
Altera Corporation 1
AN-458-1.1 Preliminary

Application Note 458

Alternative Nios II Boot
Methods

Introduction In any stand-alone embedded system that contains a microprocessor, the
processor runs a small piece of code called a boot copier, or boot loader,
after the system resets. The boot copier locates the appropriate
application software in non-volatile memory, copies it to RAM, initializes
critical system components, and branches to the entry point of the
application software image. The block of data in non-volatile memory
that contains the application software is commonly referred to as the boot
image. Boot copiers range in complexity from basic byte-for-byte copy
routines to comprehensive applications that perform rigorous
system tests, select among multiple software applications, and unpack,
decompress, and perform error detection on the proper application.

This document teaches you how to implement your own custom boot
copier software using the Nios® II processor and Nios II software build
tools. In addition, this document provides the basic information needed
to externally control the Nios II boot process.

This document addresses how to implement a custom boot copier for a
Nios II processor already configured in the FPGA. It does not address
custom methods of configuring Altera® FPGAs.

f For information about custom methods of configuring Altera FPGAs,
refer to www.altera.com/support/devices/configuration/cfg-index.html.

Assumptions About the Reader

This document assumes that you are an advanced Nios II user and that
you are comfortable reading and writing embedded software. If you are
not familiar with the Nios II hardware or software development flow,
Altera strongly recommends that you first become familiar with building
a Nios II microprocessor system.

f Refer to the Nios II Hardware Development Tutorial for step-by-step
procedures that build an example Nios II microprocessor system.

This document also assumes you are familiar with the command line
operation of the Nios II flash programmer.

f Refer to the Nios II Flash Programmer User Guide for details about the
Nios II flash programmer.

September 2008, ver. 1.1

http://www.altera.com/support/devices/configuration/cfg-index.html
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf

2 Altera Corporation
Preliminary

Alternative Nios II Boot Methods

Implementing a Custom Boot Copier

Implementing a custom boot copier requires you to deviate from the
normal Nios II software build tools development flow. You must edit
source files by hand and run file conversion utilities from the Nios II
command shell.

This document includes example source code for the following types of
custom boot copiers:

■ Advanced boot copier - This example includes extra features such as
dual boot image support and CRC error checking.

■ Small boot copier. This example is a bare-minimum boot copier that
requires very little memory space.

Default Nios II
Boot Copier

This section discusses the operation of the default Nios II boot copier,
describing the workings of both the Common Flash Memory Interface
(CFI) flash memory and the Altera erasable programmable configurable
serial (EPCS) variant. If you are unfamiliar with the default boot copier,
read this section before implementing a custom boot copier.

Overview of the Default Nios II Boot Copier

The default boot copier included with the Nios II processor provides
sufficient functionality for most Nios II applications and is convenient to
implement with the Nios II software build tools development flow. The
default boot copier is automatically and transparently added to your
system when you convert your executable files to flash programming
files.

1 Altera recommends that you use the default Nios II boot copier
unless you require a custom boot copier with different or
additional functionality. Implementing a custom boot copier can
complicate your software build process and hinder Altera's
ability to provide technical support.

The default Nios II boot copier has the following features:

■ Supports CFI or EPCS flash memory
■ Unpacks and copies boot image to RAM
■ Automatically branches to application code in RAM

Altera Corporation 3
Preliminary

Default Nios II Boot Copier

The Default CFI Flash Boot Copier

The Nios II default boot copier is automatically included by the Nios II
flash programmer during the execution of the elf2flash utility. Based on
the processor reset address, the elf2flash utility determines the entry
point of the application code and the address range of flash memory,
whether or not a boot copier is needed. A CFI boot copier is needed
whenever the processor's reset address points to CFI flash memory and
the application's .text section points somewhere other than CFI flash
memory. When a boot copier is needed, elf2flash packs the application
code in a boot record, and then creates a Motorola S-record (.flash) file
containing the default boot copier and the boot record. The flash
programmer downloads this boot record to CFI flash memory.

Immediately after the Nios II processor completes reset, the boot copier
executes, reads the boot record as described in “Boot Images” on page 6,
and copies the application code to RAM. After copying completes, the
boot copier reads the entry point of the application code from the boot
record. The boot copier executes the jump to that address, and the
application software begins executing.

The Default EPCS Boot Copier

When the Nios II processor reset address is set to the base address of an
EPCS Controller in SOPC Builder, the default EPCS boot copier is
implemented. The EPCS Controller supports the Nios II processor boot
sequence with a small block of on-chip memory mapped to the EPCS
Controller base address. During Quartus II compilation, the EPCS boot
copier is designated as the initial contents of this on-chip memory. When
booting from EPCS, the elf2flash utility does not include a boot copier in
the .flash file. Instead, it includes the application code, packaged into a
boot record. The flash programmer downloads the data, which is read by
the EPCS boot copier located in on-chip memory.

Immediately after the Nios II processor completes reset, the boot copier
executes from the on-chip memory block in the EPCS Controller. The
EPCS boot copier first checks to see whether an FPGA configuration
image (Programmer Object File, or .pof) is located at the beginning of the
EPCS device. If it finds such a file, the EPCS boot copier reads the .pof file
header to determine the size of the FPGA configuration image. The boot
copier then looks for the software application boot record at the EPCS
offset immediately following the last byte of the FPGA configuration
image. If a boot record is found, the boot copier reads it and copies the
application code to RAM. After copying completes, the boot copier reads
the entry point of the application code from the boot record. The boot
copier executes the jump to that address, and the application software
begins executing.

4 Altera Corporation
Preliminary

Alternative Nios II Boot Methods

The source code for both variants of the default boot copier is included
with the Nios II embedded design suite (EDS) in the
$SOPC_KIT_NIOS2/
components/altera_nios2/boot_loader_sources directory.

Advanced Boot
Copier Example

This section describes an advanced boot copier example. You can build
the example to run either out of CFI flash or out of on-chip memory, and
to support boot images stored in CFI or EPCS flash devices. The example
is written in C and is heavily commented, making it easy to customize.
This example includes the following features in addition to those
provided by the default boot copier:

■ Supports two separate boot images
■ Supports status messages using a JTAG UART
■ Performs error-checking on the boot image data
■ Supports non-word-aligned boot images

f A hyperlink to the design files appears next to this document on the
Nios II literature page. Visit www.altera.com/literature/lit-nio2.jsp.

1 This example is designed to run on the Altera Nios II Embedded
Evaluation Kit, Cyclone III Edition (NEEK). If you are using a
different development kit, you may need to alter some of the
steps and board support package (BSP) files as appropriate.

Driver Initialization

To keep memory requirements low, the advanced boot copier example
performs only the minimal driver initialization necessary to support the
features of the boot copier itself. By default, the example initializes these
drivers:

■ System Clock Timer
■ JTAG UART
■ Processor Interrupt Handler

After the boot copier completes initialization of these drivers, it branches
to the main application code in RAM, which performs a full initialization
of the system drivers.

If you decide you don't need these components during boot, the example
allows you to disable the initialization of their drivers individually,
reducing code size.

http://www.altera.com/literature/lit-nio2.jsp

Altera Corporation 5
Preliminary

Advanced Boot Copier Example

Printing to the JTAG UART

The boot copier in this example prints information to the JTAG UART
peripheral during the boot process. Printing is useful for debugging the
boot copier, as well as for monitoring the boot status of your system. By
default, the example prints basic information such as a startup message,
the addresses in flash memory at which it is searching for boot images,
and an indication of the image it ultimately selects to boot. You can add
your own print messages to the code easily.

The advanced boot copier example avoids using the printf() library
function, for the following reasons:

■ The printf() library may cause the boot copier to stall if no host is
reading output from the JTAG UART.

■ The printf() library can potentially consume large amounts of
program memory.

Preventing Stalls by the JTAG UART

The JTAG UART behaves differently than a traditional UART. A
traditional UART typically transmits serial data blindly, whether or not
an external host is listening. If no host reads the serial data, the data is lost.
The JTAG UART, on the other hand, writes its transmit data to an output
buffer and relies on an external host to read from the buffer to empty it.
By default, the JTAG UART driver stalls when the output buffer is full.
The driver waits for an external host to read from the output buffer before
writing more transmit data. This process prevents the loss of transmit
data.

During boot, however, it is possible that no host is connected to the JTAG
UART. In this case, no transmit data is read from the JTAG UART output
buffer. When the output buffer fills, the printf() function stalls the
entire program. This stalling is a problem, because the boot copier must
continue bringing up the system regardless of whether an external host
has connected to the JTAG UART.

To avoid this problem, the advanced boot copier example implements its
own printing routine, called my_jtag_write(). This routine includes a
user-adjustable timeout feature that allows the JTAG UART to stall the
program for a limited timeout period. After the timeout period expires,
the program continues without printing any more output to the JTAG
UART. Using this routine instead of printf() prevents the boot copier
from stalling if no host is connected to the JTAG UART.

6 Altera Corporation
Preliminary

Alternative Nios II Boot Methods

Reducing Memory Use for Printing

The advanced boot copier example also allows you to disable
JTAG UART printing altogether. This can significantly reduce the
memory requirements of the boot copier. To disable JTAG UART printing
in the example, follow these steps:

1. Locate the following line in the advanced_boot_copier.c file:
#define USING_JTAG_UART 1

2. Replace this line with the following:
#define USING_JTAG_UART 0

Boot Images

The advanced boot copier example expects to find boot images that
conform to a specific format, and supports up to two boot images stored
in flash memory. It does not assume the boot image starts at a 32-bit data
boundary in flash.

Boot Image Format

The advanced boot copier example expects to find a boot image that
conforms to a specific format. The make_flash_image_script.sh script
creates boot images that comply with the expected format. The
make_flash_image_script.sh script runs the elf2flash utility to create a
boot record of the application from the .elf file, and prepends some
header information to that boot record.

Altera Corporation 7
Preliminary

Advanced Boot Copier Example

Figure 1 shows the format of a boot image created using the
make_flash_image_script.sh script.

Figure 1. Example Boot Image Format

Boot Image Header Format

Each boot image includes a header at offset 0x0. The example boot copier
uses the header information attached to each boot image to extract
information about the image and to make various decisions during the
boot process. The make_flash_image_script.sh command-shell script
automatically adds the header information to any boot image. Table 1
lists the information contained in the boot image header.

Offset

0x00

Header

Signature

Version

Timestamp

Data length

Data CRC

Reserved 0

Reserved 1

Header CRC

0x04

0x08

0x0C

0x10

0x14

0x18

0x1C

Boot ImageOffset

Boot Record

0x00

0x20

??

Header

Table 1. Example Boot Image Header Format (Part 1 of 2)

Field Description

Signature 32 bits

The signature used to locate the header in flash memory

Modify this value in make_flash_image_script.sh
The default boot signature is 0xa5a5a5a5

8 Altera Corporation
Preliminary

Alternative Nios II Boot Methods

Boot Record Format

The boot record immediately follows the boot image header. A boot
record is a representation of the application that is loaded by the boot
copier. The boot record contains an individual record for each code
section of the application. A code section is a consecutive piece of the code
that is linked to a unique region in memory. The boot copier reads the
boot record to determine the destination address for each section of the
application software code, and performs the appropriate copy
operations.

The boot record is necessary because the code sections of a software
application might not all be linked to one contiguous region in memory.
Often, an application's code sections are scattered all over the memory
map. To boot the application, the flash memory must contain the entire

Version 32 bits

A binary encoded version identifier for the application

Modify this value in make_flash_image_script.sh

Timestamp 32 bits

The time the header was created

Uses the standard C time integer value, seconds since JAN 01, 1970

Generated by make_flash_image_script.sh

Data length 32 bits

The length of the application data contained in the boot, in bytes

Generated by make_flash_image_script.sh

Data CRC 32 bits

The CRC32 value for the entire application data

Generated by make_flash_image_script.sh

Unused 0 32 bits

Unspecified purpose

Modify this value in make_flash_image_script.sh

Unused 1 32 bits

Unspecified purpose

Modify this value in make_flash_image_script.sh

Header CRC 32 bits

The CRC32 value for the header data

Generated by make_flash_image_script.sh

Table 1. Example Boot Image Header Format (Part 2 of 2)

Field Description

Altera Corporation 9
Preliminary

Advanced Boot Copier Example

application and information about where its parts should be copied in
memory. However, the flash memory is too small to contain a copy of the
entire memory. The boot record representation packs all the code sections
of the application in a single, contiguous block of flash memory.

The boot record contains all the code sections of the software application
in a contiguous block of data, regardless of where those code sections are
linked in RAM. The boot record is a sequence of individual records, each
containing the data for a code section, preceded by its destination address
and its length. While booting, the boot copier reads the destination
address (<destination address>) and the length (<numbytes>) from the boot
record, then copies the following <numbytes> bytes from the boot record
to <destination address>.

The final individual record in the boot record is a special jump record.
Reading this record informs the boot copier it has completed copying
application code, and that it now needs to jump to the 32-bit address
stored in the following four bytes. That address is the entry point of the
application. Jump records are always encoded as 0x00000000.

The third type of individual record is a halt record. A halt record instructs
the boot copier to halt its execution. Halt records are encoded as
0xFFFFFFFF. Erased areas of flash memory contain the value 0xFF in each
byte. Therefore, if the boot copier ever encounters an erased area of flash,
it interprets it as a halt record and stops execution.

10 Altera Corporation
Preliminary

Alternative Nios II Boot Methods

Figure 2 shows the memory map in an example boot record.

Figure 2. Example Boot Record Memory Map

Choosing a Boot Image

The advanced boot copier example supports up to two boot images
stored in flash memory. The boot copier inspects two locations in flash
memory, looking for a valid boot image at each location, then chooses one
of the images to copy to RAM and execute. The two locations are
predesignated as location numbers 1 and 2. To choose a boot image, the
boot copier uses the following criteria, in the order in which they appear.

■ Image validity
● If only one valid boot image is found, the boot copier boots

using that image.
● If no valid boot images are found, the boot copier waits five

seconds, then jumps back to the Nios II reset address.

■ Revision number
● If both boot images are valid, the boot copier looks at each

image's version number.
● The boot copier chooses the boot image with the highest version

number.

Offset

0x00

Boot Record

<Length_A>

<Address_A>

<Length_A> bytes of
application code data

<Length_B>

<Address_B>

<Length_B> bytes of
application code data

Jump Record

0x04

0x08

N

N + 0x04

N + 0x08

Boot ImageOffset

Boot Record

0x00

0x20

??

Header

Altera Corporation 11
Preliminary

Advanced Boot Copier Example

■ Timestamp
● If both boot images have the same version number, the boot

copier looks at each image's timestamp.
● The boot copier chooses the boot image with the most recent

timestamp.

■ Default
● If both boot images have the same timestamp, the boot copier

chooses the image in location number 2.

Word Alignment

In most cases, you program a Nios II boot image starting at a 32-bit data
boundary in flash memory. This placement allows the boot copier to copy
application data using 32-bit word transfers. However, the advanced boot
copier example does not assume this alignment. If the boot copier finds a
valid boot image that is not 32-bit word-aligned in flash memory, the boot
copier can still copy the application to RAM accurately. The boot copier
uses the memcpy() library function to perform the copying. The
memcpy() function requires little memory, and using memcpy() is a fast
and robust method for copying data regardless of its alignment in
memory.

Boot Methods

The advanced boot copier example supports the following boot methods:

● Directly from CFI flash—Boot from CFI flash memory, copy the
application from CFI flash memory, and run the application
image from on-chip RAM.

● From CFI flash, running from on-chip memory—Boot from
on-chip RAM, copy the application from CFI flash memory, and
run the application image from on-chip RAM.

● From EPCS flash, running from on-chip memory—Boot from
on-chip RAM, copy the application from EPCS flash memory,
and run the application image from on-chip RAM.

Booting Directly From CFI Flash

In this method, the Nios II reset address is set to the base address of CFI
flash memory. The boot copier is then programmed in that address in
flash so it begins executing when the Nios II processor is reset. The boot
copier copies the application from CFI flash to RAM, and then branches
to the application entry point.

12 Altera Corporation
Preliminary

Alternative Nios II Boot Methods

Booting From CFI Flash, Running From On-Chip Memory

In this method, the Nios II reset address is set to the base address of a boot
ROM implemented as FPGA on-chip memory. The boot copier executable
is loaded in the boot ROM when the FPGA is configured, after the
hardware design is compiled in the Quartus II software. The boot copier
begins executing when the Nios II processor is reset. It copies the
application code from CFI flash memory to RAM, and then branches to
the application entry point.

Booting From EPCS Flash, Running From On-Chip Memory

This method is very similar to the previous method. The difference is the
boot images are stored in EPCS flash, not CFI flash. In this method, the
Nios II reset address is also set to the base address of a boot ROM
implemented as FPGA on-chip memory. The boot copier executable is
loaded into the boot ROM when the FPGA is configured, after the
hardware design is compiled in the Quartus II software. The boot copier
begins executing when the Nios II processor is reset. It copies the
application code from EPCS flash memory to RAM, and then branches to
the application entry point.

Setting the Boot Method

The advanced boot copier example supports all three boot methods
described above. The following line in the advanced_boot_copier.c file
controls the method that is implemented:

#define BOOT_METHOD <boot method>

The options available for <boot method> are:

■ BOOT_FROM_CFI_FLASH
■ BOOT_CFI_FROM_ONCHIP_ROM
■ BOOT_EPCS_FROM_ONCHIP_ROM

Preventing Overlapping Data in Flash

When you set up your system to boot from a flash memory, you must
consider other data that is also stored in that flash memory. Nios
development boards are designed to support storing FPGA configuration
images and software boot images together in either type of flash device,
CFI or EPCS. When storing multiple images in flash memory, you must
ensure that none of the images overlap one another.

Altera Corporation 13
Preliminary

Advanced Boot Copier Example

Overlapping Data in CFI Flash

Use the nios2-elf-size utility to compute the size of each of your flash
images, then choose offsets in flash memory for those images based on
their sizes (or estimated future sizes) that ensure they do not overlap.

Overlapping Data in EPCS Flash

In EPCS flash, the FPGA configuration image must always start at offset
0x0. To avoid programming any boot images on top of the FPGA
configuration image, you must determine the end offset of the FPGA
configuration image. Convert your FPGA configuration image .sof file to
a .flash image using the sof2flash utility, then run nios2-elf-size on that
flash image. The result is the offset at the end of the FPGA configuration
image in EPCS flash. Ensure that any software boot images you program
into EPCS flash begin at an offset beyond the end of the FPGA
configuration image.

Boot Copier Code Size

The advanced boot copier example, without modification, compiles to an
executable file of size approximately 6500 bytes. If you turn off all the
JTAG UART and system clock timer functionality, the example executable
size is reduced to approximately 2000 bytes.

By comparison, the code size of the default boot copier, described in
“Default Nios II Boot Copier” on page 2, is approximately 200 bytes when
compiled to boot from CFI flash, and approximately 500 bytes when
compiled to boot from EPCS flash.

If you require a customizable boot copier that is smaller than 2000 bytes,
refer to “Small Boot Copier Example” on page 25. The small boot copier
is written in Nios II assembly language, and includes very few features.
When executed, it simply copies a boot record located in CFI flash to
RAM, and then branches to the copied application. The compiled code
size is approximately 200 bytes.

14 Altera Corporation
Preliminary

Alternative Nios II Boot Methods

Implementing
the Advanced
Boot Copier
Example

This section describes the steps required to build and run the advanced
boot copier example on a NEEK.

Setting Up the Software Tools and Development Board

To build and run the advanced boot copier example, you must first
perform the following steps:

1. Ensure that you have Nios II EDS version 8.0 (or later) and
Quartus II version 8.0 (or later) installed on your computer.

2. Connect power and a USB-Blaster™ cable to your Nios
development board.

Creating a Suitable Hardware Design

In the following steps, you open, modify, and generate a Nios II system
on which you can run the advanced boot copier example. You must also
decide which boot method you want to implement. Several of the
following steps require you to take slightly different actions depending
on the boot method you use.

To open the example project:

1. Locate the standard Nios II hardware design for the NEEK. The
design is located in the
<development_kit_installation_directory>/examples/standard
directory.

2. Copy the standard directory to any working directory. Use a new
location so that you can modify the design files without affecting the
original example.

3. In the Quartus II software, on the File menu, click Open Project, and
open the <my_board>_standard.qpf project file from the directory
you just created.

If you intend to boot directly from CFI flash, the standard example design
works without additional memory, so skip to “Building the Advanced
Boot Copier” on page 16.

Altera Corporation 15
Preliminary

Implementing the Advanced Boot Copier Example

To add on-chip boot ROM to the system:

1. On the Tools menu, click SOPC Builder to start SOPC Builder.

2. In SOPC Builder, on the System Contents tab, expand Memories
and Memory Controllers, expand On-Chip, and select On-Chip
Memory (RAM or ROM).

3. Click Add to add the component to the system. Use the following
settings in specifying the memory:

● Memory Type: RAM (Writable) (not ROM (Read-only))
● Single-port access (not Dual-port access)
● Data width: 32 bits
● Total memory size: 8 kBytes

The specified peripheral size ensures that it can hold the entire code
image for the largest version of the example boot copier. This image
includes the following code:

● Reset code in the .entry section
● The crt0.s startup code
● The .text section containing the alt_main entry point
● The .rodata section holding any initialized read only data
● The .rwdata section holding any initialized read/write data
● The .bss section holding initialized and static variables.
● The exception handler located in the .exception section.

Some of these sections are copied to the exception RAM—the RAM
that contains the exception vectors—when the crt0.s startup code
executes, but all of the sections are stored initially in this on-chip
memory.

4. In the SOPC Builder connection matrix, ensure that the slave port of
the on-chip memory is connected to the Nios II instruction master
and to the Nios II data master.

5. If SOPC Builder reports an error in the bottom window caused by
the address of the new on-chip memory overlapping another
peripheral, select a suitable base address for the on-chip memory
that does not overlap anything else.

6. Modify the clock entry for the new on-chip memory to ensure that
this memory is clocked by the same clock as the cpu component.

7. Right-click the new onchip_mem component, and click Rename.
Rename the component with a descriptive name such as boot_rom.

16 Altera Corporation
Preliminary

Alternative Nios II Boot Methods

8. To enable running the boot copier from on-chip memory, right-click
the cpu component in your system and click Edit.

9. In the Nios II Processor settings window, set the Reset Vector
Memory to boot_rom with an Offset of 0x00000000, and set the
Exception Vector Memory to ssram.

10. Click Finish to exit the Nios II Processor settings window.

11. Click Generate to generate the SOPC Builder system.

Building the Advanced Boot Copier

To build the example advanced boot copier in a new Quartus II project
directory, perform the following steps:

1. Download the AN458 design files from
www.altera.com/literature/lit-nio2.jsp.

2. Copy the project directory
boot_copier_src/app/advanced_boot_copier to the
software_examples/app subdirectory of your Quartus II project
directory.

3. Copy the project directory
boot_copier_src/bsp/advanced_boot_copier_bsp to the
software_examples/bsp subdirectory of your Quartus II project
directory.

4. Open the file software_examples/bsp/advanced_boot_copier_bsp/
create_this_bsp in a text editor.

5. If you want to run the boot copier from on-chip ROM, make the
following changes to the file:

a. Comment out the line:

BSP_SETTINGS_FILE=bootcopier_bsp_settings_boot_cfi.tcl

b. Uncomment the line:

BSP_SETTINGS_FILE=bootcopier_bsp_settings_boot_onchip.tcl

If you want to run the boot copier from CFI flash memory, do not
change the create_this_bsp script.

http://www.altera.com/literature/lit-nio2.jsp

Altera Corporation 17
Preliminary

Implementing the Advanced Boot Copier Example

To examine the settings for both options, you can open the files
bootcopier_bsp_settings_boot_cfi.tcl and
bootcopier_bsp_settings_boot_onchip.tcl in a text editor.

6. Open the file software_examples/app/advanced_boot_copier/
advanced_boot_copier.c in a text editor.

7. Edit the line:

#define BOOT_METHOD <boot_method>

to indicate the boot method you intend to use. The available options
for <boot_method> are:

● BOOT_FROM_CFI_FLASH
● BOOT_CFI_FROM_ONCHIP_ROM
● BOOT_EPCS_FROM_ONCHIP_ROM

This #define directs the compiler to build the boot copier
appropriately for the boot method you are using.

8. To prevent the application from printing messages to the JTAG
UART during boot, edit the line:

#define USING_JTAG_UART 1

to read:

#define USING_JTAG_UART 0

This #define directs the compiler to build the boot copier leaving
out all JTAG UART code.

9. Open a Nios II command shell. (On Windows, click Start > All
Programs > Altera > Nios II EDS > Nios II Command Shell).

10. Change to the directory
software_examples/app/advanced_boot_copier.

11. To create and build the BSP and application projects, type the
following command:

./create-this-app r

You now have an executable boot copier that is ready to run on the Nios II
processor. Next, you must create an application to boot using the new
boot copier.

18 Altera Corporation
Preliminary

Alternative Nios II Boot Methods

Building a Test Application to Boot

In this section, you build a test application to boot. Before programming
the test application to flash memory, you must package it in a boot record
that the boot copier can understand. To do this, you run a script from a
Nios II command shell. To make things easier, and to make the script
easily available later, follow these steps to copy it to a location in the
Nios II search path:

1. Locate the flash_image_scripts directory in the design files from
www.altera.com/literature/lit-nio2.jsp.

2. Copy the following files from the flash_image_scripts directory to
the $SOPC_KIT_NIOS2/bin directory, to make the scripts available
from a Nios II command shell:

● make_flash_image_script.sh
● make_header.pl
● read_flash_image.pl

To build a test application to boot using the advanced boot copier,
perform the following steps:

1. Copy the project directory boot_copier_src/app/hello_world to the
software_examples/app subdirectory of your Quartus II project
directory.

2. Copy the project directory boot_copier_src/bsp/hal_default to the
software_examples/bsp subdirectory of your Quartus II project
directory.

3. Open a Nios II command shell.

4. Change to the directory software_examples/app/hello_world.

5. To create and build the test application BSP and application projects,
and generate an executable hello_world.elf file, type the following
command:

./create-this-app r

Before programming hello_world.elf into flash memory, you must
package it in a boot record that the boot copier can understand. To do
this, you run the make_flash_image_script.sh script from a Nios II
command shell. Recall that previously you copied this script to the
$SOPC_KIT_NIOS2/bin directory, to make it available from a
Nios II command shell.

http://www.altera.com/literature/lit-nio2.jsp

Altera Corporation 19
Preliminary

Implementing the Advanced Boot Copier Example

6. Run the make_flash_image_script.sh script to package the .elf file
in a boot record, by typing the following command:

make_flash_image_script.sh hello_world.elf r

1 Running this script might issue a warning about an empty
loadable segment and display the name of an intermediate
file fake_flash_copier.srec. You can safely ignore these
messages.

The script creates the files hello_world.elf.flash.bin and
hello_world.elf.flash.srec in the current directory. You now have all the
binary images needed to boot a test application with the example boot
copier. Next, you program these images in the appropriate locations.

Booting Directly From CFI Flash Memory

In this section, you use the Nios II flash programmer to program the boot
copier and the test application in CFI flash memory.

1 If you intend to boot from on-chip memory, this section does not
apply. Skip ahead to “Booting CFI or EPCS Flash From On-Chip
Memory” on page 20.

1. In the Quartus II software, on the Tools menu, click Programmer.

2. Double-click <none> in the File column and browse to select the
_standard.sof file located in your Quartus II project directory.

3. Make sure the Program/Configure option is turned on.

4. Click Start to configure your FPGA with this _standard.sof file.

5. In a Nios II command shell, change to the directory
software_examples/app/hello_world.

6. Set the offset in flash memory at which to locate the hello_world
boot image, by typing the command:

bin2flash --input=hello_world.elf.flash.bin \
--output=hello_world.flash \
--location=0x00240000 r

Set the offset to 0x00240000 or 0x00440000, because in boot from
CFI flash mode, these are the two locations where the boot copier
expects boot images 1 and 2, respectively. The two addresses work
equally well.

20 Altera Corporation
Preliminary

Alternative Nios II Boot Methods

You can also change these default locations by editing the #define
statements for BOOT_IMAGE_1_OFFSET and
BOOT_IMAGE_2_OFFSET in the advanced_boot_copier.c file, and
then rebuilding the boot copier.

7. Program the hello_world boot image in flash memory by typing the
following command:

nios2-flash-programmer --base=<flash_base> \
hello_world.flashr

where <flash_base> is the base address of the CFI flash component in
your SOPC Builder system.

8. In a Nios II command shell, change to the directory
software_examples/app/advanced_boot_copier.

9. Create the flash memory file for the boot copier by typing the
following command:

make flash r

This command creates the file <flash_component>.flash, where
<flash_component> is the name of the CFI flash component in your
SOPC Builder system.

10. Program the boot copier to flash memory by typing the following
command:

nios2-flash-programmer --base=<flash_base> \
<flash_component>.flash r

11. Skip ahead to “Running the Advanced Boot Copier Example” on
page 23.

Booting CFI or EPCS Flash From On-Chip Memory

In this section, you use the Quartus II software to program the boot copier
in the FPGA's boot_rom memory, and then use the Nios II flash
programmer to program the test application boot record in either CFI or
EPCS flash memory.

1 If you intend to boot directly from CFI flash memory, this section
does not apply. Booting directly from CFI flash memory is
covered in “Booting Directly From CFI Flash Memory” on
page 19.

Altera Corporation 21
Preliminary

Implementing the Advanced Boot Copier Example

To program the boot copier in the FPGA’s boot_rom memory, perform the
following steps:

1. In a Nios II command shell, change to the subdirectory
software_examples/app/advanced_boot_copier of your Quartus II
project directory.

2. To generate the memory initialization file for the boot_rom that
contains the boot copier, type the following command:

make mem_init_install QUARTUS_PROJECT_DIR=../../..r

This command creates a boot_rom.hex file in the mem_init
subdirectory.

3. Copy the file mem_init/boot_rom.hex to your Quartus II project
directory.

4. If SOPC Builder is still open, return to it and click Exit to close it.

5. In the Quartus II window, on the Assignments menu, click Settings.

6. In the Category list, click Compilation Process Settings, then turn
on Use Smart Compilation. This option prevents recompilation of
the entire design when only an update to the on-chip memory
contents is required. The first Quartus II compile, however, must be
a full compile, because adding an on-chip memory to the system
changed the design.

7. On the Processing menu, click Start Compilation to compile the
project.

8. When compilation is complete, on the Tools menu, click
Programmer.

9. Click <none> in the File column and browse to select the
_standard.sof file located in your Quartus II project directory.

10. Make sure the Program/Configure option is turned on.

11. Click Start to configure your FPGA with this _standard.sof file.

The boot_rom memory on the FPGA now contains an executable image
of the example boot copier.

22 Altera Corporation
Preliminary

Alternative Nios II Boot Methods

To program the test application in flash memory, perform the following
steps:

1. In a Nios II command shell, change to the subdirectory
software_examples/app/hello_world of your Quartus II project
directory.

2. Set the offset in flash memory at which to locate the hello_world
boot image, by typing one of the following commands:

● If you are booting from CFI flash memory, type the following
command:

bin2flash --input=hello_world.elf.flash.bin \
--output=hello_world.flash \
--location=0x00240000 r

● If you are booting from an EPCS device, type the following
command:

bin2flash --input=hello_world.elf.flash.bin \
--output=hello_world.flash \
--location=0x00060000 r

Set the offset to 0x00240000 or 0x00440000 when booting from
CFI flash memory, and to 0x00060000 or 0x00080000 when
booting from an EPCS device, because in boot from the respective
flash memory, these are the two locations where the boot copier
expects boot images 1 and 2, respectively. In both cases, the two
addresses work equally well.

You can also change these default locations by editing the #define
statements for BOOT_IMAGE_1_OFFSET and
BOOT_IMAGE_2_OFFSET in the advanced_boot_copier.c file, and
then rebuilding the boot copier.

1 If you edited the flash image offsets in advanced_boot_copier.c,
specify the --location value as one of the image offsets you
defined in advanced_boot_copier.c, not the offsets mentioned
here.

Altera Corporation 23
Preliminary

Implementing the Advanced Boot Copier Example

3. Program the hello_world boot image in flash memory by typing the
one of the following commands:

● If you are booting from CFI flash memory, type the following
command:

nios2-flash-programmer --base=<flash_base> \
hello_world.flashr

● If you are booting from an EPCS device, type the following
command:

nios2-flash-programmer --base=<flash_base> \
--epcs hello_world.flashr

where <flash_base> is the base address of the CFI or EPCS flash
component in your SOPC Builder system.

Running the Advanced Boot Copier Example

To run the advanced boot copier example on your development board,
perform the following step:

v After the flash programmer completes, in a Nios II command shell,
type the following command to reset the Nios II processor:

nios2-download -r -g r

The boot loader and the test application both print status messages to the
JTAG UART if it is enabled. If the JTAG UART and SYS_CLK_TIMER are
initialized in the bsp/alt_sys_init.c file, and USING_JTAG_UART remains
at value 1 in the advanced_boot_copier.c file, you can view these
messages.

To see the messages, perform the following step:

v In a Nios II command shell, run the nios2-terminal utility by typing
the following command:

nios2-terminal r

1 If nios2-terminal cannot connect to the JTAG UART with the
default settings, run it with the --help option for a listing of the
command line switches that might be needed.

24 Altera Corporation
Preliminary

Alternative Nios II Boot Methods

1 If your nios2-terminal displays truncated output from the boot
copier, followed by the boot image output, press the CPU Reset
button on your development board to repeat the boot process
and view the full output. Refer to Figure 3 for the expected
output if you boot CFI flash memory from on-chip RAM.

If the boot copier runs successfully, you see output from
nios2-terminal, as shown in Figure 3. Your output differs slightly if
booting from external memory or booting EPCS flash.

Figure 3. Advanced Boot Copier Output

Altera Corporation 25
Preliminary

Small Boot Copier Example

Small Boot
Copier Example

This section describes a small code size boot copier example for users
interested in using as little memory as possible.

f A hyperlink to the design files appears next to this document on the
Nios II literature page. Visit www.altera.com/literature/lit-nio2.jsp.

Small Boot Copier Features

The small boot copier example is a minimal program designed to use very
little program memory. It performs only the following operations:

1. Reads an application boot record from flash memory
2. Copies it to RAM
3. Jumps to the application's entry point

The small boot copier supports only one boot image, does not perform
any error checking, and does not support printing messages to the JTAG
UART. If you are interested in a more advanced boot copier, refer to
“Advanced Boot Copier Example” on page 4.

1 This example is designed to run on the Altera Nios II Embedded
Evaluation Kit, Cyclone III Edition (NEEK). If you are using a
different development kit, you may need to alter some of the
steps and BSP files as appropriate.

Implementation in Nios II Assembly Language

To keep the code size as small as possible, the small boot copier example
is written in Nios II assembly language. All the variables used by the boot
copier are implemented in Nios II processor general purpose registers,
not in RAM. Therefore, the boot copier itself has no data memory
requirement. The small boot copier has no .rodata, .rwdata, stack,
or heap section. Because it does not require data memory, this boot copier
can easily be relocated anywhere in memory and can even run directly
from non-volatile flash memory without setting up a data memory
section.

System Initialization

The small boot copier performs only the minimum necessary system
initialization. The following initialization tasks are performed by the boot
copier:

■ Clears the processor status register to disable interrupts
■ Flushes the instruction cache
■ Flushes the processor pipeline

http://www.altera.com/literature/lit-nio2.jsp

26 Altera Corporation
Preliminary

Alternative Nios II Boot Methods

Code Size

The small boot copier compiles to an executable file that is only 200 bytes
long. This boot copier is small enough to fit in one M9K block, the
smallest unit of memory in a Cyclone III FPGA.

Implementing
the Small Boot
Copier Example

This section describes the steps required to build and run the small boot
copier example on a NEEK. This boot copier is a bare-minimum, small-
code-size version written in assembly language. If you want to build a
more full-featured boot copier, refer to “Implementing the Advanced
Boot Copier Example” on page 14.

The small boot copier example is built in a Nios II command shell using
the make utility.

Setting Up the Software Tools and Development Board

To build and run the small boot copier example, you must first perform
the following steps:

1. Ensure that you have Nios II EDS version 8.0 (or later) and the
Quartus II software version 8.0 (or later) installed on your computer.

2. Connect power and a USB Blaster to your Nios development board.

Creating a Suitable Hardware Design

In the following steps, you open, modify, and generate a Nios II system
on which you can run the small boot copier example.

To open the example project and add on-chip ROM to the system:

1. Locate the standard Nios II hardware design for the NEEK. The
design is located in the
<development_kit_installation_directory>/examples/standard
directory.

2. Copy the standard directory to any working directory. Use a new
location so that you can modify the design files without affecting the
original example.

3. In the Quartus II software, on the File menu, click Open Project and
open the <my_board>_standard.qpf project file from the directory
you just created.

4. On the Tools menu, click SOPC Builder to start SOPC Builder.

Altera Corporation 27
Preliminary

Implementing the Small Boot Copier Example

5. In SOPC Builder, on the System Contents tab, expand Memories
and Memory Controllers, and select On-Chip Memory (RAM or
ROM).

6. Click Add to add the component to the system. Use the following
settings in specifying the memory:

● Memory Type: ROM (Read-only)
● Single-port access (not Dual-port access)
● Data width: 32 bits
● Total memory size: 512 Bytes

The specified on-chip memory size ensures that no memory space is
wasted. The smallest usable block of memory in a Cyclone III FPGA
is 512 bytes (one M9K block). Although the small boot copier
example requires only 200 bytes of memory, the remainder of the
M9K block can be used only after you enable it. Therefore, Altera
recommends that you enable the entire block, rather than waste it.

7. Right-click the new On-Chip Memory and click Rename. Specify a
descriptive name such as boot_rom.

8. In the SOPC Builder connection matrix, ensure that the slave port of
the on-chip memory is connected to the Nios II instruction master
and to the Nios II data master.

9. If SOPC Builder reports an error in the bottom window caused by
the address of the new on-chip memory overlapping another
peripheral, select a suitable base address for the on-chip memory
that does not overlap anything else.

10. Modify the clock entry for the new on-chip memory to ensure that
this memory is clocked by the same clock as the cpu component.

11. To enable running the boot copier from on-chip memory, right-click
the cpu component in your system and click Edit.

12. In the Nios II Processor settings window, set the Reset Vector
Memory to boot_rom with an offset of 0x00000000.

13. Click Finish to exit the Nios II Processor settings window.

14. Click Generate to generate the SOPC Builder system.

28 Altera Corporation
Preliminary

Alternative Nios II Boot Methods

Building the Small Boot Copier Using 'make'

In the following steps, you build the example small boot copier from the
Nios II command shell.

To build the example small boot copier in a new Quartus II project
directory, perform the following steps:

1. Download the AN458 design files from
www.altera.com/literature/lit-nio2.jsp.

2. Copy the project directory boot_copier_src/app/small_boot_copier
to the software_examples/app subdirectory of your Quartus II
project directory.

3. Open a Nios II command shell. (On Windows, click Start > All
Programs > Altera > Nios II EDS > Nios II Command Shell).

4. Change to the directory
software_examples/app/small_boot_copier.

5. In SOPC Builder, determine the base address of your ext_flash
component (<flash_base_address>).

6. In the Nios II command shell, type the following command:

make all FLASH_BASE=<flash_base_address> \
 BOOT_IMAGE_OFFSET=0x00240000

This command builds the small boot copier, hardcoding it to look for
a boot image at an offset of 0x00240000 in flash memory.

1 The boot image offset of 0x00240000 is chosen on the
assumption that no other important data is located there.
You can freely modify this offset to a value more relevant to
your application, but when you program the boot image in
flash memory (in step 12 on page 30), ensure that you
program it to the same offset you choose in the current step.

You now have an executable boot copier named small_boot_copier.hex
that is ready to run on the Nios II processor. Next, you must create an
application to boot using the new boot copier.

Building a Test Application to Boot

To build a test application to boot using the small boot copier, perform the
steps in “Building a Test Application to Boot” on page 18.

http://www.altera.com/literature/lit-nio2.jsp

Altera Corporation 29
Preliminary

Implementing the Small Boot Copier Example

Booting From On-Chip Memory

In this section, you use the Quartus II software to program the small boot
copier in the FPGA's boot_rom memory, and then use the Nios II flash
programmer to program the test application boot record in CFI flash
memory.

To program the boot copier in the FPGA’s boot_rom memory, perform the
following steps:

1. Locate the file small_boot_copier.hex in the
software_examples/app/small_boot_copier directory.

2. Copy small_boot_copier.hex to the Quartus II project directory and
rename it boot_rom.hex.

1 You may see a warning that a file by that name already
exists in that directory. If you are asked to replace the old
file, click Yes.

The next Quartus II compilation implements the boot copier
executable as the contents of boot_rom.

3. If SOPC Builder is still open, return to it and click Exit to close it.

4. In the Quartus II window, on the Assignments menu, click Settings.

5. In the Category list, click Compilation Process Settings, then turn
on Use Smart Compilation. This option prevents recompilation of
the entire design when only an update to the on-chip memory
contents is required. The first Quartus II compile, however, must be
a full compile, because adding an on-chip memory to the system
changed the design.

6. On the Processing menu, click Start Compilation to compile the
Quartus II project.

7. When compilation is complete, on the Tools menu, click
Programmer.

8. Click <none> in the File column and browse to select the
_standard.sof file located in your Quartus II project directory.

30 Altera Corporation
Preliminary

Alternative Nios II Boot Methods

9. Make sure the Program/Configure option is turned on.

10. Click Start to configure your FPGA with this _standard.sof file.

The boot_rom memory on the FPGA now contains an executable image
of the example boot copier.

To program the test application in CFI flash memory, perform the
following steps:

11. In a Nios II command shell, change to the directory
software_examples/app/hello_world.

12. Set the offset in flash memory at which to locate the hello_world
boot image, by typing the command:

bin2flash --input=hello_world.elf.flash.bin \
--output=hello_world.flash \
--location=0x00240000 r

Set the location to 0x240000, because in boot from CFI flash mode,
this is the location where the small boot copier expects to find the
boot image. The correct value for the --location parameter is the
value specified in the command in step 6 on page 28.

13. Program the hello_world boot image in flash memory by typing the
following command:

nios2-flash-programmer --base=<flash_base> \
hello_world.flashr

where <flash_base> is the base address of the CFI flash component in
your SOPC Builder system.

Running the Small Boot Copier Example

To run the small boot copier example on your development board:

1. After the flash programmer completes, in a Nios II command shell,
type the following command to reset the Nios II processor:

nios2-download -r -g r

The boot copier should now boot the test application.

Altera Corporation 31
Preliminary

Debugging Boot Copiers

2. To test that the test application actually loads and executes, run the
nios2-terminal utility in the NIos II command shell by typing the
following command:

nios2-terminal r

If the boot copier runs successfully, you see output from nios2-terminal,
as shown in Figure 4.

1 If nios2-terminal cannot connect to the JTAG UART with the
default settings, run it with the --help option for a listing of the
command line switches that might be needed.

Figure 4. Small Boot Copier Output

Debugging Boot
Copiers

Some special considerations should be made when attaching the
Nios II IDE debugger to a processor running boot copier code. The
following section discusses the requirements for debugging boot copiers.

Hardware and Software Breakpoints

Boot copiers often run from non-volatile memory, which affects the types
of breakpoints that can be set in the code. The two types of breakpoints
used by the Nios II debugger are software breakpoints and hardware
breakpoints. Software breakpoints replace the processor instruction at the
breakpoint location with a different instruction that transfers control to

32 Altera Corporation
Preliminary

Alternative Nios II Boot Methods

the debugger. This replacement method requires that the program
memory be writable so that the breakpoint instruction can be written.
Because boot copiers often run from non-volatile memory such as flash
memory, software breakpoints cannot be set in boot copiers.

Hardware breakpoints detect the address value of the breakpoint on the
instruction address bus, and then transfer control to the debugger using
hardware. Therefore a hardware breakpoint can be set in either volatile or
non-volatile memory. Only a hardware breakpoint can be set in a boot
copier that runs from flash memory.

Enabling Hardware Breakpoints

To enable hardware breakpoints in the Nios II processor:

1. In SOPC Builder, open the Nios II wizard by double clicking the
system's Nios II processor.

2. In the Nios II wizard, click the JTAG Debug Module page.

3. Select debugging level 2 or greater. Debugging level 2 allows two
simultaneous hardware breakpoints, which the Nios II debugger
uses automatically.

Breaking Before main()

When debugging a boot copier, you may want to start debugging
immediately after reset, instead of waiting until reaching the function
main(). Some boot copiers do not contain a function main() at all. In
these cases, instruct the debugger to set a breakpoint at the program entry
point.

Setting Up the Debugger

To configure the Nios II debugger for debugging a boot copier:

1. Import your boot copier project to the Nios II IDE by performing the
following steps:

a. Open the Nios II IDE.

b. On the File menu, click Import. The Import dialog box appears.

c. Expand the Altera Nios II folder, and select Existing Nios II
software build tools project or folder into workspace.

d. Click Next.

Altera Corporation 33
Preliminary

Externally Controlling the Nios II Boot Process

e. Under Project Contents, browse to your boot copier project
folder.

f. Click Finish.

2. In the Nios II IDE, highlight the name of the imported boot copier
project, and on the Run menu, click Debug.

3. In the Debug configuration dialog box, click the New icon to create
a new debug configuration.

4. Click the Debugger tab.

5. In the Download and Reset box:

a. If your boot copier runs from flash memory upon reset, select
Reset target and execute from reset vector (no download).

b. If your boot copier runs from on-chip ROM, select Download
program to RAM.

6. In the Breakpoints at Start-up box, turn on Break at program entry
point and turn off Break at main(). Turning off Break at main()
saves one of the two available hardware breakpoints for later use.

7. Click Apply.

8. Click the Debug button to start the debugger. Once connected, the
debugger breaks at the entry point of the boot copier.

Externally
Controlling the
Nios II Boot
Process

Another way to boot the Nios II processor is to have a different
component, such as another processor, control the boot process externally.
In this situation, the external processor reads the Nios II application code
from some source and loads it into Nios II program memory. The external
processor can retrieve the Nios II application code from various sources.
For example, it might read the code from some non-volatile storage
medium such as hard disk, or download the code over an Ethernet
connection.

The method by which the external processor retrieves the Nios II
application code is outside the scope of this document. This section
focuses on the process of safely loading the application code in Nios II
program memory, then directing the Nios II processor to properly execute
the application.

34 Altera Corporation
Preliminary

Alternative Nios II Boot Methods

Overview

Two different methods are available to implement an externally
controlled boot of a Nios II system.

■ The external processor unpacks the Nios II boot image and writes the
executable application code to Nios II program memory.

■ The external processor only copies the boot image to RAM. The
Nios II processor takes over from there and unpacks the boot image
itself.

The latter method, letting the Nios II processor unpack and load the
application from the boot image, is similar to the process of running a
normal boot copier on the Nios II processor. The only difference is that
instead of a flash programmer placing the boot image in flash memory, an
external processor copies the boot image to RAM. After the external
processor releases the Nios II processor from reset, everything happens
just as if the Nios II processor were booting from flash memory.

This section focuses on the first method, in which the external processor
unpacks the Nios II boot image, copies the application code to Nios II
program memory, and then directs the Nios II processor to the
application's entry point.

One common requirement, regardless of external boot method, is that
you must prevent the Nios II processor from executing any code in the
memory space being written by the external processor during the
copying and unpacking processes. Otherwise, you may encounter race
condition and data corruption problems. The process described in this
section prevents the Nios II processor from executing code by holding it
in reset while the application code is copied to Nios II program memory.
After the application code is copied, the Nios II processor is released from
reset to execute the application.

Building an Appropriate SOPC Builder System

Before you can successfully implement an externally controlled Nios II
boot, you must ensure your SOPC Builder system contains the necessary
hardware. An external processor must be able to access the appropriate
system peripherals and control the reset state of the Nios II processor. The
following list describes the minimum hardware elements required to
support an externally controlled Nios II boot.

■ External Processor Bridge
■ Nios II processor with the following features:

● A cpu_resetrequest signal

Altera Corporation 35
Preliminary

Externally Controlling the Nios II Boot Process

● A reset address that points to RAM
● A one-bit parallel IO (PIO) peripheral device

Figure 5 shows the block diagram of a system that can control the boot of
a Nios II processor externally.

Figure 5. Block Diagram of Externally Controlled Nios II Boot System

External Processor Bridge

To allow an external processor to access peripherals in your SOPC Builder
system, the system must include a bridge between the Avalon fabric and
the external processor bus.

Bridges to external processors can be acquired as intellectual property
(IP) or developed internally. Many designers develop their own external
processor bridge components for SOPC Builder because it is usually
relatively straightforward to bridge the Avalon fabric architecture to
other bus protocols. The Component Editor tool, available in SOPC
Builder, is useful for creating IP such as external processor bridges.

f For a list of bridge IP available from Altera, refer to the Interfaces And
Peripherals section of Altera's Intellectual Property website found at
www.altera.com/products/ip/ipm-index.html.

External
Processor

External
Processor
Bridge

SDRAM

Nios II

SDRAM
Controller

PIO

System Interconnect Fabric

resettaken
resetrequest

input
output

Altera FPGA

36 Altera Corporation
Preliminary

Alternative Nios II Boot Methods

The cpu_resetrequest Signal

In versions 6.0 and later of the Nios II processor, an optional
cpu_resetrequest signal is available to control the reset state of the
processor. This signal differs from the normal SOPC Builder system-wide
reset signal reset_n — the cpu_resetrequest signal resets the
Nios II processor only. The rest of the SOPC Builder system remains
operational. This signal holds the Nios II processor in reset while code is
moved into Nios II program memory.

The cpu_resetrequest signal does not cause the Nios II processor to
enter the reset state immediately. When cpu_resetrequest is held
high, the Nios II processor finishes executing any instructions currently
in the pipeline, then enters reset. This process may take an indeterminate
number of clock cycles, so a status signal cpu_resettaken is driven
high by the Nios II processor when it reaches the reset state. The
processor holds this signal high for one cycle. The cpu_resettaken
signal continues to assert periodically while the cpu_resetrequest
signal is held high.

To enable the cpu_resetrequest signal, open a project in SOPC
Builder that contains a Nios II processor. Double-click the Nios II
component to open the Nios II wizard, then click the Advanced Features
page. Turn on Include cpu_resetrequest and cpu_resettaken signals to
enable the signals. They appear as ports on your top-level SOPC Builder
system after you regenerate the system.

Nios II Reset Address

The Nios II reset address is the address of the first instruction the
processor executes after it is released from reset. Therefore, in a Nios II
system capable of externally controlled boot, the Nios II reset address
must point to a writeable memory (RAM). This class of reset address is
typically not what you want in a traditional boot scenario, but in the
external boot control situation described in this section, it is important
that the Nios II reset address point to RAM.

The Nios II reset address must point to RAM because, to direct the Nios II
processor to the application code that was just copied into RAM, the
external processor must be able to write the first instruction (or
instructions) that the Nios II processor executes upon reset. Typically, the
instruction written to the reset address is an unconditional branch (br) to
the entry point of the application.

You can choose any unused 32-bit location in RAM as the reset address
for the Nios II processor, but the base address (offset 0x0) of the Nios II
program memory—the memory region that contains the .text section—
is usually a good choice. By default, the Nios II exception table is placed

Altera Corporation 37
Preliminary

Externally Controlling the Nios II Boot Process

at offset 0x20 in the program memory, and the remainder of the
application code is placed following the exception table in consecutive
memory. This arrangement leaves offsets 0x0 through 0x1C available. A
reset address at offset 0x0 guarantees that the difference between the reset
address and the application entry point—assumed to be early in the
application code—never exceeds 64 Kbytes, as required for this process to
work. For a description of why the difference cannot exceed 64 Kbytes,
see the discussion of instruction step 4 on page 39.

One-Bit PIO Peripheral

A one-bit PIO peripheral is needed to control the Nios II
cpu_resetrequest signal from the external processor. The external
processor accesses the Avalon-mapped PIO peripheral through the
external processor bridge. The external processor writes the value 1 to the
PIO to assert the cpu_resetrequest pin, or the value 0 to de-assert it.

The external processor can also read the state of the cpu_resettaken
signal using the same PIO peripheral. However, the Nios II processor
asserts the cpu_resettaken signal for only one clock cycle at a time.
Therefore, sampling this signal from software to see when reset has been
achieved does not work. The signal can easily assert and de-assert again
between samples, so that a valid assertion of cpu_resettaken by the
Nios II processor might never be captured by the external processor.

The PIO component included with SOPC Builder includes an
edge-capture feature to use in this situation. The edge-capture feature sets
a bit in the PIO's edge-capture register whenever an edge of the
predefined type is seen on that bit of the PIO's input port. The external
processor can read the edge-capture register any time after it asserts
cpu_resetrequest. If the cpu_resettaken signal was asserted any
time since the cpu_resetrequest assertion, the relevant bit in the
PIO's edge-capture register is set.

To add a PIO component configured to use the edge-capture feature to
detect assertions of cpu_resettaken to your system, perform the
following steps:

1. Open your system in SOPC Builder.

2. On the System Contents tab, under Peripherals, and then under
Microcontroller Peripherals, click the PIO (Parallel I/O)
component.

3. Click Add.

38 Altera Corporation
Preliminary

Alternative Nios II Boot Methods

4. In the PIO wizard, set the width to one bit and select Both input
and output ports.

5. Select the Input Options tab, check the Synchronously Capture
box, and select Rising Edge

6. Click Finish to add the PIO component to your system.

Your system now contains a PIO component capable of asserting the
Nios II cpu_resetrequest signal and detecting rising edges on the
cpu_resettaken signal.

1 SOPC Builder does not automatically connect the input and
output ports of the PIO component to the Nios II
cpu_resettaken and cpu_resetrequest signals. After
SOPC Builder generation, you must make these connections at
the top level in the Quartus II project.

The Boot Process

Now that you have learned the important hardware aspects of externally
controlling the Nios II boot process, this section describes the entire boot
process from the perspective of the software running on the external
processor.

Boot Images

The procedure described here assumes you have a Nios II boot image in
the format described in “Boot Images” on page 6.

Example C Code

In the directory boot_copier_src/app/external_boot, you can find sample
C source code that you can run on an external processor to control the
boot of a Nios II processor. The code is heavily commented, making it
relatively easy to modify and customize. The example code happens to
retrieve the boot image from offset 0x0 of a CFI flash, but in a real system,
the boot image could come from anywhere. That part of the process is left
to your discretion.

Altera Corporation 39
Preliminary

Externally Controlling the Nios II Boot Process

External Boot Flow

The following section describes the boot flow implemented in the
example C code mentioned in the previous section. These steps are
written from the perspective of software running on an external processor
which is responsible for controlling the Nios II boot process.

1. Retrieve the Nios II boot image.

The software can retrieve the Nios II boot image any number of ways.
Common methods include reading the boot image from non-volatile
storage such as hard disk or flash memory, downloading it over an
Ethernet connection, or passing in a pointer to its location in RAM. Most
important is that the image be locally accessible in its entirety before you
attempt to unpack it and copy it to Nios II program memory.

2. Hold the Nios II processor in reset using the one-bit PIO, by
performing the following actions:

● Write any 32-bit value to offset 0x3 of the PIO component to clear
the edge-capture register. Using the edge-capture register to
detect when the cpu_resettaken signal goes high requires
that you clear the edge-capture register first to ensure the
register value does not represent an edge event that occurred in
the past.

● Write the value 1 to offset 0x0 in the PIO component to assert the
Nios II cpu_resetrequest signal.

● Continuously poll offset 0x3 of the PIO component until it holds
the value 1. This value indicates that the Nios II
cpu_resettaken signal transitioned high, which ensures the
Nios II processor is now in a reset state and you can safely begin
copying application code to its program memory.

3. Copy the application to its destination address in memory space.

Parse the boot record to copy each section of the application code to its
appropriate location in Nios II program memory. The final individual
record in the boot record is a jump record. Be sure to save the jump value;
it contains the entry point of the application code. In the next step, you
must direct the Nios II processor to the application entry point.

4. Construct a branch instruction to place at the Nios II reset address.

Constructing a Nios II branch (br) instruction allows Nios II to branch
from its reset address to the entry point of the application code. Because
the Nios II branch instruction is relative, meaning it branches relative to
the current instruction, you need to know both the Nios II reset address,
and the application entry point address.

40 Altera Corporation
Preliminary

Alternative Nios II Boot Methods

In the example code, the Nios II reset address is simply defined at the top
of the file. If your Nios II reset address changes, you must also change the
relevant #define in the example code.

Subtract the reset address from the entry point address (saved in the
previous step) to obtain the offset. For Nios II pipelining, the branch
instruction actually requires the offset to be relative to the next
instruction, so subtract 4 from the offset to obtain the actual offset needed
for the instruction.

1 Because all Nios II instructions are 32 bits, every address and
offset must be a multiple of 4.

1 The offset used in the branch instruction is 16 bits, so your reset
address must be less than 64Kbytes away from the application
entry point in memory space.

Using the branch instruction encoding shown in Table 2, construct a
branch instruction from the offset. The following C statements create a
properly encoded instruction from the reset address and entry point:

int offset = entry_point – reset_address;
unsigned int inst = ((offset - 4) << 6) | 0x6;

5. Write the branch instruction to the Nios II reset address.

6. Release the Nios II processor from reset.

Write a zero to offset 0x0 of the PIO peripheral to deassert the Nios II
cpu_resetrequest signal. The Nios II processor should come out of
reset, execute the branch instruction, branch to the entry point of the
application, and begin to execute it.

Booting is now complete. The Nios II processor is off and running, so the
external processor can go about its other system tasks.

Table 2. Nios II Branch Instruction Encoding

31 27 26 22 21 6 5 0

0 0 16-bit offset - 4 0x06

Altera Corporation 41
Preliminary

Referenced Documents

Referenced
Documents

This application note references or contains information related to the
following documents:

■ Nios II Flash Programmer User Guide
■ Nios II Hardware Development Tutorial
■ Nios II Processor Reference Handbook
■ The Hardware Abstraction Layer section in the Nios II Software

Developer's Handbook
■ Volume 4: SOPC Builder of the Quartus II Handbook
■ Volume 5: Embedded Peripherals of the Quartus II Handbook

Document
Revision History

Table 3 shows the revision history for this application note.

Table 3. Document Revision History

Date and Document
Version Changes Made Summary of Changes

September 2008
v1.1

Updated for the Quartus II v8.0 software and the
Nios II software build tools development flow. New
design examples target the Altera Nios II
Embedded Evaluation Kit, Cyclone III Edition.

Updated for the Quartus II v8.0
software.

November 2007
v1.0

Initial release. —

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/qts/qts_qii54005.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf

42 Altera Corporation
Preliminary

101 Innovation Drive
San Jose, CA 95134
www.altera.com
Technical Support:
www.altera.com/support/

Copyright © 2008 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company,
the stylized Altera logo, specific device designations, and all other words and logos that are identified as
trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera
Corporation in the U.S. and other countries. All other product or service names are the property of their re-
spective holders. Altera products are protected under numerous U.S. and foreign patents and pending
applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products
to current specifications in accordance with Altera's standard warranty, but reserves the right to make chang-
es to any products and services at any time without notice. Altera assumes no responsibility or liability
arising out of the application or use of any information, product, or service described
herein except as expressly agreed to in writing by Altera Corporation. Altera customers
are advised to obtain the latest version of device specifications before relying on any pub-
lished information and before placing orders for products or services.

Alternative Nios II Boot Methods

	Alternative Nios II Boot Methods
	Introduction
	Assumptions About the Reader
	Implementing a Custom Boot Copier

	Default Nios II Boot Copier
	Overview of the Default Nios II Boot Copier
	The Default CFI Flash Boot Copier
	The Default EPCS Boot Copier

	Advanced Boot Copier Example
	Driver Initialization
	Printing to the JTAG UART
	Preventing Stalls by the JTAG UART
	Reducing Memory Use for Printing

	Boot Images
	Boot Image Format
	Boot Image Header Format
	Boot Record Format
	Choosing a Boot Image
	Word Alignment

	Boot Methods
	Booting Directly From CFI Flash
	Booting From CFI Flash, Running From On-Chip Memory
	Booting From EPCS Flash, Running From On-Chip Memory
	Setting the Boot Method

	Preventing Overlapping Data in Flash
	Overlapping Data in CFI Flash
	Overlapping Data in EPCS Flash

	Boot Copier Code Size

	Implementing the Advanced Boot Copier Example
	Setting Up the Software Tools and Development Board
	Creating a Suitable Hardware Design
	Building the Advanced Boot Copier
	Building a Test Application to Boot
	Booting Directly From CFI Flash Memory
	Booting CFI or EPCS Flash From On-Chip Memory
	Running the Advanced Boot Copier Example

	Small Boot Copier Example
	Small Boot Copier Features
	Implementation in Nios II Assembly Language
	System Initialization
	Code Size

	Implementing the Small Boot Copier Example
	Setting Up the Software Tools and Development Board
	Creating a Suitable Hardware Design
	Building the Small Boot Copier Using 'make'
	Building a Test Application to Boot
	Booting From On-Chip Memory
	Running the Small Boot Copier Example

	Debugging Boot Copiers
	Hardware and Software Breakpoints
	Enabling Hardware Breakpoints
	Breaking Before main()
	Setting Up the Debugger

	Externally Controlling the Nios II Boot Process
	Overview
	Building an Appropriate SOPC Builder System
	External Processor Bridge
	The cpu_resetrequest Signal
	Nios II Reset Address
	One-Bit PIO Peripheral

	The Boot Process
	Boot Images
	Example C Code
	External Boot Flow

	Referenced Documents
	Document Revision History

