
Altera Corporation 1
AN-446-1.2 Preliminary

Application Note 446

Debugging Nios II Systems
with the SignalTap II

Embedded Logic Analyzer

Introduction As FPGA system designs become more complex and system focused—
with increasing numbers of processors, peripherals, buses, and bridges—
designers need better and more sophisticated system-level debug tools.
Altera's SignalTap® II Embedded Logic Analyzer provides real-time
hardware debugging capabilities by embedding a logic analyzer in the
system. The Nios® II plug-in for the SignalTapII Embedded Logic
Analyzer extends the SignalTap II system debugging capabilities by
enabling the capture of a Nios II processor's program execution.

This application note teaches you to debug your system design using
dynamic information provided during software execution by the Nios II
processor. It examines the use of the Nios II plug-in for the SignalTap II
Logic Analyzer, and presents the capabilities, configuration options, and
use model for the plug-in. A short tutorial demonstrates how to use the
Nios II plug-in, SignalTap II Logic Analyzer, and Nios II Integrated
Development Environment (IDE) to trigger on, capture, and trace the
receipt of a character from an RS-232 UART interface.

The Nios II plug-in extends the capabilities of the SignalTap II Embedded
Logic Analyzer, enabling you to easily trigger on and capture instruction
trace data being executed by the Nios II processor core. You can specify
an instruction-trace trigger, which triggers the SignalTap II Logic
Analyzer when the processor reaches a specific address, by entering a
symbol name from your program, or specify your own SignalTap II
trigger condition. The Nios II plug-in automatically correlates the
processor trace with a specified software image, providing you with a
symbol name plus offset view of the trace, along with decoded Nios II
machine language operation codes (op-codes).

Prerequisites The goal of this application note is to teach you how to use the Nios II
plug-in in the SignalTap II framework. The application note assumes you
are familiar with certain Altera® software tools, including the basic use of
the SignalTap II Embedded Logic Analyzer. In addition, the tutorial
assumes you have access to certain Altera tools and intellectual property
(IP).

This application note assumes that you are familiar with the use of the
Quartus® II software, SOPC Builder, and Nios II embedded processor,
and the basic capabilities and operation of the SignalTap II Embedded

June 2008, ver. 1.2

2 Altera Corporation
Preliminary

Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer

Logic Analyzer. Because the Nios II plug-in is an extension of the
SignalTap II Logic Analyzer, the basic use of the plug-in is nearly identical
to that of the SignalTap II Logic Analyzer.

f For more information about the SignalTap II configuration options and
use modes, refer to the Design Debugging Using the SignalTap II Embedded
Logic Analyzer chapter in volume 3 of the Quartus II Handbook.

Tool Requirements

Using the Nios II plug-in requires the following tools:

■ Quartus II software version 8.0 or later
■ Nios II Embedded Development Suite 8.0 or later

Completing the tutorial at the end of this application note requires the
following additional resources:

■ Nios II Development Kit
■ RS-232 serial cable (optional)
■ JTAG ByteBlaster™ or USB-Blaster™ cable
■ The source file signal_tap_test.c (available as a downloadable file

with this application note)

For more detailed information about the hardware and software required
for the tutorial, refer to “Tutorial: Using the Nios II Plug-In” on page 11.

The Nios II
Plug-In

The Nios II plug-in is a debugging extension to the SignalTap II
Embedded Logic Analyzer. It enables you to capture the op-codes
executed by a Nios II embedded processor. The Nios II plug-in operates
by instantiating debug nodes inside the Nios II processor's ALU. The
Nios II plug-in supports all variants of the Nios II processor core.

Each Nios II plug-in instantiation is associated with a specific Nios II
processor, and can operate with other Nios II plug-in instantiations and
with other SignalTap II instances.

You can specify the following types of trigger conditions:

■ Instruction address
■ Symbol name (function) present in the Nios II Executable and

Loadable Format (.elf) file
■ Symbol name plus an offset

http://www.altera.com/literature/hb/qts/qts_qii53009.pdf

Altera Corporation 3
Preliminary

The Nios II Plug-In

The plug-in decodes all the instructions it captures to a human-readable
format. Instruction addresses are translated to symbol name plus address
offset (if possible), and instruction op-codes are translated to their
equivalent assembly language mnemonics.

Quartus II Project and SignalTap II Logic Analyzer Set-Up

You must create and configure a SignalTap II file in your Quartus II
project for use with the Nios II plug-in. To add the SignalTap II file to your
system, perform the following steps:

1. On the Quartus II File menu, click New.

2. In the New dialog box, in the Verification/Debugging Files
category, click SignalTap II Logic Analyzer File.

3. Click OK.

Alternatively, you can open a new or existing SignalTap II file by
performing the following steps:

v On the Quartus II Tools menu, click SignalTap II Logic Analyzer.

After you perform these steps, a SignalTap II window appears.

The Nios II plug-in currently does not support Quartus II projects in
which the incremental compilation option is set. Therefore, you must
ensure that incremental compilation is disabled in your Quartus II
project. To disable incremental compilation, perform the following steps:

1. On the Assignments menu, click Settings.

2. In the Settings dialog box, expand Compilation Process Settings
and click Incremental Compilation.

3. Under Incremental Compilation, select Off.

4. Click OK.

Adding the Nios II Plug-In

When you add the Nios II plug-in to your system, you must specify the
Nios II processor you wish to monitor and, optionally, the processor's
software image, an .elf file. The Nios II plug-in processes the .elf file to
extract symbol information, which is used during configuration to
specify trigger conditions.

4 Altera Corporation
Preliminary

Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer

To add the Nios II plug-in to your system, perform the following
operations:

1. In the Quartus II window, on the Processing menu, point to Start,
and then click Start Analysis & Elaboration.

2. In the SignalTap II window, right-click in the SignalTap II node list.
Point to Add Nodes with Plug-In and click Nios II. The Select
Hierarchy Level dialog box appears.

3. In the Select Hierarchy Level dialog box, select the Nios II
processor instance you want to monitor with the plug-in.

4. Click OK. The Plug-In Options dialog box appears.

5. In the Plug-In Options dialog box, optionally specify the location of
the .elf file.

1 Two Nios II plug-in instances cannot monitor the same Nios II
processor. If you attempt to add more than one instance of the
Nios II plug-in per processor, an error message appears.

6. Click OK.

You can change the .elf file used by the Nios II plug-in at any time by
performing the following steps:

1. In the SignalTap II window, click the Setup tab.

2. In the SignalTap II node list, right-click on the Nios II plug-in
instance you want to modify and click Plug-In Options. The
configuration options for the Nios II plug-in appear.

1 The .elf file is generated by the Nios II IDE during the software
build process. In most cases, the .elf file for your software project
is located in the Debug directory or the Release directory
created by the Nios II IDE. You can also create an .elf file in the
Nios II software build tools flow.

Specifying Trigger Conditions

Unlike standard SignalTapII Logic Analyzer trigger conditions, which are
described as hardware or logic events, the Nios II plug-in's trigger
conditions are specified as instruction addresses. The Nios II plug-in is
triggered when the Nios II processor reaches the specified instruction
address during program execution.

Altera Corporation 5
Preliminary

The Nios II Plug-In

Basic Triggering

In basic triggering mode, the Nios II plug-in uses a processor-visible
system address as the trigger to begin trace capture. To set the trigger,
click the Trigger Conditions column in the Nios II plug-in and type an
instruction address.

You can type any of the following supported trigger conditions:

■ Hexadecimal integer: 0x<32-bit number> (for example, 0x20000000)
■ .elf file symbol: <string> —An alphanumeric C/C++ function name

that appears as a symbol in the .elf file (for example, foo)
■ .elf file symbol + offset: <string>+<hexadecimal number> (for example,

foo+0x80)

To specify a trigger condition with a symbol name option you must
configure the Nios II plug-in with a Nios II processor .elf file. If the .elf
file does not contain the specified symbol name, an error message
appears and the trigger condition field is set to an undefined value. When
you type a value in the trigger condition field, the Nios II plug-in
examines the contents of the reference .elf file for any changes. This check
guarantees that the trigger conditions remain synchronized with the .elf
file contents, even if the .elf file is changing frequently, such as during
software debugging.

To determine the symbols in the .elf file, use one of the following methods
to generate an objdump file:

■ Turn on the CREATE_OBJDUMP option in the makefile, and then
build the project.

■ After you create the .elf file, in the Nios II command shell, type the
following command:

nios2-elf-objdump –s <filename>.elf r

For more information refer to “Building the Nios II Software” on page 13.

1 You can specify your standard SignalTapII Logic Analyzer
trigger conditions in the SignalTap II window by right-clicking
on the Trigger Conditions column and selecting a trigger
pattern. However, you should enter your Nios II plug-in trigger
conditions manually for clarity.

Not specifying an address trigger condition for the Nios II plug-in has the
same effect as not specifying a trigger condition in a normal SignalTap II
instance. If you specify no trigger condition, the logic analyzer triggers
immediately and the displayed data is generally not useful.

6 Altera Corporation
Preliminary

Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer

Multiple Triggers

The Nios II plug-in supports the SignalTap II multiple trigger conditions
feature, and can be incorporated as part of a more complex capture
sequence. You can include the Nios II plug-in trigger pattern as a part of
any SignalTap II trigger condition.

Advanced Triggers

Complex triggers can be created using the SignalTap II Advanced Trigger
option. However, the Nios II plug-in loses much of its benefit when this
option is used. The signal groupings contained in the Nios II plug-in
appear in the Advanced Trigger Configuration Editor, where they are
treated as normal signals. The Advanced Trigger Configuration Editor
lacks the Nios II plug-in's capability to trigger by address or symbol.

Power-Up Triggers

You can use the Nios II plug-in with the SignalTap II power-up trigger
feature. Because power-up triggers are enabled before the SignalTap II
Logic Analyzer is started manually, they are useful for monitoring
systems in which the Nios II processor operates in self-booting mode, that
is, immediately after the FPGA is configured. In these cases, the Nios II
processor begins software execution directly from system memory
without the aid of a debugger to start, stop, and load the processor's
run-time memory.

Assigning the Acquisition Clock

You must specify a clock signal to control the acquisition of samples.
Specify the clock signal in the Signal Configuration pane of the
SignalTap II window. Altera recommends that you select the clock signal
used by the Nios II processor as the SignalTap II acquisition clock. Using
the Nios II processor clock ensures that the captured instruction trace
data accurately corresponds to the instruction execution of the Nios II
processor.

Selecting Sample Depth, Memory Type, and Buffer Acquisition
Mode

For the Nios II plug-in, just as for the SignalTap II Logic Analyzer, you
must configure the sample depth, memory type, and buffer acquisition
mode for the capture session. These configuration options behave as they
would in a normal SignalTap II Logic Analyzer capture session, and are
accessible through the Signal Configuration pane.

Altera Corporation 7
Preliminary

Running a Capture Session

Exercise care in selecting the Sample Depth size. The Nios II plug-in
requires many signals to be captured for every sample taken, quickly
depleting available memory resources. Use the SignalTap II built-in
resource estimator to gain a better understanding of how adjusting the
sample depth parameter impacts your design.

Design Compilation and Programming the Target Device

The Nios II plug-in is compiled in the Quartus II design with the
SignalTap II Logic Analyzer. However, because the Quartus II
incremental compilation option is not supported by the Nios II plug-in,
you must perform a full compilation of the Quartus II project after adding
the plug-in.

After compilation, you can program the FPGA target device with the
SRAM Object File (.sof) from the SignalTap II window just as you would
if you were not using a Nios II plug-in.

Running a
Capture Session

You perform data acquisition with the Nios II plug-in the same way that
you gather data with the SignalTap II Logic Analyzer. First, program the
FPGA with the .sof file generated by the Quartus II software. Next, run
SignalTap II analysis, either manually through the SignalTap II Instance
Manager, or automatically when the FPGA is programmed and power-up
triggering is selected. If the system meets the trigger conditions, the
SignalTap II Logic Analyzer displays the acquired data in the SignalTap II
results window.

You can use the Nios II plug-in in two different types of data capture
sessions, one with the Nios II IDE and the other in stand-alone mode.

Performing Data Capture with the Nios II IDE

To use the Nios II plug-in with the Nios II IDE, you must manually
download a Nios II software image and control the operation of the
processor through the debugger. This type of capture session is usually
conducted when you are developing and debugging a Nios II software
application.

To run a SignalTap II capture session with the Nios II processor controlled
by the Nios II IDE, perform the following steps:

1. In the SignalTap II window, program the FPGA target device with
the .sof file generated by the Quartus II software, by performing the
following steps:

8 Altera Corporation
Preliminary

Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer

a. On the Hardware menu, select the programming cable that is
connected to your Nios II development board.

b. In the SOF Manager field, click the browse button.

c. In the Select Programming File dialog box, select the .sof file
generated for your project.

d. Click Open. The Program Device button is now available.

e. Click the Program Device button to download the .sof file to

the FPGA.

2. In the SignalTap II window, in the Instance Manager pane, click the

Run Analysis button to start the logic analyzer capture session.

3. In the Nios II IDE, right-click on the name of the software project
you want to run on the Nios II processor and click Debug As. This
action starts the debugger, downloading the .elf file into system
memory and halting the processor on the entry point to main().

4. On the Debug tab, click the Resume button to start the Nios II

processor execution.

The SignalTap II Logic Analyzer continues running until the trigger
condition specified in the Nios II plug-in is reached. While the
SignalTap II Logic Analyzer is running, you can use all of the Nios II IDE
debug operations safely (for example, you can set breakpoints and stop
the processor).

When you launch the debugger, the Nios II plug-in triggers if the
processor advances to the trigger address. If the start-up breakpoint
location occurs after the trigger address location specified for the Nios II
plug-in, it may cause a false hit by the debugger. To change the breakpoint
start-up location for the debugger, perform the following steps in the
Nios II IDE:

1. On the Run menu, click Debug. The Debug window appears.

2. In the Debug window, click the Debugger tab.

3. Select the breakpoint location(s) from which you want the
Nios II IDE debugger run, and click Apply.

Altera Corporation 9
Preliminary

Analyzing Results

1 Alternatively, instead of using the Debug As option, you can use
the Run As option. Using the Run As option causes the
Nios II IDE to download and run the software image from
system memory without invoking the debugger feature of the
Nios II IDE.

Performing Data Capture Without External Software Download

If your Nios II processor based system is configured to be self-booting,
without the need for an external software download, and you have
selected the SignalTap II power-up trigger feature, the SignalTap II Logic
Analyzer begins running automatically when the FPGA is programmed.

In this case, the SignalTap II Logic Analyzer may already have captured
data available. To determine if captured data is available, or if the logic
analyzer is still running, click Run Analysis in the SignalTap II instance
manager.

f For more information about creating a self-booting Nios II processor
system, refer to the Nios II Software Developer's Handbook.

Analyzing
Results

The Nios II plug-in allows you to view the captured Nios II processor
trace data. This section describes several of the post-capture features of
the Nios II plug-in.

Viewing the Data

Captured SignalTap II data appears in the Data tab of the SignalTap II
window. Every sample captured by the Nios II plug-in displays the
following information:

■ Address—The instruction address location in hexadecimal format.
Additionally, if an .elf file was specified during plug-in
configuration, the instruction address may be further resolved into
symbol name and offset.

■ Assembly Language Mnemonic—The Nios II assembly lauguage
equivalent of the binary op-code for the instruction.

If you specified an .elf file during the plug-in configuration, the software
re-examines the file immediately after data acquisition completes, and
converts the instruction addresses to the symbol name and offset
representation. This re-examination helps to safeguard against the
inadvertent use of old software images.

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

10 Altera Corporation
Preliminary

Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer

Using the SignalTap II tab controls, you can scroll through the program
execution of the Nios II processor. If the specified acquisition clock
corresponds to the Nios II processor clock, every rising clock edge
corresponds to a new instruction cycle.

You may notice one or more “empty” instruction entries in the trace data
gathered by the Nios II plug-in. These entries indicate that no instruction
was executed by the Nios II processor during that particular clock cycle.
This behavior is normal, and can occur for the following reasons:

■ Cache Miss—The requested instruction address location generates a
miss in the instruction cache, and additional clock cycles are required
to fill the cache line and return the instruction.

■ Memory Contention or Speed—The instruction address location is
in memory that requires multiple clock cycles to access, or in
memory that is currently controlled by another peripheral or
processor.

You can also view the Nios II plug-in trace data in the SignalTap II list file
format. In this tabular format, the trace samples are displayed
chronologically in rows, decoded by sample number and the associated
assembly language mnemonic. The list file format is useful because it is
similar to the output format of the nios2-elf-objdump command,
simplifying the analysis process. To create the SignalTap II list file, on the
File menu, point to Create/Update and click Create SignalTap II List
File.

f Some Nios II processor instructions consume multiple clock cycles when
they are executed. For more information about the number of clock
cycles required for a particular instruction, refer to the Nios II Core
Implementation Details chapter of the Nios II Processor Reference Handbook.

Correlating Trace Data to the Processor's .elf File

You can compare the captured Nios II plug-in instruction trace to the
software image executed by the Nios II processor by examining the
contents of the objdump file.

You can use the nios2-elf-objdump command to create the objdump
file. This command copies the processor's .elf file to the objdump file’s
human-readable format that contains C/C++ code fragments, symbolic
function names, assembly instructions, and address locations.

http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf

Altera Corporation 11
Preliminary

Tutorial: Using the Nios II Plug-In

The nios2-elf-objdump command-line executable is included as a
part of the Nios II Embedded Design Suite. You can configure the tool
with a series of command line options. For a list of conversion options for
the nios2-elf-objdump command, in a Nios II command shell, type
the following command:

nios2-elf-objdump --help r

Although the objdump file contains vast amounts of information
decoded from the .elf file, the Nios II processor's instructions appear one
per line in this file, in the following format:

<Address>: <op-code> <Assembly Mnemonic>

For example, a valid instruction is:

200a8c0: e0800417 ldw r2,16(fp)

Saving and Converting Captured Data

You can save any data captured by the Nios II plug-in with the
SignalTap II data log feature. The Nios II plug-in data sets are stored with
the processor's .elf file information. To enable data logging, turn on the
Data Log option in the SignalTap II window.

The Nios II plug-in also supports the SignalTap II data conversion
feature. To export captured data, on the File menu, click Export and
specify the File Name, the Export Format, and the Clock Period.

Tutorial: Using
the Nios II
Plug-In

This tutorial shows you how to use the Nios II plug-in for the SignalTap II
Logic Analyzer to trace the transmission of an RS-232 character on a
Nios II development board. The tutorial explains how to set up and
configure the Nios II plug-in, how to use the plug-in during the Nios II
software debug cycle (Nios II IDE), and how to perform an analysis of the
data captured using the .elf file as a reference.

Hardware and Software Requirements

To complete this tutorial you must have the following:

■ Quartus II software version 8.0 or higher—Both the Quartus II Web
Edition and the fully licensed version works with the example
design.

■ Nios II Embedded Development Suite (EDS) version 8.0 or higher

12 Altera Corporation
Preliminary

Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer

■ Nios II Development Kit—You can use any Altera Nios II
development kit that supports the full_featured example design.
The following development kits support this design:
● Stratix® II Edition
● Cyclone® II Edition

■ RS-232 UART cable—The tutorial can be run without this cable;
however, without the cable, the output from the Nios II development
board does not appear on the Nios II IDE console.

■ Software file—Download the file signal_tap_test.c to a folder on
your hard drive. This software file can be found on the Altera
literature pages with this application note, at
www.altera.com/literature/lit-nio2.jsp.

■ JTAG ByteBlaster or USB-Blaster cable

Hardware Project Set-Up

You must first create the system hardware containing the Nios II
processor and configure the Quartus II project for the Nios II plug-in.

Setting Up the Development Board

Make sure that your Nios II development board has power and is
connected to your workstation through the JTAG download cable.
Additionally, verify that your Nios II development board's RS-232 UART
port is connected to a working serial port on your workstation.

1 While having the Nios II development board connected to your
workstation with a serial cable is ideal, this tutorial can be run
without it. However, without the serial cable, you cannot see the
character being received by the host workstation.

Configuring the Quartus II Software

To configure the Quartus II software, perform the following steps:

1. Copy the Nios II full_featured example design for your particular
board to a location in which you can edit it. The example design is
located in the following directory:

$SOPC_KIT_NIOS2/examples/verilog/
<your-nios2-board-type>/full_featured

2. Open the Quartus II software.

3. On the File menu, click Open Project.

http://www.altera.com/literature/lit-nio2.jsp

Altera Corporation 13
Preliminary

Tutorial: Using the Nios II Plug-In

4. Browse to the location where you copied the full_featured example
design. This is your project directory.

5. Select the <your-nios2-board-type>_full_featured.qpf project file.

6. Click Open.

Generating Nios II Hardware

You must regenerate the full_featured example design using SOPC
Builder before it will properly compile in the Quartus II software.

1. On the Tools menu, click SOPC Builder. SOPC Builder appears.

2. In SOPC Builder, click Generate. This action rebuilds the hardware
for the full_featured example design.

1 This operation may take a few minutes to complete.

3. After generation completes, click Exit.

Nios II Software Set-Up

You can now use the Nios II command shell to compile your software
application and generate the .elf and objdump files. After the files are
generated, you can identify the trigger location that you want to use for
the Nios II plug-in.

Building the Nios II Software

To build the software application and generate an objdump file, perform
the following steps:

1. Open a Nios II command shell.

2. Change to your project directory, the new copy of the full_featured
example design directory.

3. Create new directories in which to place software files later, by
typing the following command:

mkdir software software/app software/bsp r

4. Copy the C source file signal_tap_test.c to the software/app
directory.

5. Change to the new directory software/bsp.

14 Altera Corporation
Preliminary

Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer

6. Create the Board Support Package (BSP), by typing the following
command:

nios2-bsp hal . ../.. r

7. Change to the new directory software/app.

8. Create the application project makefile by typing the following
command:

nios2-app-generate-makefile \
--bsp-dir ../bsp \
--src-files ./signal_tap_test.c \
--elf-name signal_tap_test.elf \
--set CREATE_OBJDUMP 1 \
--set OBJDUMP_INCLUDE_SOURCE 1 r

1 When CREATE_OBJDUMP is set to 1, building the project
generates an objdump file.

9. To build the project, type the following command:

make r

This step creates the .elf and objdump files.

Importing the Software Project to the Nios II IDE

To debug your project in the Nios II IDE, you must first import it. To
import your software project to the Nios II IDE, perform the following
steps:

1. Open the Nios II IDE.

2. On the File menu, click Import. The Import dialog box appears.

3. Expand the Altera Nios II folder.

4. Click Existing Nios II software build tools project or folder into
workspace.

5. Click Next. The Import wizard appears.

6. Browse to your software/app directory.

7. Click OK. The Import wizard fills the project name and path fields.

Altera Corporation 15
Preliminary

Tutorial: Using the Nios II Plug-In

8. In the Project name field, change the project name to signal_tap_test
by typing signal_tap_test.

9. Click Finish.

Finding the Instruction Trigger Condition

The Nios II plug-in should trigger on the first write to the UART
peripheral, immediately after the entry point to the main() function. To
identify the address of the assembly instruction that writes to the UART's
transmit register, use the objdump file generated during software
compilation.

The objdump file format contains a human-readable version of the
program you just compiled. It shows the C instructions with the
corresponding assembly instructions and their locations in the Nios II
processor's address space. By locating the C instruction responsible for
the write operation to the UART's transmit register, and then examining
the assembly instructions that correspond to the C instruction, you can
retrieve the address for the assembly instruction responsible for the write
to the UART's transmit register. Perform the following steps:

1. Expand the signal_tap_test folder in the Nios II C/C++ Projects tab.

2. Right-click on the signal_tap_test.objdump file and click Open.

3. On the Edit menu, click Find/Replace.

4. In the Find field of the Find/Replace dialog box, type
IOWR(UART1_BASE,1,'*'). This string is the C function call to
write the UART's transmit register.

5. Click Find. The line containing IOWR(UART_BASE,1,'*')is
highlighted, as shown in Figure 1.

16 Altera Corporation
Preliminary

Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer

Figure 1. Nios II Objdump View

6. Scroll down a few lines until you find the line containing the stwio
r2,0(r3) assembly instruction, and note the address to the left of
the instruction. This instruction corresponds to the Nios II
processor's write to the UART's transmit register. In this example,
the address for this instruction is 0x6000380. However, in your
particular case this address may be different. You can use the
address of this instruction as a trigger for the Nios II plug-in to
begin capturing instruction trace data.

In this example, when the Nios II processor executes the assembly
instruction stwio r2,0(r3), it writes to the UART transmit control
register, which then transmits a character. You can identify the write
instruction from the following indicators:

■ The instruction appears in the block of assembly instructions that
correspond to the C instruction IOWR(UART1_BASE,1,'*').

■ The other assembly instructions contained in the block perform
operations only on the Nios II processor's registers.

Altera Corporation 17
Preliminary

Tutorial: Using the Nios II Plug-In

■ The assembly language instruction stwio performs a store-word
operation to a peripheral.

f For information about assembly language instructions, refer to the
Instruction Set Reference chapter of the Nios II Processor Reference
Handbook.

Configuring the Hardware Project

Next, configure the Nios II plug-in for operation in the SignalTap II Logic
Analyzer.

1 In the project provided in the full_featured directory,
Incremental Compilation is already turned off.

Perform the following actions in the Quartus II software:

1. On the Processing menu, point to Start and click Start Analysis &
Elaboration.

1 This operation may take a few minutes to complete.

2. On the Tools menu, click SignalTap II Logic Analyzer.

3. Right-click in the SignalTap II node list. Point to Add Nodes with
Plug-In and click Nios II. The Select Hierarchy Level dialog box
appears.

4. In the Select Hierarchy Level dialog box, select
<your-nios2-board-type>_sopc_instance|cpu:the_cpu.

5. Click OK. The Plug-In Options dialog box appears.

6. In the Plug-In Options dialog box, click the browse button next to
the Setting text field.

7. In the Select File dialog box, browse to the location of the .elf file
you compiled in the Nios II command shell. This .elf file should be
present in your software/app directory and be named
signal_tap_test.elf. Select the file.

8. Click Open. The Select File dialog box closes.

9. Click OK. The Plug-In Options dialog box closes.

http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf

18 Altera Corporation
Preliminary

Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer

10. In the Trigger Conditions column for the Nios II plug-in, enter the
address that corresponds to the write to the UART's transmit
register. In this example, the address is 0x6000380 for the trigger
condition, as shown in Figure 1 on page 16.

11. Add the RS-232 UART's transmit data signal to the node list by
performing the following steps:

a. Right-click on the node list pane and click Add Nodes.

b. Ensure that the Look in field is set to
|<your-nios2-board-type>_full_featured| and the Named field
contains only an asterisk (*).

c. Ensure that the Filter field is set to SignalTap II: pre-synthesis.

d. Click List.

e. In the Nodes Found pane, double-click the node
txd_from_the_uart1. The node is added to the Selected
Nodes pane.

f. Click OK.

12. In the Signal Configuration pane, click the browse button next to the
Clock text field to bring up the Node Finder dialog box.

13. In the Node Finder dialog box, perform the following steps:

a. Click the browse button next to the Look in text field. The
Select Hierarchy Level dialog box appears.

b. In the Select Hierarchy Level dialog box, expand the hierarchy
list under
<your-nios2-board-type>_full_featured_sopc_instance.

c. In the expanded hierarchy list, click the entity pll:the_pll.

d. Click OK to close the list.

e. Ensure that the Filter field is set to SignalTap II: pre-synthesis.

f. In the Node Finder, click List to list all of the nodes.

g. Double-click the node c0 to add it to the Selected Nodes field.

h. Click OK. The Node Finder dialog box closes.

Altera Corporation 19
Preliminary

Tutorial: Using the Nios II Plug-In

14. In the Signal Configuration pane, set the Sample Depth field to 256.

15. In the Quartus II window, on the Processing menu, click Start
Compilation to build the hardware for the project. If you are
prompted to save the SignalTap II instance and enable the
SignalTap II Logic Analyzer for this project, click Yes.

1 You must save the .stp file in your project directory.

1 The Quartus II hardware design may take a few minutes or
longer to compile.

Running the Trace Capture Session

The next step is to use the generated system to run a trace capture session
with the Nios II plug-in by performing the following steps:

1. In the SignalTap II window, in the JTAG Chain Configuration pane,
perform the following steps:

a. On the Hardware menu, select the programming cable that is
connected to your Nios II development board.

b. In the SOF Manager field, click the browse button.

c. In the Select Programming File dialog box, browse to your
project directory and select the .sof file
<your-nios2-board-type>_full_featured.sof.

d. Click Open. The Program Device button is now available.

e. Click the Program Device button to download the .sof file to

the FPGA.

2. In the SignalTap II window, in the Instance Manager pane, click the

Run Analysis button to start the logic analyzer capture session.

The analysis should stop with the Status in the Instance Manager
pane set to Waiting for trigger.

3. In the Nios II IDE, select the project signal_tap_test in the Projects
list.

4. In the Nios II IDE, on the Run menu, click Debug. The Debug
dialog box appears.

20 Altera Corporation
Preliminary

Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer

5. In the Debug dialog box, perform the following steps:

a. Click Nios II Hardware in the left-hand pane.

b. Click the New launch configuration button to create a new

debug launch configuration.

c. In the Project text field, type signal_tap_test.

d. In the Target hardware pane, click the Browse button.

e. In the SOPC Builder System PTF File dialog box, browse to
your project directory and select
<your-nios2-board-type>_full_featured_sopc.ptf.

f. Click Open.

g. On the Target Connection tab, set the Nios II Terminal
communication device to uart1 and verify that the Host COM
port field contains the correct setting for the serial port
connected to your development board.

This step is necessary if you want to see the characters coming
through the serial port. If you omit this step, the SignalTap II
Logic Analyzer is able to capture the data, but the characters do
not appear in the Nios II IDE console window.

h. On the Debugger tab, in the Breakpoints at Start-up field, turn
on the Break at program entry point option. Turn off the other
options.

i. Click Apply, followed by Debug. The .elf file is downloaded to
the board, followed by a launch of the debugger.

j. In the Confirm Perspective Switch dialog box, click Yes.

6. In the Nios II IDE, in the Debug pane, click the Resume button to

start the Nios II processor execution.

If the UART port is connected, the following message appears in the
console window:

*BIT BANG

Altera Corporation 21
Preliminary

Tutorial: Using the Nios II Plug-In

7. Check the SignalTap II window to verify that the capture session has
terminated because the Nios II plug-in's trigger conditions were
met. Your SignalTap II window should resemble Figure 2.

Figure 2. SignalTap II Post Capture Window

Analyzing the Captured Data

You can now analyze the data captured by the Nios II plug-in and
compare it to the objdump of the Nios II .elf file. The data samples from
the Nios II plug-in should correspond exactly to the assembly language
program listed in the signal_tap_test.objdump file.

Figure 2 demonstrates the following results:

■ The 0th sample captured by the Nios II plug-in matches the trigger
condition you set up, capturing instruction stwio r2, 0(r3).

22 Altera Corporation
Preliminary

Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer

■ The RS-232 UART's transmit data signal began two clock cycles after
the stwio instruction, which corresponds to the Nios II IDE writing
to the transmit register of the UART. The full eight-bit, serial transmit
sequence for the UART is not captured, because the SignalTap II
Logic Analyzer filled its sample buffers before the UART could
complete the transmission of the asterisk character. Only the first bit
of the eight-bit character sequence is captured.

Conclusion As FPGA designs continue to increase in size and complexity, with
increasing numbers of embedded processors, peripherals, buses, and
bridges, designers need more comprehensive debugging tools to reduce
system development time. The Nios II plug-in for the SignalTap II
Embedded Logic Analyzer enables the capture of a Nios II processor’s
program execution. Because the Nios II plug-in works together with the
SignalTap II Logic Analyzer, the instruction trace from the Nios II
processor is captured with other hardware events. The display of the
processor instructions allows you to find system design problems
efficiently.

Referenced
Documents

This application note references the following documents:

■ Design Debugging Using the SignalTap II Embedded Logic Analyzer
chapter in volume 3 of the Quartus II Handbook

■ Nios II Software Developer's Handbook
■ Nios II Core Implementation Details chapter of the Nios II Processor

Reference Handbook
■ Instruction Set Reference chapter of the Nios II Processor Reference

Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf

Altera Corporation 23
Preliminary

Document Revision History

Document
Revision History

Table 1 shows the revision history for this application note.

Table 1. Document Revision History

Date and Document
Version Changes Made Summary of Changes

June 2008
v1.2

This revision incorporates the following
changes:
● Updated the “Tutorial: Using the Nios II

Plug-In” section for the Nios II software
build flow, including removal of many
Nios II IDE screenshots.

● Replaced the Count Binary design
example with the signal_tap_test
example.

Updated document for the Quartus II
software and Nios II EDS v8.0.

October 2007
v1.1

This revision incorporates the following
changes:
● Replaced all references to

bit_bang_uart.c with signal_tap_test.c
● Replaced the associated design file

bit_bang_uart.c with the file
signal_tap_test.c

Updated document for the Quartus II
software and Nios II EDS v7.2.

May 2007
v1.0

Initial release. —

24 Altera Corporation
Preliminary

101 Innovation Drive
San Jose, CA 95134
www.altera.com
Technical Support:
www.altera.com/support/

Copyright © 2008 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company,
the stylized Altera logo, specific device designations, and all other words and logos that are identified as
trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera
Corporation in the U.S. and other countries. All other product or service names are the property of their re-
spective holders. Altera products are protected under numerous U.S. and foreign patents and pending
applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products
to current specifications in accordance with Altera's standard warranty, but reserves the right to make chang-
es to any products and services at any time without notice. Altera assumes no responsibility or liability
arising out of the application or use of any information, product, or service described
herein except as expressly agreed to in writing by Altera Corporation. Altera customers
are advised to obtain the latest version of device specifications before relying on any pub-
lished information and before placing orders for products or services.

Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer

	Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer
	Introduction
	Prerequisites
	Tool Requirements

	The Nios II Plug-In
	Quartus II Project and SignalTap II Logic Analyzer Set-Up
	Adding the Nios II Plug-In
	Specifying Trigger Conditions
	Basic Triggering
	Multiple Triggers
	Advanced Triggers
	Power-Up Triggers

	Assigning the Acquisition Clock
	Selecting Sample Depth, Memory Type, and Buffer Acquisition Mode
	Design Compilation and Programming the Target Device

	Running a Capture Session
	Performing Data Capture with the Nios II IDE
	Performing Data Capture Without External Software Download

	Analyzing Results
	Viewing the Data
	Correlating Trace Data to the Processor's .elf File
	Saving and Converting Captured Data

	Tutorial: Using the Nios II Plug-In
	Hardware and Software Requirements
	Hardware Project Set-Up
	Setting Up the Development Board
	Configuring the Quartus II Software
	Generating Nios II Hardware

	Nios II Software Set-Up
	Building the Nios II Software
	Importing the Software Project to the Nios II IDE
	Finding the Instruction Trigger Condition

	Configuring the Hardware Project
	Running the Trace Capture Session
	Analyzing the Captured Data

	Conclusion
	Referenced Documents
	Document Revision History

