QA | I] B o)/, AN 459: Guidelines for Developing a

© November 2008

® Nios Il HAL Device Driver

AN-459-2.0

Introduction

Prerequisites

This application note explains the process of developing and debugging a hardware
abstraction layer (HAL) software device driver, to aid device driver development for
the HAL of the Nios® II system. The various software development stages are
illustrated using the Altera_Avalon_UART as an example hardware device, and an
example of a HAL software device driver called my_uart.

The Nios II Development Board, Cyclone® I 2¢35 Edition, is used as an example
hardware reference platform. This document shows the development process in steps,
progressing from sending bits out the transmit pin from main () up to the
construction of device access macros and automatic device initialization via

alt sys init ().

Debugging tips are included, such as identifying UART transmission errors.
Development is shown via the Nios II Software Development Tools. The resulting
applications and board support package created with the command-line based Nios II
Software Build Tools are then imported and debugged with the Nios II IDE.
Discussions on interrupt latency, interrupt nesting, determinism, and which type of
system calls cannot be included in a device driver interrupt service routine are
included.

For more information about the HAL, refer to the Overview of the Hardware Abstraction
Layer chapter in the Nios II Software Developer’s Handbook.

This document is targeted at advanced systems developers with a basic
understanding of the following:

m Nios II application development, including creating and building software
applications and board support packages with the Nios II Software Build Tools.

m The Quartus® II software, including opening Quartus II projects that match the
target board, launching SOPC Builder, and examining various peripheral
component settings.

m Using the Quartus II Programmer tool to program an SRAM object file (.sof) to an
FPGA via an Altera® USB-Blaster™ download cable.

Refer to the Nios Il Hardware Development Tutorial and the Introduction to the Nios 11
Software Build Tools chapter of the Nios Il Software Developer’s Handbook to gain the
minimum prerequisite knowledge.

© November 2008 Altera Corporation AN 459: Guidelines for Developing a Nios |1 HAL Device Driver

http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf

Page 2 Prerequisites

Using the HAL Architecture and Services

The HAL API provides a standard POSIX-like interface to the hardware, abstracting
the hardware details from upper-level clients of the HAL, such as operating systems,
networking stacks, or Nios II applications. The HAL provides a variety of generic
device classes, including character-mode, file subsystem, Ethernet, timestamp and
system timers, DMA, and flash memory. The Altera_Avalon_UART is a
character-mode class of HAL device, and as such, can be manipulated by the HAL
API for character-mode class devices. Mutual exclusion resources are provided by
MicroC/OS-II or the HAL. These services include semaphores and event flags. When
the HAL device driver makes calls to these resources, the calls are simply translated to
non-operations when the multi-threading services are not available.

For very small applications that are severely resource limited, use the
software_examples/bsp/hal_reduced_footprint board support package, which
minimizes the HAL. Use the software_examples/app/hello_alt_main software
example as a minimal starting point for your application.

«o Foradditional information about HAL services, refer to the Developing Programs Using
the Hardware Abstraction Layer chapter in the Nios II Software Developer’s Handbook.

“®.e Foradditional information about the HAL AP], refer to the HAL API Reference chapter
in the Nios II Software Developer’s Handbook.

Software Requirements
The following components are required:
®m Quartus II software version 8.0 or higher.
m Nios II EDS version 8.0 or higher.

m The an459_software_80.zip software archive, located on the Altera Nios II
Literature web page, in zip format, under the link to this document.

The an459_software_80.zip software archive contains path information for properly
locating the various source files under ip and software_examples directories for any
Nios Development Board full_featured hardware reference design. This software
archive contains the bit_bang_uart application, hello_world_my_uart application,
my_uart device driver, and hal_my_uart board support package (BSP).

AN 459: Guidelines for Developing a Nios Il HAL Device Driver © November 2008 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

Developing the HAL UART Device Driver Page 3

Developing the HAL UART Device Driver

The my_uart device driver is used as an example of a HAL device driver.

Preparing the bit_bang_uart Application and hal_my_uart Board Support Package

The first step is to set up a test environment for the UART. This example uses the
Cyclone I 2c35 Nios development board full_featured hardware example.

Follow these steps to build the bit_bang_uart project:

1. Make a copy of the entire hardware reference directory, so that you can make
changes to the hardware peripherals and software source files, while preserving
the hardware reference design that was originally installed. Copy the entire
directory contents for the Cyclone II 2¢35 full_featured design to a new working
writable directory, identified in this document as <my_design>. The Cyclone II 2¢35
full_featured design is located in the following path:

<Altera installation directory>/nios2eds/examples/verilog/
nioslI_cyclonell_2c35/full_featured/

The default <Altera installation directory> is C:\ altera\80.
['=~ The working directory name you choose may not contain any spaces.

L=~ If you use a different Nios development board’s full_featured design, or use
VHDL instead of Verilog HDL, adjust the path and file names as
appropriate in the instructions that follow.

2. In your working directory, delete the software_examples directory from the
full_featured directory.

3. Extract the an459_software_80.zip file to the <my_design>/full_featured directory.
Be sure to preserve the directory structure of the extracted software archive. This
creates a directory structure tree under <my_design>/full_featured with the
following four leaf nodes:

m ip/my_uart
m software_examples/bsp/hal_my_uart
m software_examples/app/bit_bang_uart

m software_examples/app/hello_world_my_uart

Preparing the my_uart Software Device Driver

This section provides some background on how the my_uart software device driver is
associated with a hardware component.

The directory to use for storing both the software device drivers and the hardware
components is named by you. The name should be descriptive enough to identify the
hardware component. The directory is located in the <my_design>/ip directory. The
librarian searches for user component files named <component_name>_sw.tcl in
directories below this ip directory.

© November 2008 Altera Corporation AN 459: Guidelines for Developing a Nios 11 HAL Device Driver

Page 4

Developing the HAL UART Device Driver

The hardware component’s software description file used for the my_uart software
device driver is named <my_design>/ip/my_uart/my_uart_sw.tcl. This name must
match the corresponding <component_name>_hw.tcl file generated by the Component
Editor.

Hardware components provided by Altera, such as the Altera_Avalon_UART, are
actually generated by Java and do not have the <component_name>_hw.tcl file. All
hardware components generated by the Component Editor will have a
<component_name>_hw.tcl file.

For additional information about creating device driver Tcl scripts, refer to the
“Driver and Software Package Tcl Script Creation” section of the Using the Nios II
Software Build Tools chapter in the Nios II Software Developer’s Handbook.

Altera provides an additional tool with the Nios II processor version 8.0, the System
Console, that is useful for testing hardware components and software device drivers,
and for constructing board support packages. The System Console is not described in
this application note.

Configure the Altera_Avalon_UART Hardware Component Controlled by the my_uart
Software Device Driver

Next, configure the Altera_Avalon_UART hardware component in SOPC Builder.

1. Open the Quartus II software, version 8.0 or later. On the File menu, click Open
Project.

2. Browse to <my_design>.

3. Select the full_featured Quartus II project file,
NiosII_cyclonell_2c35_full_featured.qpf, and click Open.

4. On the Tools menu, click SOPC Builder.
5. In SOPC Builder, in the Module Name column, double-click on uartl.

AN 459: Guidelines for Developing a Nios Il HAL Device Driver © November 2008 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Developing the HAL UART Device Driver Page 5

6. In the UART dialog box, verify the baud rate is set to 115200 bps (Figure 1).

If you change the baud rate, click Generate in SOPC Builder to regenerate the
system with the desired baud rate and then recompile the Quartus II project.

Figure 1. Verify UART Baud Rate

" UART (RS-232 Serial Port) - uartl

UART
mycew (RS-232 Serial Port)

Y Simulation ¥
/ P

~Baud rate

Baud rate (bps): |.1 15200 - l

Baud etrar: 0.02 %

[~ Baud rate can be changed by software (Divisor register is writable)

~Parity——— Diata hits Stop bits
INone hd l I8 x I I1 jv

Flow contral

I Include CTSRTS pins and control register bits

~Streaming data (OMA) control

I™ Include end-of-packet register

Cancel | <§ack| Mext = I Einish |

7. Click Finish.

© November 2008 Altera Corporation AN 459: Guidelines for Developing a Nios 11 HAL Device Driver

Page 6 Developing the HAL UART Device Driver

8. In the System Contents tab of SOPC Builder, verify the value for the UART base
address.

This reference design uses a value of 0x02120840 for the UART’s register base
address. If you are using a hardware reference design other than the full_featured
design for the Cyclone II 2¢35 board, the value of the UART's register base address
may be different. Open SOPC Builder and find the UART base address for your
board. Figure 2 shows the base address for the UART used in this example.

Figure 2. Uart1 Peripheral Register Base Address

"B Altera SOPC Builder - NiosII_cyclonell 2¢35_full_featured_sopc.so - 0] x|
File Edit Module System Miew Tools MNiosll Help
System Cantents | System Generation |
13 Ahera SOPC Builder ~Target——[Clock Seftings
a ;r::}lepl:oec\:\;sc:soor:ponem... Device Family:ICyclone Il - l Mame Source MHz Pipeline Add
_ clk External 50.0 [i
Bridges and Adapters pll_co pil.co 550 r j Remove
Interface Protocols
pll_c1 pll.c1 a5.0 O
Legaey.Components pll_c2 piL.c2 350 r =]
Memaries and Memary Controllers
--Peripherals tions Module Mame Description Clock Base End IRG
- =1 Avalon Memory Mapped Slave pll_c0 0x02120820 (0x0Z12083£ >—‘E| ;I
FLu _ E ext_flash Flazh Memory (CFI)
Ee-¥idea/and Image Frocessing =1 Avalon Memory Mapped Tristate Slave |pll_c0 0x00000000 (Ox00ffffff
= lan91c111 LANSTCT11 Interface
=1 Avalon Memory Mapped Tristate Slave |pll_c0 0x02110000 (0x0Z11ffff >—‘f3]
= led_display Character LCD
control_slave Avalon Memory Mapped Slave pll_c0 0x02120880 (0x0Z1Z085€£ J
= uarti UART (RS-232 Serial Port)
p | 1E) 0840
E button_pio PIC (Parallel 1iC)
=1 Avalon Memory Mapped Slave pll_c0 0x02120860 (0x0Z1Z086£
= led_pio PIC (Parallel 1T
=1 Avalon Memory Mapped Slave pll_c0 0x02120870 (0x0Z12087£
E seven_seg_pio PIC (Parallel 11T LI
4l L
A | A I Remove Ediit... A Move Lp 7 Move Dowwn Address Map... Fiter... |
+, Warning: ddr_sdram_0: Thiz legacy maodule should be upgraded, right click in the Componert Poal. ﬂ
o, Warning: ext_flash_enet_bus.clk: Interface haz no signals
*, Warning: reconfig_request_pio: PIO inputs are not hardhwired in test hench. Undefined values will be read fram PIC inputs during simulation.
+, Warning: ext_flash.clk: Interface has no signals
+, Warning: led_display.clk: Interface has no signals =
< I _'l_I
Exit Help 4 Frev Mext | Generate |

Base address for the UART

9. In the Quartus II window, on the Tools menu, click Programmer.

10. To program the full_featured.sof image to the development board, turn on
Program/Configure and click Start.

11. In SOPC Builder, on the Nios II menu, click Nios II Command Shell.
12. Change the directory to <my_design>/software_examples/app/bit_bang uart

AN 459: Guidelines for Developing a Nios Il HAL Device Driver © November 2008 Altera Corporation

Developing the HAL UART Device Driver Page 7

13. Execute the create-this-app script:
./create-this-app
This step may take several minutes to complete.

The create-this-app script specifies the board support package is named
hal_my_uart, which associates the hardware component uart1 with the software
driver my_uart_driver (Figure 3). Device uartl is selected for STDIO via the
create-this-bsp script for hal_my_uart BSP.

Figure 3. uart1 Mapping to my_uart_driver

|Mo dule MNarme: |uartl
|Version: |default
|Driver: |my_ua.tt_driver

14. Change the directory to <my_design>/software_examples/bsp/hal_my_uart
15. Edit alt_sys_init.c.

Use your favorite editor. The vi editor is available from the Nios II Command
Shell.

16. Disable the automatic invocation of the HAL UART device driver initialization
function by commenting out the ALTERA AVALON UART INIT () macro
invocation in alt_sys_init.c.

17. Save alt_sys_init.c.

18. Rebuild the bit_bang_uart project by changing the directory back to
<my_design>/software_examples/app/bit_bang_uart, and executing make.

19. Connect a serial cable from the 9-pin console port on the Nios development board
to the COM1 port on your development host computer.

Importing Projects

Follow these steps to import the bit_bang_uart application project (and later the
hello_world_my_uart application project), in addition to the hal_my_uart:

1. In SOPC Builder, on the SystemGeneration tab, click Nios II IDE to launch the
Nios II IDE Debugger.

2. On the File menu, click Import. The Import dialog box appears.

3. Expand the Altera Nios II folder, and select Existing Nios II software build tools
project or folder into workspace.

4. Click Next. The Import wizard appears.

5. Click Browse. Navigate to and select the
<my_design>/software_examples/app/bit_bang_uart directory.

6. Click OK.
7. Click Finish. The wizard imports the bit_bang_uart application.

© November 2008 Altera Corporation AN 459: Guidelines for Developing a Nios 11 HAL Device Driver

Page 8

Developing the HAL UART Device Driver

=
|5

8. Repeat steps 2 through 7, but instead import the
<my_design>/software_examples/bsp/hal_my_uart board support package.

For additional information about importing Nios II Software Build Tools created
projects, refer to the “Debugging Hello_World” sub-section of the “Getting Started”
section of the Introduction to the Nios I Software Build Tools chapter in the Nios II
Software Developer’s Handbook.

9. In the Nios II IDE window, in the Nios I C/C++ Projects perspective, expand the
bit_bang_uart project, and open bit_bang_uart.c.

10. The first call to IOWR () in themain () procedure of bit_bang_uart.c shows that
you can write to a hard-coded base address for uartl of 0x02120840. If you are not
using a Cyclone II 2¢35 Nios development board, change this address value to that
of the UART's register base address in your SOPC Builder design. This example of
a hard-coded address value demonstrates that it may be convenient when first
verifying hardware functionality to specify an explicit memory address. This
avoids any C pointer dereference software coding errors, providing confidence
that the actual hardware peripheral register is definitely getting referenced.

After the communication link from the software to the hardware is established, you
can change the hard-coded address to UART1_BASE (where UART1 is the name of
your UART peripheral in SOPC Builder). Using a hard-coded address can be useful
when first bringing up new hardware to rule out any software errors in obtaining the
peripheral's memory-mapped registers base address. However, replacing the
hard-coded register address with a symbolic definition based on the component's
name, such as UART1_BASE, enables the Nios II Software Build tools to update the
software if the peripheral's register base address changes. When the project is
regenerated in SOPC Builder and recompiled in the Quartus II software, you need to
execute nios2-bsp to update and rebuild the BSP and application. The

bit_bang uart application needs the new value of UART1_BASE, which is passed via
system.h, a generated header file, to the bit_bang_uart.c source file.

For additional information about updating BSP files after an SOPC Builder change,
refer to the “Coordinating with Hardware Changes” sub-section of the “Board
Support Packages” section of the Using the Nios II Software Build Tools chapter in the
Nios 1I Software Developer’s Handbook.

A simple way to cause all BSP and application files to be copied or regenerated is to
delete the application Makefile (app/bit_bang_uart/Makefile) and the BSP’s
public.mk file (bsp/hal_my_uart/public.mk), followed by invoking the
create-this-app script in the application directory (app/bit_bang_uart/
create-this-app).

Additionally, if the UART peripheral name for the hardware design you are using
does not match “uartl,” search and replace the occurrences of UART1_BASE in
bit_bang uart.c with the name <your_uart_peripheral_name>_BASE. Find the UART
peripheral module name and register base on the System Contents tab in SOPC
Builder. Refer to Figure 2.

The peripheral name as defined in SOPC Builder is converted to uppercase in the
macros defined in system.h. UART1_BASE is a definition provided by system.h. The
peripheral's base address is created by appending _BASE to the peripheral's name.

AN 459: Guidelines for Developing a Nios Il HAL Device Driver © November 2008 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Debugging the bit_bang_uart Project Page 9

Debugging the bit_bang_uart Project

This section demonstrates debugging techniques with the bit_bang_uart project.

1.

Open a Nios II Command Shell and runnios2-terminal. This shell receives the
output to the jtag_uart from the alt_log device.

Click on the imported bit_bang_uart project in the C/C++ Projects window. On
the Run menu, click Debug to prepare a debug configuration for the
bit_bang uart project.

In the Debug window, select Nios II Hardware.

Click the New launch configuration button, =, to create a new debug
configuration (refer to Figure 4).

On the Main tab, specify the SOPC Builder System PTF file, by browsing three
directory levels up to the <my_design> root directory, and select the PTF file
associated with this Quartus II project (for example,
NiosII_cyclonell_2c35_full_featured_sopc.ptf).

Click Open.

Verify that none of the tabs contains a red “x”, indicating an error. If any do, select
that tab, and fill in the required data necessary to resolve the error as indicated by
the tool's messages. For example, if more than one USB-Blaster cable is connected
to your development host computer, the “Target Connection” tab has a red “x”. In
this case, you must fill in the “JTAG Cable” field with the matching USB-Blaster
cable number to resolve the error.

© November 2008 Altera Corporation AN 459: Guidelines for Developing a Nios 11 HAL Device Driver

Page 10

Debugging the bit_bang_uart Project

8.

Select the Target Connection tab, and set the Nios II Terminal communication
device field to uartl.

Figure 4. bit_bang_uart Debug Configuration

New launch configuration

ET T

Create, manage, and run configurations

=

X |02~

|type filter text

[£] C/C++ Lacal Application

Eﬂ'iﬂ Mios I Hardware

----- ¥ Mios I Multiprocessor Collecti

~[T] C/C++ Attach o Local applics
.[E] C/c++ Postmortem debugger

bt bang_uart Nios 1T H |
Mios II Instruction Set Simulat

Marne: |bit_bang_uart Mios II Hw configuration

G Debugger | £ Source | =1 Cammon

ITAG cable:

[usE-Blaster [UsB-0]
ITAG device:

Iaummatic <the device which has the processor =

Mios II Terminal communication device:

Iuartl
Host COM port:
|{dev{com1 [Com1:]

Additional nios2-terminal arguments:

| b3

=
=l
Refresh |

Apply | Revert |

Debug I

Close |

10.

11.

12.

AN 459: Guidelines for Developing a Nios Il HAL Device Driver

<o For additional information about setting up a debug configuration for

Nios II Software Build Tools created projects, refer to the “Setup a Debug
Configuration” sub-section of the “Getting Started” section of the
Introduction to the Nios II Software Build Tools chapter in the Nios II Software
Developer’s Handbook.

Click Debug.

Depending on how the Nios II IDE preferences are configured, you might be
automatically switched to the Debug perspective. If you are prompted to switch to
the Debug perspective, click Yes.

On the Window menu, point to Show View and click Memory to open a Memory
window.

If the Memory window is created in the lower left corner, sharing a tabbed area
with the Console window, drag the memory tab to the upper right corner of the
perspective. This arrangement allows you to view the Console and Memory
windows simultaneously.

© November 2008 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf

Debugging the bit_bang_uart Project Page 11

13. Click the * in the Memory window, as shown in Figure 5. This action opens a
Monitor Memory dialog box in which you can type the memory address that you
want to monitor.

14. Enter the UART peripheral's register base address, as shown in Figure 5
(0x02120840 for the Cyclone II full_featured design’s uartl peripheral).

Figure 5. Monitor Memory Address Specification Window

Add Memory Monitor
."Debug - bit_bang_uart.c - Nios II IDE == x|
File Edit Refactor Nayigate Search PFroject Tools Run Window Help
(= |BlE-0 Q- |®7 B~ |dilr oo - | %5 nebug »
%5 Debug 22\ % & > = i ¥ = O|lvariables Breakpmnis‘ReglsmralMudu\ESﬂ"‘l"l‘u-r.s'--m, B o« |’4;_1‘:| ﬁ’gl Bgw ¥ 9O
= M hit_bang_uart Mios II HW configuration [Nios II Hardware] Monitars E 2{‘
B &% Nios I1 EIf Debugger (10/29/08 3:59 PM) (Suspended) & Ox02120840
E-o® Thread [0] (Suspended)
f 3 main(} at bit_bang_uart.c:253 0x06000424 Rerderings e
= 2 alt_main(} at \cygdrivetciaAN45a4ull_featuredisoftware_examplesibspihal _my_uartHaL\s
| = 1 _start) at \ygdrive\CAN4SIVLI_featuredenfware_sxamplesibsptial_my_uartyHaliarcly|| D02120840 ¢ 0:2120840 <Hex> |
i ‘& <terminated, exit value: 0>Nios 11 Download output (10/29/08 3:59 PIM) Address i) SRR & - B ey :I
! Nios 1T Terminal Window (10/29/08 3:59 PM) 02120840 24000000 60000000 00000000
» hios2-gdb-server output (10/29/08 3:59 PM) 02120850 00000000 00000000 00000000 00000000 [
W nios2-elf-goh (10/25/08 2:50 PM) 02120860 0FO00000 00000000 00000000 OFO0000O0
02120870 FFFFFFFF | FFFFFFFF | FFFFFFFF | FFFFFFFF
0z1z03380 FFOOOOOO [alulu]ululu]ulu} [nlulu]ululu]ulu} 00000000 LI
| |
€] bit_bang_uart.c 52 = O|[5= outline 3 . Disas... | =0
% {no interrupts). LI BV s e~
1:; wain(void) stdio.jy
¢ stdlib.h
/* Urite a single asterisk character to the wart by writing directly to the alt_typesh
+ yart peripheral's memory-mapped register. system.h
Ly ioh
> IOWR(Ox02120840,1, 7'): sys/alt_log_printf.h
= - BitBanglartReceive
/* Test polled mode usrt trasmit and receive. ~Monitor Memory x| BitBangUartTransmit
i

Enter address or expression to monitar: main

ALT LOG PRINTF("Calling BitBangUsrtTranswit.in");
BitBanglUartTransmit () ;

ALT LOG_PRINTF ("Calling BitBangUartReceive.hn™);
BitBanglUartReceive () ;

ALT_LOG_PRINTF ("Don=. Looping forever.in®):
/7™ Loop forever when testing has completed.

i
while (1) J

| 0x02120840] |

return 0;
/* The first IOWR{) above, at the beginning of wain{), shows that you can
Bt et e et e R S) _*IJ
Bl Consale 2 Tasks ‘ E | H; B~ =0
bit_bang_uart Nios IT HW configuration [Mios II Hardware] Nios IT Terminal Window (10/23/08 3:59 PM)
niosz-terminal: connected to hardware target using UART on /dev/coml at 115200 b -
aud

niosz-terminal: (Use the IDE stop button or Ctrl-C to terminate)

15. Click OK.

16. Adjust the size of the window so that you can see several memory address values
in the Memory window, as shown in Figure 6.

17. Click in the Memory window, under the column labeled 0-3.
18. Right-click and click Format. For Column Size, select 1 unit per column.
19. Click OK.

20. Use the Step Over button =l to advance the program execution over the TOWR ()
macro. This macro transmits an asterisk to the debugger's Console window by
writing directly to the UART's transmit register, as shown in Figure 6.

© November 2008 Altera Corporation AN 459: Guidelines for Developing a Nios 11 HAL Device Driver

Page 12 Debugging the bit_bang_uart Project

If you do not see an asterisk in the Console window, verify your hardware
cable is properly connected and your UART peripheral base address
matches the one in your SOPC Builder system.

The red numbers in the memory monitor window indicate which memory values
changed during the last “step over” operation. This change helps you verify that a
new peripheral is functioning correctly. The 2A in the Memory window is the
hexadecimal value for the asterisk character (*).

Figure 6. Transmit Asterisk

Step Over button Add Rendering button

. Debug - bit_bang_uart.c - Nios II IDE =]
File Edit Refactor Mavigate Search Project Took Run Window Help

| i | & |3 ~0 -~ |® 4 |[a-|] ral s Gy T |%5 Debug "

m 5% b e L] [_:<>_|a| = i 7 =0 Variables|areakp0ints[{] Memary £ Registers|M0duIes

=8| bit_bang_uart Nios I HW configuration [MNios I Hardware] = " il ’Tt; 23] ,g ‘ i:u -7
Eé@ Mios II EIf Debugger (4/10/08 11:11 AM) (Suspended) Monitors s 3¢ o Renderings |i|]

=4 Thread [0] (Suspended)

----- @ Ox02120840 Ox02120840 : 0x2120840 <Hex= |

3 tbit_bang 043
2 alt_main{} at \cygdrive\cymy_design\software_examplesibspiha Address | o] il | z | 3 | 4 | 5 | ;I
1 _start() at \oygdrivehchmy_designisoftware_exarmplesibspihal_n 0z120840 d 00| 00| 00 4 24| OO
@1 <terminated, exit value: 0>Nios II Download output (4/10/08 11:11 AM) 02120850 00 00 00 00 00 oo —d

| Miog I Terminal Window (4,/10/08 11:11 AM) Da120860) OF | 00 | 00 .00 00 .00
| nins2-gdb-server output (4/10/08 11:11 AM) Q120070 Bl | B | GER | GBI | RN | GRR

0z1z20880 FF oo oo oo oo {u]n] -
e niosz-elf-adb (4/10/08 11:11 A | _I;l i | ;l_l
4 »

[hit_hang_uart.c 5 (8 orilS | = 0(2= outline 52 “_Make ...|Disas... | jim|

S
/% Teat polled mode uart trasmit and receive. stdio.n
ﬁlf .
¥ ALT LOG FRINTF("Calling EitBangUartTransmit. n™): stellib.h
BitEanqﬁartTransmit 1) alt_typas.h
ALT LOG FRINTF ("Calling BitBangUartReceive.n"); systermn.h
BitBangUartReceive () in.h

ALT_LOG_PRINTF ("Done. Looping forever.in'); sysfalt_log_printf.h

BitBangUariReceive
/% Loop forever when testing has completed.

BitBangllartTransmit
*
! main
while (1) ;
il

B Console 2 . Tasks b= B ~-ri-—0O
bit_bang_uart Nios I HW configuration [Nios 1T Hardware] Mios 1T Terminal Window (4/10/08 11:11 AR
niosZ-terminal: connected to hardware target using UTART on fdev/coml at 115200 b i
aud
niosZ-terminal: (Use the IDE stop button or Ctrl-C to terminate)

Transmitted Asterisk

21. You can view the Memory window in ASCII rather than hexadecimal. Click the
Add Rendering button on the right of the Memory window (refer to Figure 7) to
add a new ASCII rendering.

AN 459: Guidelines for Developing a Nios Il HAL Device Driver © November 2008 Altera Corporation

Debugging the bit_bang_uart Project Page 13

22. In the Add Memory Rendering dialog box (Figure 7), select ASCII and click OK.

The 2A in the Memory window changes to an asterisk.

Figure 7. Adding an ASCII Rendering to the Memory Window

. Add Memory Renderin x|
Mernary Mohitor
|nx02120840 : Dx2120840 =]

Memory Renderingis)

=)

O I Cancel |

23. You can transmit characters over the UART by directly changing memory values
in the Memory window. Type an / into the cell currently occupied by the asterisk
in the Memory window, followed by a return. This cell represents the transmit
register, offset one long word from the UART's peripheral base address. Type an i
into this same cell in the Memory window, followed by a return. The word hi
appears in the Console window (Figure 8).

© November 2008 Altera Corporation AN 459: Guidelines for Developing a Nios 11 HAL Device Driver

Page 14

Debugging the bit_bang_uart Project

I

The peripheral memory-mapped registers bypass the cache. Therefore, the status
register value displayed in the Memory window reflects any changes to the status
register made by the peripheral. The TOWR () and IORD () macros always bypass the
cache.

Figure 8. Directly Manipulating the Peripheral Register Via the Memory Window

Debug - bit_bang_uart.c - Nios II IDE — 3l x|

Eile Edit Refactor

(!

[b

Mavigate Search Project Tools Run Window Help

[3~0~-Q~- &7 |3~ | 7 - e~ = £ |35 Debug »

-
Debu] R ¥ Variables | Breakpaints Reqisters | Modules
hug 52 sl J = 2D R T i+ 7 =0 bl ki q clul =0
= @ bit_bang_uart Mios I HY configuration [Nios II Hardware] = (e H"‘Tﬁl A ’gﬂ R
£-&@ Mios 1T EIf Debugger (4/10/08 11:11 &M (Suspended) Monitors e 3¢ o Renderings &)
- Thread [0] (Suspended)
= 3 main() at bit_bang_uart.c:257 Dx06000434 O DOR1A0BH0 0215084 <Hox> DXIZ1034D | (4TIE040 <ASCIL> |
; alt_main() at \oygdrivehc\my_designsoftware_examplestbsptha Address | 0 | 1 | 2 | 3 | 4 |5 | 6 | 7 ;I
= 1 _start() at \cygdrive\c\my_designisoftware_examplestbspihal_n 02120840 O O O O o o C
@1 <terminated, exit value: D:Nios IT Download outut (4/10/08 11:11 AR 0z120850 O O O O O 0 o cd
s Nios I Terminal tindow (4/10/08 11:11 AM) 92120860, 0| 01 01 0/ 0/ 0/ 0/ C
sl niog2-gob-server output (4410402 11:11 AM) 02120870 Y y| v| ¥ ¥ ¥ ¥y 3
E 0z1z08s80 ¥ a a [n] o o o C~
Slalloezaiab ainm i _l;l - _’l_l
Ll + 0
[€ bit_bang_uartc 22 [S] crin.s | = 052 outline 2 . Make .‘.‘Disas..‘ | =0
[=] BN e
/:fTest, polled wode uart traswit and receive. o sdioh
[| i
ALT_LOG_PRINTF ("Calling BitBangUartTranswit.in"); Ty stdlib.h
BitBangUartTranswit i) ; . alt_types h
ALT_LOG_PRINTF ("Calling BitBangUartReceive.in"); i .J system.h
BitBangUartReceive () : L] inh
ALT_LOG_PRINTF ("Done. Looping forever.in'): o W gys/alt_Ing_printfh
1 -~ @ BitbangUartReceive
/t/Lon forever when testing has completed. @ BitBangUartTransmit
+
e main
while (1) -
L] ,

Bl consale 52 Tacks ‘ E N HE g~-ri~-=0

bit_hang_uart Nios I Hvy configuration [Nios II Hardware] Nios 11 Terrminal window (4,/10/08 11:11 AM)

nigsz-terwminal:
aud
nigsz-terwminal:

connected to hardware target uding TART on fdev/coml at 115200 b -

(Use the IDE stop button or Ctrl-C to cermingte])

4 J ot

AN 459: Guidelines for Developing a Nios Il HAL Device Driver © November 2008 Altera Corporation

The BitBangUartTransmit Function Page 15

The BitBangUartTransmit Function

This section examines the BitBangUartTransmit function in bit_bang_uart.c. The
BitBangUartTransmit function demonstrates transmission of characters over the
UART.

Step over the BitBangUartTransmit function. The characters displayed in the Console
window are “BIT BANH”, as shown in Figure 9. The following steps explain why the

string ends with an H instead of a G.

Figure 9. Stepping Over the BitBangUartTransmit Function Displays “BIT BANH”

. Debug - bit_bang_uart.c - Nios IT IDE o]
File Edit Refactor MNavigate Search Project Tools Run Window Help
-l e -0 Q- |@F |G-]d-70 -5 o & bl)
m\ R O | S T R %l i+ ¥ =0 Variab\es‘areakpuinls rU Memary &5 Register5|MUdu\es‘ =0
=] E‘},‘{! bit_bang_uart Mios 1T Hw configuration [Mios IT Hardware] = b ”?{,\ 33 ’g‘ By ~ ~
=} Nios 11 EIf Debugger {4/10/08 11:11 M) (Suspended) Monitors e 3¢ G Renderings & X
‘ =-o® Thread [0] (Suspended) o e
=) at bit_bang 00444 il Ox02120840 <Hexs> 0x02120240 : 0x2120840 <ASCIL> |
= 2 alt_main() at \cygdrivetc\my_designisoftware_examplesibsptha Address | 0 | 1 | 2 | 3 | 4 |5 | [| 7 ;I
= 1 _start() at \oygdrivel\cymy_design\software_examplestbspthal_n 0z1z0840 0O 0O O O o o C
@l wtermingted, exit value: 0=Nios 1T Download output (4/10/05 11:11 4M) 0zizogso O O o o O o o
o Mios T Terminal Window (4/10/08 11:11 AM) g2120860| 0 0l 0l 0 g ojdlb
~p| nios2-gob-server output (4/10/08 11:11 AM) Dz120870 ¥ ¥ v ¥ ¥ ¥ ¥ k
| m 02120580 i a a] a a o Cw
| w1 ninsz-eff-gob (4/10/08 11:11 AM) | _'Ll : !
1 » _I—I
bit_bang_uartc 3 .S ‘ =0 EE Outline &2 Make ... |D\sas.‘. ‘ =0
] BB e T
-
/7 Test polled mode uart trasmit and receive. stinh
i
ALT LOG_PRINTF("Calling BitBangUartTransmit.in"); stdiibh
BitBangUartTransmit (] ; alt_typesh
> ALT_LOG_PRINTF ("Calling BitBangUartReceive.hn"); I system.h
BitBangUartReceive () ok
ALT_LOG_PRINTF ("Done. Looping forewer.in"); i sys/alt_log_printf.h
) (o] BitBangUartReceive
/% Loop forever when testing has completed. - ® BitBanglartTransmit
+ H
/ L @ main
while (1] ; -
[l ;I_I
El Consale 22 Tasks ey ‘E B~-ri+=0
bit_bang_uart Mios I H configuration [Nios IT Hardware] Nios II Terminal Window (4/10/08 11:11 aM)
nigsZ-terminal: connected to hardware target using ULRT on /dev/coml at 115200 b =]
and
niosZ-terminal: (Use the IDE stop button or Ctrl-C to terminate)
*hiBIT EBANH
e _'I_I
| o |

Perform the following steps:
1. Restart the debugging session. On the Run menu, click Debug Last Launched.
2. Step over until you reach the call to the BitBangUartTransmit function.

3. Use the Step Into button -~ to step into the BitBangUartTransmit function. Next,
use the Step Over button to execute one line at a time. Continue stepping through
the function until the string BIT BANGBASH is displayed.

To get this result, bit_bang_uart.c first writes a value of zero to the status register to
clear any existing errors on the UART. This step is accomplished by the IOWR ()
macro, along with the UART1_BASE.

© November 2008 Altera Corporation AN 459: Guidelines for Developing a Nios 11 HAL Device Driver

Page 16 The BitBangUartTransmit Function

Next, a loop cycles through the bitbang[] array, printing out the characters

“BIT BANG” to the UART. The transmit ready bit is checked before each subsequent
character transmission to prevent any overruns. Immediately after the loop, the
characters “BASH” are transmitted one after the other. If you step each line to the end
of the BitBangUartTransmit function, the characters “BIT BANGBASH” are
transmitted over the UART, as shown in Figure 10.

Figure 10. BIT BANGBASH Transmitted if Function Is Stepped One at a Time

. Debug - bit_bang_uart.c - Nios II IDE -0 x|

File Edit Refactor Mavigate Search Project Tools Run Window Help %

IG-iol@ls-0-a-|ds |G |r-airnar - = Ry 5
3 Debug &2 %% < e |z @ 2 T ¥ =08 M\Breakpoimﬁ|Mem0ry|Reg\sters|Modules| =0
= F}'ﬂ bit_bang_uart Mios I HW configuration [Mios IT Hardware] = = [0 | & 3& =~

E| Mios 11 EIf Debugger (4/10/08 2:00 PM) (Suspended) Narre I value I
=-o® Thread [0] (Suspended) 9= uart_status 64
: E 4 BitBangUartTransmit{) at bit_bang_uart.c:229 0x06000374 [bithang

3 main{) at bit_bang_uart.c:258 0x06000444 9= index 3

2 alt_main{) at \oygdrivelcymy_designisoftware_examplesibspiha
[1 _start() at \cygdrive\cymy_designisoftware_examplesibspyhal_n

& “terminated, exit value: 0=Mios 1T Download output (4/10/02 2:00 PM) ——

w Nios I Terminal Window (4/10,08 2:00 M) LI
w1 nins2-gdb-server outnut (4/10/08 2:00 P i T
| | » K| »
[€ bit_bang_uartc 2[5 DS | = O|| 5= cutline 22 . Make ... |Disas.‘. | =0
% are Zet by the uart to indicate transwisSsion OVErrun. laz }9\ \5\5 e =
*
! stdio.h
% uart status = IORD(UARTL BASE, 2); stlio.h
/% At this point, the Nios II IDE Variskles window will slso show the alt_types.h
* transmitter overrun via the variable named usrt_status. system.h
wf inh
syg/alt_log_printfh
/% NOTE: Characters can even be transmitted over the uart by directly writing BitBangUartReceive
* to txdata register wvia the memory view. BitBangUartTransmit
*
/ main
I
Bl console 52 - Tasks = 5§| =B ~-rj~> =0
bit_bang_uart Nios II Hw configuration [Nios II Hardware] Mios 11 Terminal Window (4/10/08 2:00 PM)
nios2-terminal: connected to hardware target using UART on Sdev/comwml at 115200 kb -
aud
nios2-terminal: (Use the IDE stop button or Chrl-C to terminate) b

*BIT BANGELIH

4 o

o | wiritahle Smart Insert | 229 : 1 |

Perform the following steps:
1. Restart the debugging session. On the Run menu, click Debug Last Launched.

2. Instead of stepping into BitBangUartTransmit (), place a breakpoint on the
uart_status variable assignment that follows the calls to IOWR with the letters
“BASH”. (To set a breakpoint, double-click in the gray area left of the line.)

If the Variables window is not set to display hexadecimal as the default, select the
uart_status variable name. Right-click, point to Format, and click
Hexadecimal.

3. Click the Resume button “*. The program runs until the breakpoint is hit.

AN 459: Guidelines for Developing a Nios Il HAL Device Driver © November 2008 Altera Corporation

The BitBangUartReceive Function Page 17

4. Step over the assignment of uart_status. The Variables window shows that the
value of uart_status has changed to 0x170, as shown in Figure 11.

Figure 11. Value of uart_status Variable Is 0x170

Value of uart_status

.Debug - bit_bang_uart.c - NiosILIDE N =]
File Edit Refactor Navigate Search Project Tools Run Window Help
|t e |3~ 0 -~ | @5 || S rilrts Ox [| %5 Debug i
% Debug E:S\‘__ %% &5 Ik & | 3 @ & 5| Breakpoints|Mem0ry|Registers|M0duIes| =0
o [bit_bang_uart Nios IT Hw configuration [Mios 1T Hardware] =t 0 | f"" A{g =3
=-&% Nios 11 EIf Debugger (4/10/08 2:09 FM) (Suspended) Nama [vdie |
. o Thread [0] (Suspencied) - Lart_stats 170
4 BitBanglartTransmit(y at bit_bang_uart.c;243 DxDﬁT\E\D4D4) biﬁ:a?ng
3 maing) at bit_bang_uart.c:258 0x06000444 9= ko a
2 alt_main{) at Yorgdrivetcymy_designisoftware_examplestbspiha
1 _start() at \cygdrive\chmy_designisoftware_examplesi\bspihal_n
11 <terminated, exit value: OxNios II Download output (4/10/08 2:09 PM) —
sl Mios T Terminal Window (4/10/08 2:00 PM) 368 =
| nios2-gdb-server output (4/10,/08 2:09 PM) X Y
| | » K1 | »
[bit_bang_uartc 52 Sl DS | = 81/5= qutline 52 “_Make ... | Disas... ‘ =
+ reflect any changes to the status bits made by the peripheral. IOUWR() laz 173 E\S 8
* and ICRD(] macros always bypass the cache also. 3
s stdio.h
» 5 stdlibh
alt_types.h
/* The wain function tests the uart transmit and receive in polled mode systemh
* (no interrupts). ioh
i sys/alt_log_printf.h
int mainiveid) BitBanglartReceive
¢ BitBangllartTransmit
/% Write a single asterisk character to the uart by writing directly to the -
* nart peripheral's memory-mapped register.
K
B Consale &% “_Tasks BN |’; B-ri--—0O
bit_bang_uart Nios I HW configuration [Mios [T Hardware] Nios II Terminal Window (4/10/08 2:09 PM)
niosZ-terminal: connected to hardware target using UART on /fdev/coml at 115200 b i
aud
niosZ-terminal: (Use the IDE stop button or Ctrl-C to terminate)
*BIT BANH b
KT _'I_I
i

The register map for the Altera Avalon UART core, described in the UART Core
chapter in volume 5 of the Quartus II Handbook, shows that the status register's value
of 0x170 indicates that the exception bit (bit 8) and the toe bit (bit 4) are set. The toe bit
is the transmitter overrun bit. By not waiting for the transmitter to be ready before
writing the additional characters (“GBASH”), the transmitter has been overrun and
only the last character, H, is transmitted.

The BitBangUartReceive Function

This section examines the BitBangUartReceive function in bit_bang_uart.c. The
BitBangUartReceive function demonstrates receiving characters over the UART.

Perform the following steps:

1. Step into the BitBangUartReceive function.

© November 2008 Altera Corporation AN 459: Guidelines for Developing a Nios 11 HAL Device Driver

http://www.altera.com/literature/hb/nios2/n2cpu_nii51010.pdf

Page 18

The BitBangUartReceive Function

2. Seta breakpoint on the while loop immediately after the assignment of the

incoming character variable.

3. Click the Resume button.

4. The Nios Il processor is waiting in the while loop just above the
incoming_ character assignment for the RRDY (receive ready) bit to go high.

Click at the bottom of console and enter an *’ (asterisk).

5. Press Enter. The debugger hits the breakpoint you set.

6. Examine the Variables window (expand it if necessary to see the
incoming character variable). The incoming character variable holds the
asterisk you sent via the Console window, as shown in Figure 12.

Both the transmit and receive functions of the UART in polled mode have been

verified to work.

Figure 12. incoming_character Variable Is Set to the Character Entered on the Console

incoming_character Variable

. Debug - bit_bang_uart.c - Nios II IDE - o] x|
File Edit Refactor MNavigate Search Project Tools Run Window Help
| es~ It 0=« @ ¥ - DT »
% Debug 5)8\-_ %R &5 e] |2 & % S| i3 ¥ = O|(t9=varishles 22 Breakpoints|Memory|R=gishars|MDdules| =0
= Eﬁ'ﬂ hit_bang_uart Mios II HWw configuration [Mios 1T Hardware] 1= == | o %<
E& Mios II EIf Debugger (4/10/08 2:09 PM) (Suspended) e h | T |
E!--w'? Thread [0] (Suspended: Breskpoint hit.) 0 Lart_stanis 1z

4 BitBangUartReceive() at bit_bang_uart.c:159 0x060002d8

3 main{) at bit_bang_uart.c:260 0x06000454

2 alt_main() at \oygdriveymy_designisoftware_examplesi\bspiha
1 _start) at ‘oygdrivehhmy_designisoftware_examplesibspihal_n

9= index

9= incorming_character

1| <terminated, exit value: 0>Mios II Download output (4/10/08 2:09 PM) —
Mios I Terminal Window (4/10/08 2:02 PM)
| nios2-gdb-server output (4/10/08 2:09 PM

i -
- I _'I_I

(= input_request

2l
.

[€ bit_bang_uart.c 3 |8 oS |

ot
incoming character = IORD(UART1 BASE, O);

/% Echo the key pressed on the uart.
s

i

% while {!f{uart status = IORD (UART1 BASE, 2) & Ox40)]):

/% Write the pressed input character to the txdata register.

L7

/% Wait for TRDY transmit ready bit to go high (bit 6 of status register).

0F Qutline B2 Make ... |Disas... ‘ =

BERN e~

™ stdio.h

stdlibh

alt_types.h
systarm.h

ioh
sys/alt_log_printf.h
BitBanglartReceive
BitBangUartTransmit
main

Tasks

e[fBE~-i-—0

bit_bang_uart Nios I Hw configuration [Mios [T Hardware] Mios II Terminal Window (4/10/08 2:09 PM)

aud

niosZ-terminal: (Use the IDE stop button or Ctrl-C to terminate)

*BIT BANH
Press any key then enter: *

|
=

Iﬁ;l_l;

| o

AN 459: Guidelines for Developing a Nios Il HAL Device Driver

© November 2008 Altera Corporation

Creating Device Access Macros Page 19

Creating Device Access Macros

Example 1. Device Access Macros in my_uart_regs.h

When the functionality of the various peripheral registers has been validated by the
bit_bang uart test software, you can replace the IORD () and IOWR () macros and
their hard-coded address parameters with register access macros. You define the
register access macros for the component, under the

<my_design>\ip \<componentfolder>\inc\ <component>_regs.h source code header
file.

The base address, component name, and IRQ priority are all available to HAL device
drivers from system.h. You can write macros that access specific peripheral registers
by name, constructed from the information provided in system.h. The macros remove

the hard-coded nature of the register accesses and instead pull the register base
address information out of system.h. The benefit of this procedure is automatic
incorporation of any changes made to the component base address in SOPC Builder.
For example, to access the UART's transmit register in bit_bang_uart.c, an IOWR ()
macro is used, along with a hard-coded offset (with a value of 1) for indexing this
register. Convert this method to a device access macro that can adapt to changes in

system.h automatically.

Example 1 (from my_uart_regs.h) defines a set of device access macros and related
access masks for the UART status register.

#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

MY UART STATUS_ REG

TOADDR_MY UART_STATUS (base)

IORD MY UART STATUS (base)

IOWR_MY UART STATUS (base, data)

2

IO _CALC_ADDRESS NATIVE (base, MY UART STATUS REG)

IORD (base, MY UART STATUS REG)
IOWR (base, MY UART STATUS_ REG, data)

MY UART STATUS PE MSK (0x1)
MY UART STATUS PE OFST (0)

MY UART_ STATUS_ FE_MSK (0x2)
MY UART STATUS FE OFST (1)

MY UART STATUS BRK_MSK (0x4)
MY UART_STATUS BRK_OFST (2)

MY UART STATUS ROE_MSK (0x8)
MY UART STATUS ROE OFST (3)

MY UART_ STATUS_ TOE_ MSK (0x10)
MY UART_ STATUS TOE_ OFST (4)

MY UART_ STATUS_ TMT MSK (0x20)
MY UART_STATUS TMT OFST (5)

MY UART STATUS TRDY MSK (0x40)
MY UART STATUS TRDY OFST (6)

MY UART_ STATUS RRDY MSK (0x80)
MY UART STATUS RRDY OFST (7)

MY UART STATUS E_MSK (0x100)
MY UART_ STATUS E_OFST (8)

MY UART STATUS DCTS_MSK (0x400)
MY UART STATUS DCTS OFST (10)

MY UART_ STATUS_ CTS_MSK (0x800)
MY UART STATUS CTS OFST (11)

MY UART STATUS EOP_MSK (0x1000)
MY UART_STATUS EOP_OFST (12)

© November 2008 Altera Corporation

AN 459: Guidelines for Developing a Nios 11 HAL Device Driver

Page 20

Staging the HAL Device Driver Development

Also, the Altera Nios II component provides the address construction macro,
I0_CALC_ADDRESS NATIVE (), thatis used in the UART device access macros (from
nios2eds/components/altera_nios2/HAL/inc/io.h). I0_CALC ADDRESS NATIVE ()
is a macro that adds the second parameter (the offset in system bus width units [for
example, 32 bits]) to the first parameter (the peripheral’s register base address), to
derive the direct address of the specified peripheral register. The IORD () and IOWR ()
macros translate to the Nios II assembler instructions, 1dwio and stwio, respectively.

In the BitBangUartTransmit () function in bit_bang_uart.c, you used an IORD ()
macro with hard-coded values to read the UART status register:

uart status = IORD(UART1 BASE, 2);
The same functionality can be achieved by using the UART's device access macro:
uart_status = IORD_MY UART_STATUS (UART1_BASE)

Using this macro makes the device driver code easier to write and easier to
understand after it has been written.

Altera recommends that you create device access macros for all of your custom
peripheral's registers, and that you create masks for each of the bits represented in
those macros. These steps result in a driver that is much easier to understand;
therefore, it is easier to verify the correctness of the device driver.

Staging the HAL Device Driver Development

The following sections describe the existing MY UART driver source code,
particularly the device access descriptors used to manipulate the peripheral. The

MY UART driver is based on the Altera Avalon UART device driver, with all of the
names changed to represent the “my” flavored device, as an illustration of how you
can incorporate your own device driver. All of the function and macro names (except
for the INIT and INSTANCE macros) in the Altera Avalon UART device driver have
had the “altera_avalon” portion of the name replaced with “my”. For example,
ALTERA_AVALON_UART_STATUS_REG has become MY_UART_STATUS_REG.

The two macros for INSTANCE and INIT are exceptions, because their names must
match the hardware device name. As a result, the MY UART software device driver
has definitions for ALTERA_AVALON_UART_INIT and

ALTERA_AVALON_UART _INSTANCE. These INIT and INSTANCE macros must be
defined in a header file that also matches the hardware device name, which in this
case is altera_avalon_uart.h. This restriction is necessary for the automatic
construction of the alt_sys_init.c device initialization generated C source file.

This example is useful to gain a basic understanding of how to write a software device
driver that fits the HAL structure, either for manipulation of your own new hardware
device, or to override the functionality of the provided software device driver for an
Altera hardware component or other third party hardware device.

The file bit_bang_uart.c demonstrates how to write source code. The source code
development progresses toward a complete device driver. It starts from direct access
of the peripheral's registers and goes on to validating the proper functioning of the
Altera_Avalon_UART hardware. This bit_bang_uart.c is the first piece of software to
communicate with the Altera Avalon UART hardware.

AN 459: Guidelines for Developing a Nios Il HAL Device Driver © November 2008 Altera Corporation

Staging the HAL Device Driver Development Page 21

To develop the source code that accesses a new hardware device, perform the
following steps:

1.

Use IOWR () macros with hard address valuesinmain () to write values directly

to the memory-mapped UART registers. This method is the most direct way to

interface with the UART, and is useful for validating proper functioning of the
hardware component, while minimizing the potential for any software coding
errors to interfere with hardware validation.

. e For more information about HAL Device Driver Access macros, refer to
the “Accessing Hardware” section of the Developing Device Drivers for the
Hardware Abstraction Layer chapter in the Nios II Software Developer’s
Handbook.

After developing some direct peripheral manipulation code for your custom
peripheral, modeled after bit_bang_uart.c, write the device access macros.

Use these device access macros to develop and test polled routines for the init,
read, and write functions.

Write the interrupt service routines (ISRs) for interrupt driven mode. An
interrupt-driven software device driver routine responds to hardware interrupts
generated by the hardware device to indicate that there is useful work to be
performed. This method is much more efficient than a polled mode device driver
routine, which consumes and wastes Nios II microprocessor clock cycles by
constantly querying the hardware device to ask if there is useful work to be
performed. An interrupt service routine for a hardware device allows the Nios II
microprocessor to do other useful work while the hardware device is either idle or
operating autonomously, and therefore does not require the involvement of the
Nios I microprocessor. Use alt _irg register () to install the ISRsinmain ().

After the ISR and polled routines are tested from main (), create and test the INIT
and INSTANCE macros. These initialization macros are invoked by alt_sys_init.c
to automatically initialize both the software device driver and the hardware driver.
The INIT macro needs to initialize an alt_dev structure for the software device
driver with the tested functions for reading and writing to the UART hardware
device. The INSTANCE macro declares a structure for each instance of the
hardware device to hold device instance specific information, such as the baud
rate and the transmit and receive memory buffers. At this point, the

alt _irg register calls are moved from main to the device init function.

<« For more information about this alt_dev structure, refer to the “Character-Mode

Device Drivers” section of the Developing Device Drivers for the Hardware Abstraction
Layer chapter in the Nios II Software Developer’s Handbook.

© November 2008 Altera Corporation AN 459: Guidelines for Developing a Nios 11 HAL Device Driver

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

Page 22 Understanding the Device-Specific INSTANCE and INIT Macros

Understanding the Device-Specific INSTANCE and INIT Macros

The INSTANCE macro creates the alt_dev structure, which represents an instance of
the HAL device (the hardware component). This macro creates unique device instance
specific data structures.

The INIT macro must perform the following tasks:

m Create mutual exclusion resources

m Install the component's interrupt service routine with alt _irg register()
m Register the alt_dev structure with alt dev_reg()

m Enable interrupts

Integrating a New HAL Device Driver into the Board Support Package

Integration enables the following services:

B Automatic initialization with the alt sys init () function for the HAL device
drivers.

alt_sys_init () is an automatically generated function. alt_sys_init ()
calls the INIT and INSTANCE macros for each component found in the SOPC
Builder design that has a specific source code directory structure and set of file
names. The directory structure for hardware components provided by Altera
conforms to:

DeviceDrivers[SopcBuilder]\ <component_folder>

The easiest option for a directory structure for your custom hardware components
conforms to:

<my_design>\ip \<component_folder>

The device driver source code files are placed in folders in <component_folder>. The
file names conform to the following:

m \inc\<component>_regs.h
m \HAL\inc\<component>.h
m \HAL\src\<component>.c

m HAL devices can be accessed by services that are provided for a particular HAL
device class. For example, Altera_Avalon_UART is a character mode hardware
device, and so has access to higher level services such as buffer management. HAL
software device drivers become available to the UNIX-style POSIX API for device
functions such as open () and read ().

“ . For more information about adding device drivers using the Nios II software build
tools, refer to the “Integrating a Device Driver into the HAL” section of the Developing
Device Drivers for the Hardware Abstraction Layer chapter of the Nios II Software
Developer’s Handbook.

<o For more information about integrating a device driver with the HAL, refer to the

Developing Device Drivers for the Hardware Abstraction Layer chapter of the Nios 11
Software Developer’s Handbook .

AN 459: Guidelines for Developing a Nios Il HAL Device Driver © November 2008 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

Understanding HAL Mutual Exclusion Resources Page 23

“®.e Formore information about how to integrate your own VHDL or Verilog HDL source

code as a new HAL-compatible SOPC Builder component, refer to the Component
Editor and SOPC Builder Components chapters in volume 4 of the Quartus II Handbook.
“ . For details about the Component Editor tool, refer to the Component Editor chapter in
volume 4 of the Quartus II Handbook.

Understanding HAL Mutual Exclusion Resources

Software device drivers can use mutual exclusion resources to control access to any
data structure or peripheral register. Event flags and semaphores provide
synchronization and mutual exclusion services. These resources allow only one task
to access a shared piece of data at a time in a multi-threaded environment.

If the MicroC /OS-1I operating system is present, its resources are used. Otherwise, the
HAL provides its own set of event flags and semaphores, which do nothing in this
example. This is a device driver source code portability feature.

The MY UART software device driver creates two semaphores and one event flag.
The two semaphores are called read_lock and write_lock. They are used by the

MY UART software device driver to control access to the transmit and receive circular
buffers. The event flag, called events, indicates to the software device driver when
data is ready to be transmitted or received.

Mechanisms for Debugging the HAL UART Device Driver

The Nios I EDS and Quartus II software tools provide a variety of mechanisms for
debugging device drivers:

® You can monitor individual hardware component signals for activity with the
SignalTap® II logic analyzer. For example, you can hook up the SignalTap II logic
analyzer to the UART hardware transmit line to watch for any activity while you
write characters to the Altera_Avalon_UART hardware device via the MY UART
software device driver.

B You can step into the fprintf () function, stepping through the various layers of
abstraction until you reach the HAL’s invocation of my uart write ()
MY UART software device driver function.

B You can set breakpoints in the driver’s interrupt service routines, or even set
watchpoints on UART memory-mapped registers to halt the processor when a
character is received. There may be consequences to setting a breakpoint in an
interrupt service routine (ISR). When you resume, there may be problems with
other devices that did not get their interrupts handled. However, this is sometimes
the best way to debug the driver for a particular device. You can always just reset
or download the software containing the device driver again when you are done
with a particular debugging session.

These mechanisms can help you diagnose an incorrectly configured system. For
example, if the wrong interrupt number is passed to alt_irg_register(), the
result is a device interrupt that is not properly handled. When interrupts are enabled
after low-level system initialization, there is no way to clear the interrupt source. The
application will not work correctly. The Nios II IDE debugger may even stop
communicating with the processor.

© November 2008 Altera Corporation AN 459: Guidelines for Developing a Nios 11 HAL Device Driver

http://www.altera.com/literature/hb/qts/qts_qii54005.pdf
http://www.altera.com/literature/hb/qts/qts_qii54005.pdf
http://www.altera.com/literature/hb/qts/qts_qii54005.pdf
http://www.altera.com/literature/hb/qts/qts_qii54004.pdf

Page 24

Techniques for Debugging the HAL UART Device Driver

Techniques for Debugging the HAL UART Device Driver

For the next set of debugging examples, you must create a new application. For these
examples, create the hello_world_my_uart application and import it as a Nios II IDE
project. Next, regenerate the files which make up the hal_my_uart board support
package. This time, instead of commenting out the invocation of the
ALTERA_AVALON_UART_INIT macro, let the alt_sys init () function install
the Altera Avalon UART HAL device driver, after which you can inspect its operation.

The following sections show examples of placing breakpoints and watchpoints in
HAL device driver source code to analyze device behavior.

Perform the following steps:

1. Delete the public.mk generated file. Enter the following command in the Nios II
Command Shell:

rm <my design>/software examples/bsp/hal my uart/public.mk ¢

This causes the hal_my_uart BSP files, including alt_sys-init.c, to be regenerated
at the next build.

2. Create the hello_world_my_uart application by invoking its create-this-app
script. Enter the following commands:

cd <my design>/software_ examples/app/hello world my uart

./create-this-app +

This action accomplishes several tasks:

The create-this-bsp script for the hal_my_uart board support package is
invoked.

A new public.mk file is generated.

The software device descriptors stdout, stderr, and stdin are set to uartl. This
is done during the nios2-bsp invocation in the
<my_design>/software_examples/bsp/hal_my_uart/create-this-bsp script.

The software device driver called my_uart_driver is created in the
<my_design>/ip/my_uart directory and is associated with the
Altera_Avalon_UART hardware device. This is done in
<my_design>/ip/my_uart/my_uart_sw.tcl.

The software device driver called my_uart_driver is set to the hardware
component named uartl. This is done via the Tcl script passed to the
nios2-bsp invocation called
<my_design>/software_examples/bsp/hal_my_uart/ hal_my_uart.tcl.

alt_sys_init.c is regenerated with the invocation of
ALTERA_AVALON_UART_INIT.

The libhal_bsp.a board support package library is built in the
<my_design>/software_examples/bsp/hal_my_uart directory.

The hello_world_my_uart.elf file is built in the
<my_design>/software_examples/app/hello_world_my_uart directory.

AN 459: Guidelines for Developing a Nios Il HAL Device Driver © November 2008 Altera Corporation

Techniques for Debugging the HAL UART Device Driver Page 25

nios2-bsp canbe invoked with the - -debug parameter, which causes
verbose generation of information about the above construction steps, and
can be very useful for finding errors in the construction of the relevant Tcl
scripts and command shell scripts.

3. Import the hello_world_my_uart application into the Nios II IDE as described in
“Importing Projects” on page 7, substituting the hello_world_my_uart application
for the bit_bang_uart application.

Setting Breakpoints in the HAL MY UART Software Device Driver

This section demonstrates the use of breakpoints to examine HAL device driver
activity. Perform the following steps:

1. After the hello_world_my_uart project is imported, open the my_uart_init.c
device driver source file, located in the hal_my_uart project, at the following
directory:

<my_design>/software_examples/bsp/hal_my_uart/drivers/src/my_uart_init.c
2. Place a breakpoint on the function named my uart irg(), asshownin

Figure 13.

Figure 13. Setting a Breakpoint on my_uart_irq

JC/C++ - my_uart_init.c - Nios IT IDE -10] x|
File Edit Refactor Navigate Search Project Tools Run Window Help
S OB S @ GG [0 R @ @i e = el ?
ofis) Mavigator | = O || [g my_uart_initc 52 [hello_world.c | R = 08z outl.,, 22 _Mak... ‘ =0
T2 TR B A ATTE
- altera.components = :tafx;:tv:;d(voidﬁ context, alt w3z id) - 5 fentlh
=5 bit_bang_uart f {Y— e ! - B sys/altt_devh
Ei n
=15 hal_rry_uart alt_u3z status; :I sys/alt_irq.h
®-<» Archives o ™ gysfioctlh
w12 Includes my_uart_state® sp = (my uart_state®) context;: c sysfalt_errno.h
E1-(= drivers void* hase = sp-rhase: . ™ altera_avalon_uarth
&= inc oy uart_regs.h
E-E= s i —_— my_uart_irq
. . .
]_ altera_avalon_cfi_flack : 3e:d :hetstatus register in order to determine the cause DJ Hs my_uart_rirg
¢ altera_avalon_cfi_flask w FRESEEURE- o 48 my_uart_txirg
altera_avalon_cfi_flast o @ priy_uart_init
5 ;
altera_avalon_cfi_flast status = IORD_MY UART STATUS (base] ; @ my_uart_irg
altera_avalon_dma.c @8 ray_Lart_rxirg
altera_avalon_epcs_fl: /% Clear any error flags set at the device #/ . @8 my_uart_txirg
altera_avalon_jtag_ua
altera avalon_jtag ua IOWR_MY_UART_ STATUS (hase, 0):

altera_avalon_jtag_ua
altera_avalon_jtag_ua
altera_avalon_jtag_ua——

/% process a read irg %/

if (status & MY _UART STATUS_RRDY MSK)

= O e O O O = = = O = O = O = = = O = O = O = W= N~ O~ O = O~ W W~ |
[(- Gl o [] [- o B o [] [- o o o o - [- - -

altera_avalon_lcd_162 ¢

altera_avalon_lcd_162 Wy_Uart_rxirgisp, status):

altera_avalon_perforr ' -

altera_avalon_spi.c 4 I | LI_I

altera_avalon_sysid.c

altera_avalon_timer s ||Problems Bl Console 2 Pererties|Debug| | Ex &H HE B~-rj~-70

altera_avalon_timer_t hello_world_rry_uart Mios IT Hw configuration [Nios II Hardware] Nios 1T Terminal Window (410708 3:00 PM)

altera_avalon_timer_v nios2-terminal: connected to hardware target using UART on /dev/coml at 115200 b 1

epCs_commands.c aud

my_uart_Fd.E niosZ-terminal: (Use the IDE stop button or Ctrl-C Lo terminate)

-8 ry_uart_ioctl.c - =

«| S o
J ! fhal_my_uartfdrivers/src/my_uart_init.c J

© November 2008 Altera Corporation AN 459: Guidelines for Developing a Nios 11 HAL Device Driver

Page 26

Techniques for Debugging the HAL UART Device Driver

s

3. Create a Debug configuration for hello_world_my_uart by following the same
steps in “Debugging the bit_bang_uart Project” on page 9, starting at step 2, and
substituting the hello_world_my_uart application for the bit_bang_uart
application. Download, and execute the hello_world_my_uart application. The
Nios II processor stops at the my uart irg() invocation.

4. Step up to and over the following assignment of the status register:
status = IORD MY UART STATUS (base) ;

The status register now holds the value 0x60. This value indicates bits 5 and 6 are
set. According to the MY UART register description, these two bits indicate
transmit ready and transmit. The UART driver is now in an interrupt context,
ready to transmit the first character of the string “Hello from Nios II!”.

5. Continue stepping through the procedure. Themy uart_irg() function invokes
my uart_txirg() inresponse to a transmit interrupt.

Press Resume after each character is transmitted. Stop when the entire string
“Hello from Nios II!'” has been transmitted.

6. Remove the breakpoint.

After exploring the actions of an interrupt service routine, the rest of the system is in
an unknown state, because it could not respond to other interrupt requests while
stopped in the driver. Therefore, you need to start a new debugging session.
Download the elf image again to restart the program with Debug.

Setting Watchpoints in the HAL UART Device Driver

In this section, you intercept the Nios II processor by placing a watchpoint on a UART
peripheral register. A watchpoint is a special breakpoint that stops the execution of an
application whenever the value of a given expression changes. To watch for any
writes to the transmit register on the UART, you can set up a write-access watchpoint
on the register.

On the Run menu, click Debug. Click the Debugger tab. Turn off the Use FS2 console
window for trace and watchpoint support option.

To set a watchpoint, perform the following steps:
1. Start the debugging session for the hello_world_my_uart project.

2. Click on the Breakpoints tab. Right-click in the Breakpoints window, and click
Add Watchpoint.

3. In the Add Watchpoint dialog box, type a value in the Expression to watch field
that equals the uartl base value plus an offset of one long word. This value
accesses the transmit register. In the case of the Cyclone II full_featured hardware
design, this value is 0x02120844.

4. In the Access section, turn on Write and turn off Read.
5. Click OK. The Add Watchpoint dialog box closes.

AN 459: Guidelines for Developing a Nios Il HAL Device Driver © November 2008 Altera Corporation

Techniques for Debugging the HAL UART Device Driver

Page 27

6. Click the Resume button.

The Nios Il processor executes until it writes the first character to be transmitted
via the UART, an “H”. This step occurs in the my uart_ txirg() function when
the macro IOWR_MY UART TXDATA () gets invoked, as shown in Figure 14.

View the transmit register value in the Nios Il IDE Memory window. Note that the

value changes when the watchpoint is hit.

Look at the call stack in the upper left corner of the Debug Perspective. Each call
leading up to this point is recorded, including each function invoked to process the
transmit interrupt. The alt irg entry () functioncalls alt irg handler (),

which calls my uart irg(), which callsmy uart txirqg().

Figure 14. Setting Watchpoints in the UART's Transmit Register

. Debug - my_uart_init.c - Nios IT IDE

File Edit Refactor

MNavigate Search Project Tools

Eun wWindow Help

[| %5 Debug

=lolx]

>

= O |[varizbles Qirts X MemDry|Reg\sbers‘MDdu\es|

RRFE | mEETO

- |JTHJ#;$'0'%'J®©"J-.'J - - = -
%5 Debug £2
% 5 b 2. eS| &7

= F‘,“ﬂ hello_world_my_uart Nios I Hw' configuration |~ |
=} Nios 11 EIf Debugger (4/10/08 3:14 PM) (Sue

& at'0x02120944'

@ Chymy_designisoftware_examplesi\appibit_bang_uart\bit_bang_uart.c [line: 159]
e Ciymy_designisoftware_examplesh\appibit_bang_uart\bit_bang_uart.c [line: 229]

¢ =g Thread [0] (Suspended: Watchpoint Tig
= 14 ry_uart_teirgq) at \oygdriverchmy—
13 my_uart_irq() at \oygdrivehSymy _c
12 alt_irg_handler() at \oygdrivelcym
11 alt_irgq_eniry() OxDe000080

ql: 5=n|..,.u Sk

wibe AL b Lmumede it

10 rry_uart_write) at alt_irg.h:128 €

FEs

[& rry_uart_init.c =2

L3 Sp->LE_STArt =

€] hello_waorld.c |

= B[5= outline 52 _Make ...‘Dlsas... ‘ =0

IOWR_MY UART_TXDATA(=Sp-rhase, sp->tx_buf[sp-»tx_starc]l);

(++Sp->tH_start] & MY_UART BUF_MSK:

* In case the tranmit interrupt had previously bheen dis=abled by
* detecting a low walue on CTS, it is reenabled here.

= B R e ¥
= fmtlh
B oys/alt_devh
B oys/alt_irgh
B sys/inrtlh
— sys/falt_errnoh
. @ altera_avalon_uarth

-

w/ o e Wy _iart_regs.h
e kS py_uart_irg
} sp-»ctrl |= MY_UART CONTROL_TRDY MSK: - t+5 my_uart_rirg
hd)
u s | oo -l
El console 52 . Tasks x i||#B~r5-=0

hello_world_my_uart Mios IT HW configuration [Nios II Hardware] Nios I Terminal Window (4/10/08 3:14 PI)

aud

niosi-terminal:

niosi-terminal:

connected to hardware target using UART on /dev/cowl ac 115200 b

iUze the IDE stop button or Crtrl-C to Terminate)

4 J o

© November 2008 Altera Corporation

AN 459: Guidelines for Developing a Nios 11 HAL Device Driver

Page 28 Techniques for Debugging the HAL UART Device Driver

Setting the Reduced Device Drivers and Lightweight Device Drivers API Options

There are HAL settings that can be defined for the board support package to allow the
HAL to be configured. These settings are configured with the - - set parameter to the
nios2-bsp invocation in the create-this-bsp script. The settings are described in the
Nios II Software Build Tools Reference chapter in the Nios II Software Developer's
Handbook.

The Reduced device drivers and Lightweight device driver API options are of
particular interest, because they reduce the code and data footprint at the expense of
device functionality. Additionally, they set #define parameters that need to be
examined and handled in the MY UART software device driver. The settings are
stored in the summary.html file generated by nios2-bsp, in
<my_design>/software_examples/bsp/hal_my_uart.

B Reduced device drivers—The Reduced device drivers option generates a
#define statement for ALT USE SMALL DRIVERS. To turn on this option, set
hal.enable_reduced_device_drivers to true. Setting this option has the following
effects on the UART device:

m Sets #define ALT USE_SMALL DRIVERS

m Activates polled-mode only for the UART device
m No floating-point printf () or sprintf ()

m Flow control is ignored

m Lightweight device driver API—The Lightweight device driver API option
generates a #define statement for ALT USE_DIRECT_ DRIVERS. To turn on this
option, set hal.enable_lightweight_device_driver_api to true. Setting this option
has the following effects on the UART device:

m Sets #define ALT USE DIRECT DRIVERS
m File descriptors cannot be created, eliminating the option of using a file system.

m STDIO device descriptors cannot be redirected to actual device descriptors
alt main() by thealt io redirect () call

m Calling open () or close () generates a link time error.

m Causes direct calls to your UART device driver via macros, bypassing the
device manipulation function invocations normally accessed through the file
descriptor structure. The macros used are defined in alt_driver.h (in the Device
Drivers [NiosII]\altera_hal \HAL\inc\sys directory).

AN 459: Guidelines for Developing a Nios Il HAL Device Driver © November 2008 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Techniques for Debugging the HAL UART Device Driver Page 29

Figure 15 shows an excerpt of the summary.html file generated by nios2-bsp.

Figure 15. Excerpt of summary.html Generated by nios2-bsp

|Setting Mame: |hal. enable lightweight dewice_driver apt

[Tdentifier: |ALT_USE_DIRECT DRIVERS

[Default Value: o

|Value: |0

|Type: |Boolean

|Destination: |pub]ic_mk_deﬂne
Enables ightweight device driver APT This reduces code and data footprint by removing the HAT layer that maps device

Description: names (&g (deviuartl) to file descriptors. Instead, driver routines are called directly. The open(), cloze(), and lzeek()

Ipeiai routines will always fail o called. The read?), write), fatat(), 10ctl]), and izatty]) routines only worke for the stdio dewices. &

true, adds -DALT TUSE_DIRECT DERIVERS to ALT CPPFLAGS in public.mb

|Restrictions: |The Altera Host and read-only ZIP file systems can't be used i hal enable_lightweight dewvice driver apd is true.

|Setting Mame: |hal. enable_mul_div_emulation

[dentifier. |ALT_NO_DINSTRUCTION_EMULATION

[Default Value: o

|Value: |0

|Type: |Boolean

|Destination: |pub]ic_mk_deﬂne
Adds code to emulate multiply and divide mstructions i case they are executed but aren't present in the CPT. Mormally

Description: thiz isn't recuired because the compiler won't use multiply and divide metructions that aren't present in the CPTT. I falze,
adds -DALT MO INSTRUCTICN_EMULATION to ALT CPPFLAGS in public.ml.

|Restrictions: |none

|Setting Mame: |hal. enable_reduced dewvice_dnvers

[Tdentifier: [ALT USE_SMALL_DRTVERS

[Default Value: o

|Value: |0

|Type: |Boolean

|Destination: |pub]ic_mk_deﬂne
The drivers are compiled with reduced finctionality to reduce code footprint. Mot all dovers observe this setting. The
altera_avalon_uvart and alteraavalon_jtag_uvart drvers switch to a polled-mode of operation. The altera_avalon cfi flash,

Description: altera_avalon_epes_flash controller, and altera_avalon led_ 16207 drvers are removed. You can define a symbol
provided by each driver to prevent it from being removed. true, adds -DATT TSE SWATL DEIVEES to
ALT CPPFLAGS in public.mi.

Restrictions: |none

For example, a call to alt_putstr (), which normally is treated as a call to the
run-time library function fputs (), instead gets translated to ALT DRIVER WRITE
(defined in alt_driver.h) and state-obtaining macros. The ALT DRIVER_WRITE macro
in turn calls the ALT DRIVER FUNC NAME macro (also defined in alt_driver.h), and
eventually ALTERA AVALON UART WRITE (), which is defined in the
altera_avalon_uart_write.c driver file for the UART, where the UART is defined for
stdout. Calling ALT DRIVER FUNC_NAME (uartl, write) returns

ALTERA AVALON UART WRITE.

ALT USE DIRECT DRIVERS is dual-purposed in the my_uart software device
driver. It provides a convenient way to map the names of the

ALTERA AVALON UART INITand ALTERA AVALON UART INSTANCE macros that
are tied to the hardware component class name to names that are specific to the
my_uart software device driver. This setting of ALT USE_DIRECT DRIVERS already
maps ALTERA AVALON UART INIT and ALTERA AVALON UART INSTANCE to

© November 2008 Altera Corporation AN 459: Guidelines for Developing a Nios 11 HAL Device Driver

Page 30

Techniques for Debugging the HAL UART Device Driver

macros that change based on the setting of ALT USE DIRECT DRIVERS in
altera_avalon_uart.h. At the same time, the ALTERA AVALON UART INIT and
ALTERA AVALON UART INSTANCE macros have the ALTERA AVALON portion of
their names change to MY_UART. The resulting four macro name mappings are

MY _UART_DEV_INIT,MY UART STATE_INIT,MY UART DEV_INSTANCE, and
MY UART STATE_ INSTANCE.

For more information about the Reduced device drivers and Lightweight device
driver API options, refer to the “Reducing Code Footprint” section in the Developing
Programs Using the Hardware Abstraction Layer chapter and the Developing Device
Drivers for the Hardware Abstraction Layer chapter of the Nios II Software Developer’s
Handbook.

Interrupt Latency and Determinism

Interrupt latency is defined as the difference between the time that a hardware
component asserts an interrupt and the time that the first instruction of the interrupt
service routine (ISR) executes.

Determinism is defined as an attribute of a piece of source code that is guaranteed to
execute within a fixed amount of time. Overall interrupt latency impacts the
deterministic behavior for all source code in the system for which interrupts are not
disabled.

For more information, refer to the discussion on latency in the Exception Handling
chapter of the Nios II Software Developer’s Handbook.

To minimize interrupt latency, thus directly improving system determinism, follow
these guidelines:

m In the software interrupt service routine, do as little as possible to clear the
interrupt.

m Complete non-critical-section interrupt processing outside of the interrupt context.
If an operating system is used, a high priority task can be pending on an event
flag. The ISR posts to the event flag, notifying the task to complete interrupt
processing.

On the Custom Instructions tab, use the Interrupt Vector setting (Figure 16) for the
Nios II component in SOPC Builder to process the interrupt funnel in hardware as a
custom instruction, which is faster than processing the interrupt funnel in software.
This setting essentially replaces the alt_irqg handler () source code with
equivalent hardware. There can only be one interrupt vector custom instruction
component in a Nios II processor. If the interrupt vector custom instruction is present
in the Nios II processor, the HAL source detects it at compile time and generates code
using the custom instruction. The interrupt vector custom instruction improves both
average and worst-case interrupt latency by up to 20%. To achieve the lowest possible
interrupt latency, consider using tightly-coupled memories so that interrupt handlers
can run without cache misses.

AN 459: Guidelines for Developing a Nios Il HAL Device Driver © November 2008 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf

Techniques for Debugging the HAL UART Device Driver Page 31

For more information about tightly coupled memory, refer to Using Tightly Coupled
Memory with the Nios 1I Processor Tutorial.

Figure 16. Interrupt Vector Custom Instruction

¥ Njos II Processor - cpu x|

Nios II Processor

Interrupt Vector

ios 1T / Caches and Memory Interfaces / Advanced Features / MMLU and MPU Settings / 1T4G Debug Module / Custom Instructions |
Bit=weap [Maime Clock Cycles M Part Cpcode Extension
Enclian Converter bitswap Combinatarisl - 00000000 O
Floating Point Hardvware interrupt_vector Combinatarial 00000001 1

Aod.. Import... | Remave Edlit.... Mawve Lg Mave Doy

Documentation

Cancel | <§ack| [ext = | Finish |

For details of the interrupt vector custom instruction implementation, refer to the
“Exception and Interrupt Controller” section in the Processor Architecture chapter of
the Nios II Processor Reference Handbook.

For more information about tightly-coupled memories, refer to the “Tightly-Coupled
Memory” section in the Processor Architecture chapter of the Nios II Processor Reference
Handbook.

Restrict the use of synchronization resources to post-function calls. Functions that
pend on resources must not be called from within an ISR. Doing so can have fatal
consequences, from the destruction of overall system latency to complete system
deadlock. This includes any functions that can end up waiting for any resource, such
as printf, as well as any direct resource pend calls, such as A1t _Sem Pend.

© November 2008 Altera Corporation AN 459: Guidelines for Developing a Nios 11 HAL Device Driver

http://www.altera.com/literature/tt/tt_nios2_tightly_coupled_memory_tutorial.pdf
http://www.altera.com/literature/tt/tt_nios2_tightly_coupled_memory_tutorial.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf

Page 32

Techniques for Debugging the HAL UART Device Driver

Avoid using alt_irg interruptible (), which can enable ISR nesting, but is
likely to worsen interrupt latency (unless ISR is abnormally long) because of the
interrupt context switch overhead. If the ISR is long enough that you are considering
making it interruptible, consider moving much of the less time-critical processing of
the interrupt outside of the ISR into a task. The ISR should do only as much as is
required to clear the interrupt and capture state so that the hardware can proceed, and
then signal a task to complete processing of the interrupt request.

ALT_LOG Message Logging Mechanism

alt_logis alogging mechanism that can be very useful for debugging device
drivers. To enable this function for your application and BSF, perform the following
steps:

The example bit_bang_uartand hello_world_my_uartapplications and hal_my_uart
BSP already incorporate these steps.

1. Include the following header file in source files that call ALT LOG PRINTF():
#include "sys/alt log printf.h"

2. Inthe nios2-bsp command, set the hal.log port parameter to the desired
logging device, such as jtag_uart (refer to the create-this-bsp script in the
bsp/hal_my_uart directory). The logging device must be of type
altera_avalon_jtag_uart or altera_avalon_uart. This causes system.h to be
generated with definitions for ALT_LOG_PORT_TYPE and
ALT_LOG_PORT_BASE, as well as injecting into public.mk the define statement
for ALT_LOG_ENABLE.

3. Set the desired ALT_LOG_FLAGS level with the following Tcl command:
add_sw property alt cppflags addition -DALT LOG_FLAGS=3

This command adds -DALT LOG FLAGS=3 to the ALT_CPP_FLAGS make
variable in public.mk. (See the my_uart_sw.tcl custom software component TCL
script in the ip/my_uart directory.)

Macros are used to bypass the HAL driver and access the peripheral directly, so that
messages can be printed during the boot process before the devices get initialized. The
.sof image does not need to be regenerated in SOPC Builder or recompiled in the
Quartus II software.

The alt log device writes are blocking, so the nios2-terminal command must
be executed from a Nios Il Command Shell prompt (refer to Figure 17 on page 35) to
accept the alt_log output to the altera_avalon_jtag_uart device (when
hal.log_port is set to jtag_uart, a device of type altera_avalon_jtag uart) in order
for the Nios II application to complete initialization. Otherwise, the application pends
onan ALT LOG_PRINTF () statement until the alt_log device's output buffer can
be drained. You can add alt_log diagnostic messages to your code by invoking
ALT LOG_PRINTF (), a macro that handles most printf options except for floating
point (%f or %g).

AN 459: Guidelines for Developing a Nios Il HAL Device Driver © November 2008 Altera Corporation

Techniques for Debugging the HAL UART Device Driver Page 33

The alt_log feature can be disabled by not defining hal.log_port as a parameter
to the nios2-bsp command invoked by the bsp/hal_my_uart/create-this-bsp script.
Disabling alt log has the effect of not setting ALT LOG_ENABLE in the Makefile for
board support package in bsp/hal my uart/public.mk. Disabling this feature
prevents the application from pending on the completion of ALT LOG PRINTF
statements, even when no terminal capable of receiving ALT LOG output is
connected, such as the nios2-terminal in this example. Additionally, disabling the
alt_log feature has the advantage of leaving zero residual impact in the compiled
and linked application elf file. This creates an elf image which is identical when
compared with an elf image compiled with the same bit_bang_uart.c source code
written without the additional ALT LOG PRINTF () macro invocations.

You can leave your ALT LOG_PRINTF () debugging statements in the final source
code version intended for production release, ready to be turned on by a simple
recompile with -DALT LOG_ENABLE. Of course, the determinism of the application is
impacted when ALT LOG ENABLE is defined, due to the collection and output of
alt log messages. All the alt log mechanisms are macros, and so get eliminated
by the compiler when not enabled. The result s that you can leave these calls to obtain
debugging information in the source code for your released final product, with no loss
of speed or code memory space.

Extra Logging Options and ALT_LOG_FLAGS

Aside from boot messages, these extra logging options are builtinto alt_log. Each
option has its own on-flag define, the details of each option is outlined in the table
below.

A second preprocessor define, ALT LOG_FLAGS, can be set to provide some grouping
for turning on these extra logging options. The flag levels are based on the
intrusiveness of performance—the higher the level, the more processor time the
alt_logoptions take, slowing execution. The ALT LOG_FLAGS levels are defined as
follows:

B ALT LOG FLAGS = 0 ornot defined (Default)—Only alt log boot is turned
on.

B ALT LOG_FLAGS 1—Above, plus alt_log sys_clkand
alt log jtag uart startup info.

B ALT LOG FLAGS = 2—All of theabove, plus alt log jtag uart alarm
and alt log write.

B ALT LOG FLAGS = 3—All of theabove, plus alt_log jtag uart isr

m ALT LOG _FLAGS = -1—Silentmode -no alt_log outputs.

Each logging option has their own on-flag define, so the default flag groupings can be
overridden. Setting the on-flag to 1 will turn that option on; anything else will turn off
the option.

© November 2008 Altera Corporation AN 459: Guidelines for Developing a Nios 11 HAL Device Driver

Page 34

Techniques for Debugging the HAL UART Device Driver

Table 1 shows the extra logging options.

Table 1. Extra Logging Options (Part 1 of 2)

Option

Description

alt log sys clk

Description

Prints out a message from the system clock interrupt handler every interval.
This tells the user if the system is still alive. Every message is appended with a
count that increments with each print out. The default interval is 1 second.

On-flag ALT_LOG_SYS_CLK_ON_FLAG_SETTING
name
Extra ALT_LOG_SYS_CLK_INTERVAL —the interval in number of ticks. The defaultis
switches (number of ticks for one second) *
MULTIPLIER.ALT_LOG_SYS_CLK_INTERVAL_MULTIPLIER —can increase the
interval in multiples of one second. Default is 1.
Sample System Clock On 0
Output System Clock On 1
alt log write Description | Every time alt write () is called, (basically any print statements that go to
STDOUT), the first N characters will be echoed to a logging message. The
message starts with “Write Echo:”
Default — N is 15 characters.
On-flag ALT_LOG_WRITE_ON_FLAG_SETTING
name
Extra ALT_LOG_WRITE_ECHO_LEN. Default is 15.
switches
Sample Write Echo: Hello from Nio
Output
alt log jtag uart | Description | AtJTAG UART driver initialization, print out a line with the number of characters
startup info in the software transmit buffer (sw cirBuf), and JTAG UART control register
contents (HWw FIFO).The sw CcirBuf number might be negative as it is the
(tail pointer — head pointer) value for a circular buffer; the JTAG UART control
register fields can be found in the Altera Embedded Peripherals Handbook.
On-flag ALT_LOG_JTAG_UART_STARTUP_INFO_ON_FLAG_SETTING
name
Extra None
switches
Sample JTAG Startup Info: SW CirBuf = 0, HW FIFO wspace=64
Output AC=0 WI=0 RI=0 WE=0 RE=1
alt log_jtag uart | Description | Creates an alarm object to print out the same JTAG UART information as
alarm alt log jtag uart startup_ info, butatarepeated interval.
Default interval is 0.1 second, or 10 messages a second.
On-flag ALT_LOG_JTAG_UART_ALARM_ON_FLAG_SETTING
name
Extra ALT_LOG_JTAG_UART_TICKS = number of ticks between alarms. Default is
switches ticks_per_second / DIVISOR.
ALT_LOG_JTAG_UART_TICKS_DIVISOR = number of times a second to print
out. Default is 10.
Sample JTAG Alarm: SW CirBuf = 0, HW FIFO wspace=45 AC=0
Output WI=0 RI=0 WE=0 RE=1

AN 459: Guidelines for Developing a Nios Il HAL Device Driver © November 2008 Altera Corporation

Techniques for Debugging the HAL UART Device Driver

Page 35

Table 1. Extra Logging Options (Part2 of 2)

Option Description
alt log_jtag uart | Description | Prints out a message every time the JTAG UART near-empty interrupt triggers.
isr Message contains the same JTAG UART information as the above two logging
options.
On-flag ALT_LOG_JTAG_UART_ISR_ON_FLAG_SETTING
name
Extra None
switches
Sample JTAG IRQ: SW CirBuf = -20, HW FIFO wspace=64 AC=0
Output WI=1 RI=0 WE=1 RE=1

alt _log boot

default by enabling alt_log.

Description | Prints out boot messages as the boot process progresses. This is turned on by

On-flag ALT_LOG_BOOT_ON_FLAG_SETTING

name
Extra None

switches

Sample Listed in previous section of this document.
Output

Figure 17. ALT_LOG Output for hello_world_my_uart.c with ALT_LOG_FLAGS=3

[MNiosII ED£1% nios2-terminal ——cable=2

niosz2-terminal: connected to hardwa target using JTAG UART on cahble
nios2-terminal: “USB-Blaster [USB-B1". device 1, instance 8
nioz2-terminal: {Use the IDE stop button or Ctrl-C to terminate’

[crtB.S5]1 Inst & Data Cache Initialized.

[crtB.8]1 Setting up stack and global pointers.

[crtB.85]1 Clearing BSS

[crtB.85]1 Calling alt_main.

[alt_main.c] Entering alt _main, calling alt_irg init.

[alt_main.c] Done alt_irg_init, calling alt_os_init.

[alt_main.c] Done 0S5 Init. calllng alt_sem_create.

[alt_main.c] Calling alt_sys_init

JTAG Startup Info: SW CirBuf = 8. HU FIFQ wspace=47 AC=1 WI=8 RI=8 WE=A RE=1

[alt_main.c] Done alt_sys_init.

[alt_main.c] Redirecting I0.

[aJTAG Alarm: SY CirBuf = @. HW FIFO wspace=8 AC=1 WI=8 RI=A WE=A RE=1

1t_main.c] Calling C++ constructors.

[alt_main.c] Calling atexit.

[alt_main.c] Calling main.

Mrite Echo: Hello from Nio

[alt_exit.c] Entering _exit(> functioJTAG Alarm: SW CivrBuf = @, HY FIF0Q wspace=8|

AC=1 WI=A RI=B WE=B RE=1

n.

[alt_exit.c] Exit code from main was 8.

[alt_exit.c] Calling ALT_OS_STOP(D.

[alt_exit.c] Calling ALT_SIM_HALT(>.

[alt_exit.c] Spinning forever.
Alarm: SW CirBuf = HY
Alarm: SW CirBuf
Alarm: SW CirBuf
Alarm: SW Ci
Alarm: SYW
Alarm: SY

wspace=b4
wspace=b4
wspace=b4
wspace=b4
wspace=b4
wspace =64
wspace=b4

wowomowowon

w

CirBuf
CirBuf
CirBuf
CirBuf
CirBuf
CirBuf
CirBuf
CirBuf
CirBuf
CirBuf

JTAG Alarm: SW CirBuf

wspace =46
wspace=b4
wspace=b4
wspace=64
wspace=b4
wspace=b4
wspace=b4
wspace=b4
wspace=b4
wspace=64

w

w

womowowow

SodDdddddsd S

w

=

-
I

=

w

O DONOEEROEE IEOEEEE
h

w

=

-
I

=

wspace =46

© November 2008 Altera Corporation

AN 459: Guidelines for Developing a Nios 11 HAL Device Driver

Page 36

Conclusion

Conclusion

By dissecting the Altera_Avalon_UART peripheral hardware and the my_uart HAL
software device driver, and examining the UART status register bit manipulation at a
fine-grained level of detail, you gained insight into the HAL device driver
development process. You now have the tools necessary to develop and debug at this
low, close to the hardware, level of the system. The print£ () function is not
available this deep in the software hierarchy, but your set of tools now includes
analysis and debugging techniques for tackling even the most elusive and
deterministic embedded software specification deviations.

With your new knowledge about the HAL's facilities, and with the array of techniques
for debugging and development described in this document, you are now better
prepared to write HAL software device drivers for your own embedded system's
peripheral devices. Many more device drivers are provided with the Nios II EDS,
ranging from the more simple PIO to the relatively complex, such as Ethernet.
Furthermore, these tools can also be applied at higher levels in the software hierarchy.

Referenced Documents

This application note references the following documents:
m Component Editor chapter in volume 4 of the Quartus IT Handbook

m Developing Device Drivers for the Hardware Abstraction Layer chapter in the Nios II
Software Developer’s Handbook

m Developing Programs Using the Hardware Abstraction Layer chapter in the Nios II
Software Developer’s Handbook

m Exception Handling chapter in the Nios II Software Developer’s Handbook
m HAL API Reference chapter in the Nios II Software Developer’s Handbook.

m Introduction to the Nios Il Software Build Tools chapter in the Nios II Software
Developer’s Handbook

m Nios II Hardware Development Tutorial

m Nios II Software Build Tools Reference chapter in the Nios II Software Developer’s
Handbook

m Overview of the Hardware Abstraction Layer chapter in the Nios II Software Developer’s
Handbook

B Processor Architecture chapter in the Nios I Processor Reference Handbook
m SOPC Builder Components chapter in volume 4 of the Quartus II Handbook
m UART Core chapter in volume 5 of the Quartus II Handbook

m Using the Nios II Software Build Tools chapter in the Nios II Software Developer’s
Handbook

m Using Tightly Coupled Memory with the Nios 1 Processor Tutorial

AN 459: Guidelines for Developing a Nios Il HAL Device Driver © November 2008 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/tt/tt_nios2_tightly_coupled_memory_tutorial.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii54004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/qts/qts_qii54005.pdf

Document Revision History

Document Revision History

Table 2 shows the revision history for this application note.

Table 2. Document Revision History

Date and Document

Version Changes Made Summary of Changes
November 2008 m Nios Il version 8.0 upgrade, adaptation of the Updated for version 8.0.
v2.0 Altera_Avalon_UART device driver to become the
my_uart device driver
m Nios Il Software Build Tools conversion for my_uart
IP, hal_my_uart BSP, and bit_bang_uart and
hello_world_my_uart applications
m Changed size of document to 8.5 x 11 inches
August 2007 Initial release. —
vi.0

101 Innovation Drive
San Jose, CA 95134
www.altera.com
Technical Support
www.altera.com/support

Copyright © November 2008. Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company,
the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S.
and other countries. All other product or service names are the property of their respective holders. Altera products
are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights.
Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's
standard warranty, but reserves the right to make changes to any products and services at any time without notice.
Altera assumes no responsibility or liability arising out of the application or use of any information,

product, or service described herein except as expressly agreed to in writing by Altera Corporation. nsal

Altera customers are advised to obtain the latest version of device specifications before relying on any =
published information and before placing orders for products or services.

LS. EN IS0 9001

http://www.altera.com
http://www.altera.com/support

	AN 459: Guidelines for Developing a Nios II HAL Device Driver
	Introduction
	Prerequisites
	Using the HAL Architecture and Services
	Software Requirements

	Developing the HAL UART Device Driver
	Preparing the bit_bang_uart Application and hal_my_uart Board Support Package
	Preparing the my_uart Software Device Driver
	Configure the Altera_Avalon_UART Hardware Component Controlled by the my_uart Software Device Driver
	Importing Projects

	Debugging the bit_bang_uart Project
	The BitBangUartTransmit Function
	The BitBangUartReceive Function
	Creating Device Access Macros
	Staging the HAL Device Driver Development
	Understanding the Device-Specific INSTANCE and INIT Macros
	Integrating a New HAL Device Driver into the Board Support Package
	Understanding HAL Mutual Exclusion Resources
	Mechanisms for Debugging the HAL UART Device Driver
	Techniques for Debugging the HAL UART Device Driver
	Setting Breakpoints in the HAL MY UART Software Device Driver
	Setting Watchpoints in the HAL UART Device Driver
	Setting the Reduced Device Drivers and Lightweight Device Drivers API Options
	Interrupt Latency and Determinism
	ALT_LOG Message Logging Mechanism
	Extra Logging Options and ALT_LOG_FLAGS

	Conclusion
	Referenced Documents
	Document Revision History

