LAN91C111 supporting 10/100 Mbit and the TSE
Ethernet MAC supporting 10/100/1000 Mbit networks, both devices
have radically different implementations that impact networking
performance.

Altera Corporation 15
Preliminary

Ethernet Device

Network Interface Comparison (LAN91C111 vs. Altera TSE MAC)

Both the LAN91C111 and Altera TSE MAC essentially perform the same
role, that is, to translate an application's Ethernet data into physical bits
on the Ethernet link. However, as seen in Table 2, there are some key
differences between them that can impact network performance.

In terms of Ethernet link speed, the LAN91C111 only supports up to a
100 Mbit link speed, while the TSE MAC can support up to a 1000 Mbit
link speed. Additionally, the TSE MAC is capable of sending and
receiving Ethernet data more quickly than the LAN91C111 because of the
SGDMA peripherals. Finally, the TSE MAC provides a greater range of
send and receive FIFO depth to be selected, while the LAN91C111
restricts you to a fixed 8 Kbyte memory space shared by both the send
and receive operations.

NicheStack Device Driver Model

The NicheStack networking stack presents users with a simplified device
driver model for integrating their Ethernet devices, and both the
LAN91C111 and Altera TSE MAC solutions have been fully optimized to
support this model.

Table 2. LAN91C111 vs. TSE MAC

Parameter
Ethernet Device

LAN91C111 Altera TSE MAC

Type external chip FPGA IP

Control Interface Avalon MM
(Tri-state Bridge)

Avalon MM

Data Interface Avalon MM
(Tri-state Bridge)

Avalon ST

Data Width (bits) 8,16, 32 8, 32

Supported Link Speeds (Mbits/sec) 10/100 10/100/1000

Recv FIFO Depth 8 KB for send/recv (combined) 64 Bytes to 256 Kbytes

Send FIFO Depth 8 KB for send/recv (combined) 64 Bytes to 256 Kbytes

DMA None Altera SGDMA (required)

PHY Interface (Integrated) 100BASE-TX/10BASE-T None

PHY Interface (External) MII (100 Mbits/sec) MII (100 Mbits/sec),
GMII (1000 Mbits/sec)

16 Altera Corporation
Preliminary

Accelerating Nios II Networking Applications

In the LAN91C111 device driver, the Nios II CPU is solely responsible for
performing the movement of Ethernet packet data to and from the device.
However, in the TSE MAC device driver, the SGDMA peripherals are
responsible for the movement of the Ethernet packet data to and from the
TSE MAC.

These SGDMA peripherals can operate much more efficiently than the
Nios II processor for data movement operations (on a per clock basis),
and therefore results in an overall performance increase in the system.
The benchmark results show a performance increase of more than 15% to
60% of the TSE MAC solution to the LAN91C111 solution for this very
reason.

Benchmarking
Results and
Analysis

The previous sections have described several optimizations that can be
used to increase the performance of a networking system. This section
describes a method to evaluate the effectiveness of each one. The best way
to evaluate the optimizations is to use a benchmarking application that
measures the impact of applying each optmization.

Overview

A simple benchmarking application was created to measure the overall
networking performance. This application enables you to measure the
Ethernet data transfer rate between two systems, such as a Nios II
development board and a workstation using the TCP or UDP protocols.

During a benchmarking test, one machine assumes the role of the
“sender” and the other machine becomes the “receiver.” The sender
opens a connection to the receiver, transmits a specified amount of data,
and prints out a throughput measurement in Mbits/sec. Likewise, the
receiver waits for a connection from the sender, begins receiving Ethernet
data, and at the end of the data transmission prints out the total
throughput, in Mbits/sec.

The benchmarking application has been structured to be as simple as
possible. Both the sender and receiver parts of the program perform no
additional work apart from sending and receiving Ethernet data.
Additionally, for standardization purposes, all network operations use
the industry standard Sockets API in their implementation.

1 More information about the benchmarking program, including
detailed information about how to build and operate it, can be
found in the readme.doc file in the example design file that
accompanies this application note.

Altera Corporation 17
Preliminary

Benchmarking Results and Analysis

Test Setup

The benchmarking tests were conducted between a workstation and a
Nios II development board. The workstation used was a Dell Optiplex
GX280 workstation running the Windows XP Professional operating
system, with two Pentium 4 (3.2GHz) CPUs. The Nios II development
board used was a Nios II Stratix® II RoHS development board with a
Marvell PHY 10/100/1000 daughter card. The workstation was lightly
loaded, meaning that the only user applications running were the
benchmark program and the Nios II IDE.

The Ethernet connection used between the two systems was a single
twisted pair, networking cable used in a direct-connection fashion (no
hub or switch was used between the connections).

Finally, to minimize the impact of spurious network communications on
the Ethernet link, only the TCP/IP protocol suite was enabled for the
network link on the Windows workstation; all other networking
protocols and applications were disabled.

Test Systems

The benchmarking analysis was structured to demonstrate how changing
key parameters in an Ethernet system can lead to radical performance
changes. The analysis compared two of Altera's Ethernet networking
solutions:

■ A system using the LAN91C111 chip (10/100 Mbit)
■ A system using the Altera Triple Speed Ethernet (TSE) MAC

(10/100/1000 Mbit), with a Marvell PHY

The goal of this benchmark analysis is to highlight the performance
improvements that can result from using an optimized Ethernet device
that utilizes SGDMA channels to handle the data movement. The tests
also measure the relative performance differences of using the Nios II
processor with SSRAM and DDR SDRAM.

1 Test runs for the LAN91C111 were conducted on a 100 Mbit link,
because this is the maximum link speed supported by the
LAN91C111 device.

This benchmark test examines the merits of applying various
optimizations to both the Nios II processor and the NicheStack
networking stack. The first parameter tested is the effect of doubling the
instruction and data cache sizes for the processor. The second parameter
tested is the effect of increasing the Nios II processor's clock frequency

18 Altera Corporation
Preliminary

Accelerating Nios II Networking Applications

from 83.333 MHz to 150 MHz. All the tests also measure the relative
performance differences of operating the Nios II processor with both
SSRAM and DDR SDRAM.

The effect of applying various hardware optimizations to the NicheStack
networking stack were also measured. These included the use of a
hardware checksum (generated via the C2H compiler), the use of fast
internal memory for packet storage, using a combination of the two, and
not using either.

Test Methodology

This section describes the parameters used in the benchmarking tests.

Ethernet Link Type

The Ethernet link selected for connecting the workstation to the Nios II
board used a single 100/1000 Mbit cable in a point-to-point configuration
(no hub or switch). This choice mitigated any effects an additional piece
of networking hardware might have had in the test system.

In most networking applications, however, your system may be
connected to another host through one (or more) Ethernet hubs or
switches. These extra connections may increase the communication
latency. Therefore, the benchmark numbers presented here should be
viewed as the “idealized” performance of a (near) perfect Ethernet
connection.

Protocols Tested

All benchmark operations were conducted using the the TCP protocol,
because the TCP protocol guarantees that all data sent by the
“transmitter” arrives at the “receiver.” This means that the throughput
numbers reported are legitimate.

The benchmark application can measure UDP transmission speeds, but
does so without accounting for lost or missing Ethernet packets.
Therefore, the UDP test only measures the speed at which the transmitter
can send all of the data using the UDP protocol, without considering
whether the data made it to the receiver at all.

Data Transmission Sizes

For this series of tests, a total data size of 100 megabytes
(100,000,000 bytes) was selected. This data size was chosen to increase the
total amount of time spent in the course of the test, to more clearly capture
the average performance of both the sender and receiver.

Altera Corporation 19
Preliminary

Benchmarking Results and Analysis

Furthermore, the largest TCP payload size was used for Ethernet packet
transmission (1458 bytes). This payload size was chosen to provide an
upper bound of Ethernet performance, that is, the best expected
performance numbers achievable in the design.

1 Because the benchmarking application uses the Sockets API, the
payload size (1458 bytes) directly maps to the length parameter
in the send (TCP) and sendto (UDP) function calls. Following
is an example of a send function call in TCP:

send(int socket, const void *buffer, size_t length, int flags);

Test Runs

For every Nios II configuration, the data transmission time and average
data throughput was measured with the Nios II system as both the sender
and the receiver. Three consecutive measurements were taken and the
average of these runs was recorded as the final measurement.

Nios II System Software Configuration

The benchmark application uses Altera's recommended structure for
Nios II NicheStack-based applications. The application relies on the
MicroC/OS-II and NicheStack Sockets API for operation. The following
configurations, were applied to all test systems.

NicheStack Networking Stack Configuration

The NicheStack networking stack was built by selecting the default
configuration in the configuration wizard. This configuration provides a
minimal set of general purpose functionality to enabled networking
operations using the TCP and UDP protocols.

Additionally, the following MicroC/OS-II thread priorities were selected
for the two core NicheStack tasks:

■ tk_netmain = priority 2
■ tk_nettick = priority 3

MicroC/OS-II Configuration

The default MicroC/OS-II configuration was also selected for the
operation of the networking stack. This configuration provides all the
basic MicroC/OS-II services.

20 Altera Corporation
Preliminary

Accelerating Nios II Networking Applications

Benchmark Application

The benchmark application uses the Sockets API. The configuration for
the application is as follows:

■ benchmark application = priority 4
■ benchmark initialization thread = priority 1

1 More information on the benchmark application and its
operation can be found in the design files that accompany this
application note.

General Application and System Library Settings

Both the benchmark application and the associated system library were
compiled using the Nios II GNU tool chain with the –03 optimization
enabled. In the test cases that involve changes to the run-time memory
(either SSRAM or DDR SDRAM), the entire memory was selected for the
application's binary segments (Text, Data, BSS, and so forth).

Workstation System Software

The workstation benchmark application was compiled using the GNU
tool chain for the Cygwin environment, targeting the x86 architecture.
Because the workstation benchmark application re-utilizes much of the
same source code base as the Nios II application, it uses the Sockets API
for conducting this test.

Altera Corporation 21
Preliminary

Nios II Test Hardware

Nios II Test
Hardware

Based on the performance guidelines for the application, networking
stack, and Networking device peripherals, the following four systems
were created for benchmarking. Table 3 summarizes the results.

■ LAN91C111—This system is the Nios II, Stratix II RoHS “full
featured” reference design that is included in the Nios II
development kit. The design was modified to run at 83.333 MHz to
match the other systems being benchmarked. This design includes
an interface to the LAN91C111 MAC/PHY chip, and memory
interfaces to DDR SDRAM and SSRAM memory.

■ TSE Standard—This system is the Nios II, Stratix II RoHS
“TSE_SGDMA” reference design that is included in the Nios II
development kit. This design includes an interface to the TSE MAC,
driven by two separate SGDMA engines. Memory interfaces are
provided to DDR SDRAM and SSRAM memory. The core system
operates at a clock frequency of 83.333 MHz, with an additional clock
driving the MAC component at 125 MHz. This system also has the
fast packet memory and C2H hardware checksum optimization.

■ TSE Big Cache—This is the same design as TSE Standard, but
includes larger instruction and data cache memories for the Nios II
processor. The instruction cache memory is 8 Kbytes (vs. 4 Kbytes in
the TSE Standard system) and the data cache memory is 8 Kbytes (vs.
2 Kbytes in the TSE Standard system).

Table 3. Ethernet Benchmark Test Matrix Note (1)

System MHz

Nios II Cache
(Kbytes) Memory Optimizations

Link Speed
(Mbits/

Sec)

Inst. Data SSRAM DDR
SDRAM None HW FM HW/FM 100 1000

LAN91C111 83.333 4 2 x x x x x x x

TSE Standard 83.333 4 2 x x x x x x x

TSE Big Cache 83.333 8 8 x x x x x x x

TSE Optimized 150 8 8 x x x x x x x

Note to Table 3:
(1) HW = Hardware checksum optimization

FM = Fast packet memory optimization
x = Feature is present

22 Altera Corporation
Preliminary

Accelerating Nios II Networking Applications

■ TSE Optimized—This system is almost the same design as TSE Big
Cache, but the overall system clock frequency for the system has
been increased to 150 MHz. This clock increase was made possible by
using a pipeline bridge peripheral to separate the faster peripherals
from the slower peripherals in the system.

1 The fourth design (TSE Optimized) is included in the design
files that accompany this application note.

Test Results Table 4 shows the results from the benchmark testing.

Analysis

The test results show that the Nios II Ethernet transmission speed (TX) is
much greater than the receive speed (RX). This result is most likely
because the computational overhead for transmitting packets tends to be
much less than that for receiving packets.

The results from the LAN91C111 system show that its throughput is
constrained both computationally and in terms of data movement,
because the Nios II processor is involved in both operations. Therefore,
when the latency of the memory (moving from DDR SDRAM to SSRAM
memory) is decreased, the performance increases in a fairly linear way.

Table 4. Benchmark Test Results Note (1)

System Name Test
Type

Configuration

DDR SDRAM SSRAM

None FM HW FM/HW None FM HW FM/HW

LAN91C111
TX 24.183 25.845 23.472 27.924 27.711 28.888 30.114 32.262

RX 19.840 21.161 17.729 22.903 21.530 23.221 22.854 24.667

TSE Standard
TX 27.862 31.800 32.524 33.916 41.395 43.828 50.332 54.462

RX 19.066 25.453 20.889 27.970 27.712 32.217 31.608 35.692

TSE Big Cache
TX 36.172 44.930 46.179 47.703 58.740 62.898 76.260 82.118

RX 21.805 33.274 25.912 38.047 38.059 42.662 43.994 49.520

TSE Optimized
TX 58.708 71.259 82.778 80.702 83.827 94.742 107.627 108.868

RX 36.019 53.076 41.619 59.682 54.485 65.451 62.628 74.569

Note to Table 4:
(1) All figures are in Mbits/sec

None = Neither optimization is present
FM = Fast packet memory optimization
HW = Hardware checksum optimization

Altera Corporation 23
Preliminary

Test Results

Additionally, both the fast packet memory and C2H checksum
optimizations improved the overall performance, but the main bottleneck
is still the Nios II processor's ability to move data in the system. The
Nios II data movement operations, that is, moving packet data from the
LAN91C111 device to memory, were clearly the slowest operations in the
whole system. Any major performance improvements in this system are
only going to happen by improving the data movement operations of the
packets to and from the Ethernet device.

1 The LAN91C111 device can be used with an Altera Avalon DMA
peripheral, but this implementation is beyond the scope of this
application note.

The TSE Standard system results are interesting because the data
movement operations between the networking stack and the Ethernet
device are accomplished via the use of the SGDMA engines instead of the
Nios II processor. There is a significant performance improvement in both
sending and receiving Ethernet data (48% increase in TX and 69%
increase in RX) when the high latency memory (DDR SDRAM) is replaced
by the lower latency memory (SSRAM). These improvements are further
magnified when the fast packet memory and hardware checksum
optimizations are applied to the DDR SDRAM and SSRAM based
systems (61% TX improvement and 28% RX improvement).

The results of the TSE Big Cache system show the importance of
increasing the cache memory in the TSE systems. By increasing the
instruction cache from 4 Kbytes to 8 Kbytes, and increasing the data cache
from 2 Kbytes to 8 Kbytes, there is a big performance increase in both the
TX and RX cases. With the system running in DDR SDRAM, the TX
performance jumps from about 28 Mbits/sec to 36 Mbits/sec (30%
increase) and the RX performance jumps from 19 Mbits/sec to about
22 Mbits/sec (14% increase). Moreover, in SSRAM the TX performance
jumps from 41 Mbits/sec to 59 Mbits/sec (42% increase) and the RX
performance jumps from 27 Mbits/sec to 38 Mbits/sec (37% increase).
The test results show that the increase in data cache sizes helped to
increase the overall computational performance of the Nios II processor,
which in turn increased the overall throughput of the networking stack.
Additionally, the performance increase of the fast packet memory and
hardware checksum served to further boost the performance as well, with
both the TX performance and RX performance increasing substantially
over the standard systems.

Increasing the overall frequency of the entire system (Nios II processor,
Ethernet device, and memory) also had a profound effect on the overall
networking performance of the system. In the TSE Optimized design, the
frequency of the system was increased from 83.333 MHz to 150 MHz, an
80% increase in MHz from the TSE Standard system. This change resulted

24 Altera Corporation
Preliminary

Accelerating Nios II Networking Applications

in approximately a 60% increase in TX and RX performance in the DDR
SDRAM system, and about a 40% increase in TX and RX performance in
the SSRAM system, respectively. Additionally, both the fast packet
memory and hardware checksum optimizations also seemed to maintain
this overall performance increase as well. The TSE Optimized system
running from SSRAM, then, was able to achieve 107 Mbits/sec TX and
63 Mbits/sec RX performance, about a 100% increase in performance
over the TSE Standard system.

Note that applying both the fast packet memory and C2H hardware
checksum optimizations to a given system tends to provide a greater level
of performance than applying each optimization by itself. This makes
sense because the C2H hardware checksum operates more quickly on
faster memory, which is the whole point of the fast packet memory
optimization.

Finally, note that in the some test cases where the DDR SDRAM was used
for the Nios II processor’s memory, the C2H hardware checksum yielded
results that were sub-optimal (the performance was less than using the
standard assembly checksum). This result was most likely due to bank
switching caused by the accelerator's access of the DDR SDRAM
memory; however, this problem went away when the fast packet memory
was used in conjunction with the C2H hardware checksum.

Conclusion As seen in the empirical benchmark results, minor performance increases
in your Ethernet system can be obtained by applying a single hardware
optimization; however, achieving significant Ethernet performance
increases involves applying several hardware optimizations together in
the same system.

In decreasing order of importance, the optimizations you should consider
for their Ethernet system are as follows:

■ DMA engine for moving data to and from the Ethernet device
■ Increasing the overall system frequency (CPU, DMAs, memory, and

so forth)
■ Using low-latency memory for Nios II execution
■ Using C2H to accelerate the network checksum
■ Using fast packet memory to store Ethernet data

Finally, the overall performance you seek from your Ethernet application
depends on the nature of the application itself. This application note has
provided you with general techniques to accelerate Nios II Ethernet
applications, but the final measure of success is whether your application
meets the performance goals you established.

Altera Corporation 25
Preliminary

Appendix

Appendix General Information for TCP/IP Networking

The following resources were used in the construction of this application
note, and can provide you with more information regarding Ethernet, the
TCP/IP protocol, and the Sockets API:

General Information:

■ Richard Stevens, UNIX Network programming
■ Douglas Comer, Internetworking with TCP/IP volume 3
■ General Ethernet Information (en.wikipedia.org/wiki/Ethernet)

Additionally, more information regarding Altera's tools and technology
can be found on the Altera literature page (www.altera.com/literature).

NicheStack Documentation

f For more information about using “Super Loop” mode, the “Zero Copy”
API, and so forth, refer to the NicheStack TCP/IP Stack documentation
in the NicheStackRef.zip file located in the <Nios II EDS install path>/
components/altera_iniche/UCOSII/src/downloads/packages directory.

Additional NicheStack Information

The NicheStack TCP/IP Networking stack is a software library licensed
by Altera from InterNiche Technologies. If you are interested in licensing
the NicheStack networking stack for use in your Nios II application,
check the terms and conditions here: www.altera.com/nichestack.

The version of the NicheStack networking stack distributed by Altera
provides you with basic TCP/IP networking functionality. If your
application requires additional application modules, or protocol support,
visit the InterNiche website for more information: www.iniche.com.

Additional Network Technology Solutions

The device driver support included in the Altera version of the
NicheStack networking stack supports both the LAN91C111 MAC/PHY
chip and Altera TSE MAC IP. Additional networking device IP is
available at Altera’s IP Megastore:
www.altera.com/products/ip/ipm-index.html

26 Altera Corporation
Preliminary

101 Innovation Drive
San Jose, CA 95134
www.altera.com
Technical Support:
www.altera.com/support/
Literature Services:
literature@altera.com

Copyright © 2007 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company,
the stylized Altera logo, specific device designations, and all other words and logos that are identified as
trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera
Corporation in the U.S. and other countries. All other product or service names are the property of their re-
spective holders. Altera products are protected under numerous U.S. and foreign patents and pending
applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products
to current specifications in accordance with Altera's standard warranty, but reserves the right to make chang-
es to any products and services at any time without notice. Altera assumes no responsibility or liability
arising out of the application or use of any information, product, or service described
herein except as expressly agreed to in writing by Altera Corporation. Altera customers
are advised to obtain the latest version of device specifications before relying on any pub-
lished information and before placing orders for products or services.

Accelerating Nios II Networking Applications

Document
Revision History

Table 5 shows the revision history for this application note.

Table 5. Document Revision History

Date and Document
Version Changes Made Summary of Changes

May 2007
v1.0

Initial release. —

	Accelerating Nios II Networking Applications
	Introduction
	The Structure of Networking Applications
	Ethernet System Hierarchy
	Inter-Relationship of Elements
	Finding the Performance Bottlenecks

	The User Application
	User Application Optimizations
	Software Optimizations
	Hardware Optimizations
	The Sockets API
	Selecting the “Right” Networking Protocol
	Improving Send/Recv Performance
	The “Zero Copy” API

	Structure of the NicheStack Networking Stack
	General Optimizations
	NicheStack Specific Optimizations
	NicheStack Thread Priorities
	Disabling Non-Essential NicheStack Modules
	Using Faster Packet Memory
	Background
	Solution

	Accelerating the Packet Checksum
	Background
	Optimizing the Packet Checksum

	“Super Loop” Mode

	Ethernet Device
	Link Speed
	Selecting the Right Hardware
	Network Interface Comparison (LAN91C111 vs. Altera TSE MAC)
	NicheStack Device Driver Model

	Benchmarking Results and Analysis
	Overview
	Test Setup
	Test Systems

	Test Methodology
	Ethernet Link Type
	Protocols Tested
	Data Transmission Sizes
	Test Runs

	Nios II System Software Configuration
	NicheStack Networking Stack Configuration
	MicroC/OS-II Configuration
	Benchmark Application
	General Application and System Library Settings

	Workstation System Software

	Nios II Test Hardware
	Test Results
	Analysis

	Conclusion
	Appendix
	General Information for TCP/IP Networking
	NicheStack Documentation
	Additional NicheStack Information
	Additional Network Technology Solutions

	Document Revision History

