
Altera Corporation 1
AN-527-1.0 Preliminary

Application Note 527

Implementing an LCD
Controller

Introduction Graphical LCD modules are increasingly prevalent in embedded
systems, where they are used to control, configure, and interact with
applications. Inexpensive LCD modules available today provide high
resolution and color display capabilities, and many also integrate a touch
panel interface. Implementing an LCD controller in an FPGA provides
the flexibility to incorporate additional LCD module features quickly and
easily as they become available.

The Altera® Nios® Embedded Evaluation Kit (NEEK) includes an LCD
module made by TPO, formerly Toppoly Optoelectronics Corp. The 4.3"
Toppoly TD043MTEA1 LCD module incorporates an 800×480-pixel,
active-matrix color display and a touch-screen interface. The NEEK
includes pregenerated examples that demonstrate the capabilities of the
LCD display. The kit also provides the necessary hardware designs,
source code, IP peripherals, and driver source code for these examples,
from which you can develop your own graphical applications.

This application note teaches you to create your own LCD module for
your embedded design, by providing the following information:

■ Background information on the LCD controller subsystem as
implemented in the NEEK. The application note describes the
peripherals and device drivers required to control the LCD module,
and their configuration.

■ Porting guidelines to help you implement the LCD controller
subsystem for your own LCD module.

Prerequisites This document assumes you are familiar with the following Altera
software design tools and intellectual property (IP):

■ Quartus® II software
■ SOPC Builder
■ Avalon® Memory-Mapped (Avalon-MM) and Avalon Streaming

(Avalon-ST) interfaces
■ Nios II processor

May 2008, ver. 1.0

2 Altera Corporation
Preliminary

Implementing an LCD Controller

NEEK LCD
Controller
Hardware
Components

Figure 1 provides a high-level, hierarchical view of the peripherals and
interfaces that implement the NEEK LCD controller design. The main
components of the LCD controller are the LCD module, the MAX® II
device, and the video pipeline in the FPGA.

Figure 1. LCD Controller Subsystem

f Figure 1 focuses on the connection of the peripherals for the LCD
module, including the video pipeline. For a system-level view of the
NEEK, refer to the Nios II Standard Hardware for the Embedded Evaluation
Board chapter of the Nios II Embedded Evaluation Kit, Cyclone® III Edition
User Guide.

The following sections describe the main components of the LCD
controller:

■ “Touch Screen LCD Module”
■ “MAX II Device” on page 4
■ “Video Pipeline” on page 5

PIO

SPI

PIO

S

M

M

Video Sync
Generator

Pixel Converter
(BGR0 -> BGR)

Timing
Adapter

Timing
Adapter

SGDMA
FIFO

Memory

Format
Adapter

(64 -> 32 bit)

Format
Adapter

(24 -> 8 bit)

MAX II
Device

LCD
Panel

LCD
Data

Interface

LCD
Controller
Interface

Touch
Screen

Interface

LCD Module

Nios II
Processor

Application
Memory

Frame
Buffer

Descriptor
Memory PIO

PIO

LCD Controller
Interface

Touch Screen
Interface

FPGADDR Memory

Video Pipeline

Nios II Embedded Evaluation Kit, Cyclone III Edition User�s Guide

Altera Corporation 3
Preliminary

NEEK LCD Controller Hardware Components

Touch Screen LCD Module

The touch screen LCD module is a single hardware device with the
following three distinct subsystems:

■ LCD graphical data interface
■ Touch screen interface
■ LCD controller interface

These interfaces use different buses and protocols.

LCD Data Interface

The LCD graphical data interface carries video data to the LCD module.
This interface includes a 24-bit Red-Green-Blue (RGB) data bus and some
control signals.

To display a frame of video data, the control and data line behavior and
sequencing must conform to the Toppoly LCD module specification.
Conceptually, the video sync generator peripheral—the final stage in the
video pipeline—implements the display operation. However, because of
pin restrictions on the FPGA, the MAX II device accepts a time-division
multiplexed (TDM) stream of pixel data from the FPGA device, performs
demultiplexing to convert it to a 24-bit stream, and sends the 24-bit
stream to the LCD data interface.

The TDM stream in the NEEK implementation is in Blue-Green-Red
(BGR) format: the blue color component is transmitted first, followed by
the green color component, and then the red color component.

f For more information about the Toppoly LCD module specification, refer
to the user guide at www.terasic.com under TRDB_LTM.

Touch Screen Interface

A Serial Peripheral Interface (SPI) and a Parallel I/O (PIO) peripheral
implement the touch screen interface. The SPI peripheral communicates
with the Analog Devices AD7843 touch screen digitizer chip to signal
pen_move events. A single PIO line captures pen interrupt events—
transitions on the pen_down line from the AD7843 chip—to indicate
pen_down and pen_up events. The Nios II processor in the system runs
software that drives the SPI and PIO peripherals.

http://www.terasic.com

4 Altera Corporation
Preliminary

Implementing an LCD Controller

Table 1 lists the touch screen interface peripherals in the NEEK hardware
example design.

LCD Controller Interface

The LCD display module contains a controller chip that configures the
module for operation. The controller chip communicates through a
simple, proprietary three-wire interface. The simple communication
protocol for sending and receiving data is implemented with three lines
from a general purpose PIO peripheral on the FPGA.

The PIO peripheral is controlled by a general purpose Hardware
Abstraction Layer (HAL) software driver in the system. Therefore, most
of the communication over the three-wire interface is driven by the
Nios II processor toggling individual PIO peripheral ports.

Table 2 lists the LCD controller interface peripherals in the NEEK
hardware example design.

MAX II Device

The MAX II device provides voltage translation and color demultiplexing
between the FPGA and the LCD module. The MAX II device also serves
as a voltage translator between the Cyclone III device 2.5V inputs and the
3.3 V outputs of many of the external peripherals to which it connects.

Table 1. Touch Screen Interface Peripherals

Name SOPC Peripheral Type Role

touch_panel_spi SPI (3-Wire Serial) implements SPI
interface

touch_panel_pen_irq_n Parallel I/O implements pen
interrupt interface

Table 2. LCD Controller Interface Peripherals

Name SOPC Peripheral Type Role

lcd_i2c_scl Parallel I/O implements clock signal

lcd_i2c_en Parallel I/O implements device
enable signal

lcd_i2c_dat Parallel I/O implements data signal

Altera Corporation 5
Preliminary

NEEK LCD Controller Hardware Components

To conserve pins on the FPGA, the video pipeline generates an 8-bit TDM
stream, in which each clocked value corresponds to one color component
of the pixel's value (red or green or blue). The MAX II device accepts this
8-bit stream and converts it back to the 24-bit, parallel RGB format that
the LCD module expects.

f For more information about the MAX II design, and how it performs
time-domain based multiplexing and demultiplexing, refer to the
MAX II design file that is included with the NEEK evaluation kit. The
path to the MAX II design file is
<Installation Path>/board_design_files/assembly/
lcd_multimedia_daughtercard/maxII.

Video Pipeline

The video pipeline is the core of the LCD example design. This
component is responsible for driving video data signals on the LCD
module data bus and for reading frame buffer data generated by the
Nios II processor. The video pipeline is a series of specialized Avalon-ST
peripherals that move, process, and operate on pixel data.

f For more information about the Avalon-ST interface specification, refer
to the Avalon Streaming Interfaces chapter in Avalon Interface Specifications.

The following sections describe the peripherals in the video pipeline:

■ “Video Sync Generator Peripheral”—the output stage of the pipeline
■ “Avalon-ST Data Format Adapter Peripheral (24 Bits to 8 Bits)”
■ “Avalon-ST Pixel Converter Peripheral (BGR0 --> BGR)”
■ “Avalon-ST Data Format Adapter Peripheral (64 Bits to 32 Bits)”
■ “Avalon-ST Timing Adapter Peripheral (FIFO-to-Data Format

Adapter)”
■ “FIFO Memory Peripheral”
■ “Avalon-ST Timing Adapter Peripheral (SGDMA to FIFO Memory)”
■ “Scatter-Gather DMA (SGDMA) Controller Peripheral”—the initial

stage of the pipeline

Video Sync Generator Peripheral

The video sync generator peripheral transmits pixel data to the LCD
module. The generator sequences the control and data signals for the
LCD module's data bus.

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

6 Altera Corporation
Preliminary

Implementing an LCD Controller

The video sync generator accepts a stream of pixel data at its input,
encoded with particular Data Stream Width and Beats per Pixel values.
The generator outputs the video data in the same format in which it was
received, but includes additional sequencing information to drive the
display.

SOPC Builder requires that you determine values for the following video
sync generator parameters:

■ Data Stream Width
■ Beats per Pixel
■ Number of Columns
■ Number of Rows
■ Horizontal Blank Lines
■ Horizontal Front Porch Pixels
■ Vertical Blank Lines
■ Vertical Front Porch Lines
■ Total Horizontal Scan Pixels
■ Total Vertical Scan Pixels

The Data Stream Width and Beats per Pixel parameters control the
interfaces to the previous peripheral (stage) in the video pipeline. The
other parameters control correct sequencing of data and control for the
LCD data bus; their correct values are determined from the Toppoly LCD
module datasheet or user guide.

In the NEEK design, Data Stream Width has value 8 and Beats per Pixel
has value 3. These parameter values cause the pixel data to enter the
MAX II device 8 bits at a time, in sequences of three 8-bit vectors. Each
sequence represents the color of a single pixel. The MAX II device
performs demultiplexing to convert these sequences for the display into
24-bit vectors that each contain complete color information for a pixel.
The previous pipeline stage, which feeds the video sync generator
component, must output video pixel data in the 8-bit vector format.

For more information about the video sync generator peripheral, refer to
“LCD Panel Interface” on page 21.

f For more information about the Toppoly LCD module specification, refer
to the user guide at www.terasic.com under TRDB_LTM.

http://www.terasic.com

Altera Corporation 7
Preliminary

NEEK LCD Controller Hardware Components

Table 3 describes the video sync generator peripheral in the NEEK
hardware example design.

f For more information about the video sync generator peripheral, refer to
the Video Sync Generator and Pixel Converter Cores chapter in volume 5 of
the Quartus II Handbook.

Avalon-ST Data Format Adapter Peripheral (24 Bits to 8 Bits)

The Avalon-ST data format adapter peripheral enables you to convert
data units between buses with different widths. The widths are
parameter values you set in SOPC Builder.

In the NEEK design, this peripheral's role in the video pipeline is to
convert a 24-bit pixel stream—an RGB pixel value—to an 8-bit pixel
stream in which each RGB color component is transmitted separately.

This Avalon-ST data format adapter peripheral accepts one 24-bit pixel
value per clock cycle at its input (3 data symbols, each 8 bits wide), and
generates three 8-bit, clocked values at its output (one data symbol at a
time, each 8 bits wide). This conversion matches the downstream video
sync generator's requirement for an 8-bit data stream, and the upstream
pixel converter's 24-bit output.

Table 4 describes this Avalon-ST data format adapter peripheral in the
NEEK hardware example design.

f For more information about the Avalon-ST data format adapter, refer to
the System Interconnect Fabric for Streaming Interfaces chapter in volume 4
of the Quartus II Handbook.

Table 3. Video Sync Generator Peripheral

Name SOPC Peripheral Type Role

lcd_sync_generator Video Sync Generator drives LCD module data
bus

Table 4. Avalon-ST Data Format Adapter Peripheral (24 to 8 Bits)

Name SOPC Peripheral Type Role

lcd_32_to_8_bits_dfa Avalon-ST Data Format
Adapter

converts data values
from 24 to 8 bits

http://www.altera.com/literature/hb/qts/qts_qii54019.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55006.pdf

8 Altera Corporation
Preliminary

Implementing an LCD Controller

Avalon-ST Pixel Converter Peripheral (BGR0 --> BGR)

The Avalon-ST pixel converter peripheral converts 32-bit pixel values, in
a 32-bit format in which the final byte is unused (BGR0), to the 24-bit
format the LCD module expects.

You set the Source symbols per beat parameter of the Avalon-ST pixel
converter peripheral in SOPC Builder, but you control the function of this
peripheral by modifying its Verilog HDL source file. All HDL files
provided on the NEEK installation CD are in Verilog HDL. Many of these
files can be recreated in VHDL using SOPC Builder. However, the pixel
converter peripheral is a custom peripheral for which a VHDL
implementation is not provided.

Table 5 describes the Avalon-ST pixel converter peripheral in the NEEK
hardware example design.

For more information about modifying the Avalon-ST pixel converter
peripheral, refer to“Video Pipeline Peripherals” on page 27.

f For more information about the pixel converter peripheral, refer to the
Video Sync Generator and Pixel Converter Cores chapter in volume 5 of the
Quartus II Handbook.

Avalon-ST Data Format Adapter Peripheral (64 Bits to 32 Bits)

This Avalon-ST data format adapter converts 64-bit data values (8 data
symbols, each 8 bits wide) to 32-bit data values (4 data symbols, each
8 bits wide). Each 64-bit data value contains two RGB pixel values. Each
pixel value is encoded in 32 bits.

The downstream Avalon-ST pixel converter peripheral requires a 32-bit
data value for its input, but the upstream data value coming from the
timing adapter peripheral is 64 bits.

Table 5. Avalon-ST Pixel Converter Peripheral

Name SOPC Peripheral Type Role

lcd_pixel_converter Pixel Converter (BGR0 --> BGR) removes unused
final byte of
incoming 32-bit
data

http://www.altera.com/literature/hb/nios2/qts_qii55006.pdf

Altera Corporation 9
Preliminary

NEEK LCD Controller Hardware Components

Table 6 describes this Avalon-ST data format adapter peripheral in the
NEEK hardware example design.

Avalon-ST Timing Adapter Peripheral (FIFO-to-Data Format Adapter)

The Avalon-ST timing adapter peripheral is a bridge between two
Avalon-ST peripherals that have different latency requirements. You set
the values of the timing adapter peripheral parameters in SOPC Builder.

This timing adapter peripheral reconciles the data latency mismatch
between the downstream format adapter peripheral, which has a latency
of 0, and the upstream FIFO memory peripheral, which has a latency of 1.

Table 7 describes the FIFO-to-data format adapter Avalon-ST timing
adapter peripheral in the NEEK hardware example design.

f For more information about the Avalon-ST timing adapter, refer to the
Avalon Streaming Interconnect Components chapter in volume 4 of the
Quartus II Handbook.

FIFO Memory Peripheral

The FIFO memory pipeline stage is implemented by an on-chip FIFO
memory peripheral. The FIFO memory provides temporary data
buffering in the video pipeline. Pixel data loaded in the video pipeline
from frame buffer memory by the SGDMA peripheral may not arrive in
a timely manner. Delays can occur due to latency or bus contention issues
experienced by the SGDMA peripheral while accessing the frame buffer
memory.

Table 6. Avalon-ST Data Format Adapter Peripheral (64 to 32 Bits)

Name SOPC Peripheral Type Role

lcd_64_to_32_bits Avalon-ST Data Format
Adapter

converts data values
from 64 to 32 bits

Table 7. Avalon-ST Timing Adapter Peripheral (FIFO to Data Format Adapter)

Name SOPC Peripheral Type Role

lcd_ta_fifo_to_dfa Avalon-ST Timing Adapter bridges latency timing
between the FIFO and
the data format adapter
peripheral

http://www.altera.com/literature/hb/qts/qts_qii54021.pdf

10 Altera Corporation
Preliminary

Implementing an LCD Controller

In the NEEK design, the FIFO memory peripheral is configured to accept
as many as 128, 64-bit data values (eight 8-bit symbols, each 8 bits wide)
from the upstream timing adapter peripheral. The FIFO memory
peripheral passes any valid data units it has to the downstream timing
adapter peripheral, one 64-bit data value per clock. The FIFO memory
peripheral also includes Avalon-ST backpressure support to prevent the
upstream timing adapter peripheral from loading new data in the FIFO
memory when the FIFO memory is full.

This FIFO memory smooths out the video pipeline data flow successfully
because, on average, data arrives from the SGDMA more quickly than it
can be processed by the rest of the pipeline. Buffering is necessary
because the SGDMA cannot guarantee precisely when this data arrives.

Table 8 describes the FIFO memory peripheral in the NEEK hardware
example design.

For more information about configuring and using the FIFO memory
peripheral, refer to “Video Pipeline Peripherals” on page 27.

f For more information about the Avalon-ST on-chip FIFO memory
peripheral, refer to the On-Chip FIFO Memory Core chapter in volume 5 of
the Quartus II Handbook.

Avalon-ST Timing Adapter Peripheral (SGDMA to FIFO Memory)

This timing adapter peripheral reconciles the data latency mismatch
between the downstream FIFO memory peripheral, which has a latency
of 1, and the upstream SGDMA peripheral, which has a latency of 0.

Table 9 describes the SGDMA-to-FIFO memory Avalon-ST timing
adapter peripheral in the NEEK hardware example design.

Table 8. FIFO Memory Peripheral

Name SOPC Peripheral Type Role

lcd_pixel_fifo On-Chip FIFO Memory pixel data buffer

Table 9. Avalon-ST Timing Adapter Peripheral (SGDMA to FIFO Memory)

Name SOPC Peripheral Type Role

lcd_ta_sgdma_to_fifo Avalon-ST Timing Adapter bridges latency timing
between the SGDMA
and the FIFO
memory peripheral

http://www.altera.com/literature/hb/nios2/qts_qii55002.pdf

Altera Corporation 11
Preliminary

NEEK LCD Controller Hardware Components

Scatter-Gather DMA (SGDMA) Controller Peripheral

After the descriptor table of the SGDMA controller is programmed, the
SGDMA peripheral moves pixel data from the frame buffer memory to
the video pipeline autonomously, without intervention from the Nios II
processor.

In the NEEK design, the SGDMA peripheral is configured to read pixel
data from the frame buffer memory—located in the DDR SDRAM
component—and to pass the read data to the rest of the video pipeline for
processing. For optimal performance, the SGDMA reads units of pixel
data 64 bits at a time, corresponding to the interface width of the DDR
SDRAM memory.

The SGDMA performs memory transfer operations by descriptor. Each
descriptor can specify up to 64,000 bytes per transfer. To display an entire
video frame buffer, the Nios II processor creates a list of these descriptors
for the SGDMA to process. The SGDMA processes the entire descriptor
chain, continuously and repeatedly, to drive the video pipeline.

Conceptually, the Nios II processor manipulates the frame buffer
memory to change the pixel values. The Nios II processor can either
operate on the frame buffer being utilized by the SGDMA, or on a new
frame buffer which is then be passed to the SGDMA for processing. For
efficiency, the Nios II processor manipulates RGB pixel values using
32-bit read and write operations. The pixel values are stored in the frame
buffer memory in a 64-bit format that represents the values for two pixels.
A software application programming interface (API) controls the process
for manipulating and changing the frame buffer memory.

Table 10 describes the SGDMA peripheral in the NEEK hardware
example design.

For more information about configuring the SGDMA peripheral for
operation, refer to “Video Buffer Memory and SGDMA” on page 25.

f For more information about the SGDMA peripheral, refer to the
Scatter-Gather DMA Controller Core chapter in volume 5 of the Quartus II
Handbook.

Table 10. SGDMA Peripheral

Name SOPC Peripheral Type Role

lcd_sgdma Scatter-Gather DMA
Controller

reads pixel data from
frame buffer memory

http://www.altera.com/literature/hb/nios2/qts_qii55003.pdf

12 Altera Corporation
Preliminary

Implementing an LCD Controller

Software Driver
and Graphics
Routines

This section discusses the Altera-supplied API for the LCD controller
subsystem components.

The component APIs available to developers often use additional
function calls to accomplish a particular task. For more information about
how an API function accomplishes a particular task, you must examine
the API function source file. For a list of source files and their locations in
the software example design directories, refer to “Appendix A. NEEK
Design Examples and Sources” on page 32.

Touch Screen Software API

The touch screen software API provides the application with an abstract
pen interface, consisting of X and Y coordinates, and pen state (up or
down).

The touch-screen source code is located in the following two files:

■ alt_touchscreen.h
■ alt_touchscreen.c

API operations are available to perform the following four distinct
actions on the touch screen:

■ Initialize
■ Calibrate
■ Operate
■ Stop

Initializing

The function alt_touchscreen_init() configures the touch-screen
interface with the following information:

■ screen: Instance variable corresponding to your screen
■ spi_controller_base: Base address of SPI peripheral used to

communicate with the LCD touch screen interface
■ spi_controller_irq_number: IRQ number of SPI peripheral

used to communicate with the LCD touch screen interface
■ pen_detect_pio_base: Base address of PIO peripheral connected

to pen detect line of the LCD touch screen
■ samples_per_second: Sampling rate in Hz
■ swap_xy: A Boolean value that controls whether or not to swap the

X and Y coordinate axes

Your application must call this function before calling any other functions
in the touch-screen API.

Altera Corporation 13
Preliminary

Software Driver and Graphics Routines

Calibrating the Screen Coordinates

The alt_touchscreen_calibrate_upper_right() and
alt_touchscreen_calibrate_lower_left() functions calibrate
the touch screen. The
alt_touchscreen_calibrate_upper_right() function calibrates
the upper right corner of the LCD display, and the
alt_touchscreen_calibrate_lower_left() function calibrates
its lower left corner.

These functions accept two X and Y coordinate value pairs, one
corresponding to the touch-screen analog-to-digital (ADC) value and the
other corresponding to the respective screen pixel location. The ADC
value for the pixel location is determined empirically, while the pixel
screen value is determined from the geometry of the LCD screen.

To ensure that the touch-screen drivers behave properly, Altera
recommends that you call both of these functions before operating the
touch screen.

1 The NEEK applications are designed for a specific screen and
use pre-computed value pairs for these functions. No calibration
API functions are run. However, for accuracy, Altera
recommends that you call both of the calibration functions
before operating the touch screen.

Operating

The alt_touchscreen_get_pen() and
alt_touchscreen_event_loop_update() functions provide a
simple operating interface for the touch screen. The
alt_touchscreen_get_pen() function reports the touch screen
status, and the alt_touchscreen_event_loop_update() function
updates the internal state of the touch screen software.

Querying
The alt_touchscreen_get_pen() function returns the following
parameters:

■ pen_down: A Boolean value that indicates whether the pen is up or
down

■ x, y: The X and Y coordinates of the pen location

The X and Y coordinate values correspond to the most recent recorded
pen location, which is usually meaningful only when the pen status is
down. This function reports touch-screen status information
asynchronously with hardware operations. Actual reads of the

14 Altera Corporation
Preliminary

Implementing an LCD Controller

touch-screen hardware occur at lower levels of the API in an
interrupt-driven process; the timer interrupt service routine (ISR) queries
the touch-screen hardware at the sampling rate (specified with the
alt_touchscreen_init() function), and data is read back and
reported by the ISR for the SPI described in “Touch Screen Interface” on
page 3.

Callback Methodology
The touch screen API supports a mixed callback methodology in which
registered callback events are detected in an ISR-driven process, but the
callback function is run from the application.

To register a callback event, run the
alt_touchscreen_register_callback_func() function,
specifying the following parameters:

■ screen: Instance variable corresponding to your screen
■ callback_reason: Event that triggers the callback function.

Supported events include pen_up, pen_down, and pen_move
■ callback_func: The function to handle the specified event,

specified using the alt_touchscreen_event_callback()
function

■ context: Pointer to a user-defined data structure or value that
represents the callback context

1 To disable a callback event, specify a null value for the callback
function.

The application must call the
alt_touchscreen_event_loop_update() function periodically.
This function checks all registered callback events to see if they occurred,
and if so, calls the associated callback function. The
alt_touchscreen_event_loop_update() function can be called
from an operating system thread or periodically in an event loop.

The callback function accepts the following parameters:

■ pen_down: indicates whether pen is down (pen_down == 1)
■ x: value corresponding to the pen's location on the X axis
■ y: value corresponding to the pen's location on the Y axis
■ context: pointer to a user-defined data structure or value

Altera Corporation 15
Preliminary

Software Driver and Graphics Routines

Stopping

The alt_touchscreen_stop() function stops the touch screen and
puts it in a safe state. When called, this function disables interrupts for the
timer and SPI peripherals, stops the video hardware, and clears any
registered callback events.

LCD Module Software API

The LCD software API provides a high-level initialization function and a
set of low-level functions for communicating with the LCD module
registers. During normal operation, you should only need to
communicate with the LCD module during system configuration. This
communication occurs through the software API.

The LCD module source code is located in the following two files:

■ alt_tpo_lcd.h
■ alt_tpo_lcd.c

Initializing

The initialization function enables you to quickly configure the LCD
module for operation. This function configures the LCD module with a
precomputed set of default parameters for the gamma curve and the
positive polarity voltage.

The initialization function has the following prototype:

int alt_tpo_lcd_init (alt_tpo_lcd *lcd, alt_u32 width, alt_u32 height);

The function has the following parameters:

■ lcd: Instance variable corresponding to your screen
■ width: Width you would like displayed
■ height: Height you would like displayed

Before calling this function you must specify the pins on the PIO
peripheral connected to the LCD controller interface’s three-wire
interface, described in “LCD Controller Interface” on page 4.

The PIO pins are directly assigned in the C structure that holds the
information about the current state of the display (the lcd struct).
Example 1 illustrates an assignment for the three pins:

16 Altera Corporation
Preliminary

Implementing an LCD Controller

Example 1. A Sample Assignment for the PIO Pins
lcd.scen_pio = LCD_I2C_EN_BASE;
lcd.scl_pio = LCD_I2C_SCL_BASE;
lcd.sda_pio = LCD_I2C_SDAT_BASE;

Accessing the Configuration Registers

The LCD module’s registers are physically accessed through the
three-wire interface described in “LCD Controller Interface” on page 4.
This interface connects the LCD module to the FPGA. You access the LCD
configuration registers with the following functions:

■ alt_u8 alt_tpo_lcd_read_config_register(
alt_tpo_lcd *lcd, alt_u8 addr)

■ void alt_tpo_lcd_write_config_register(
alt_tpo_lcd *lcd, alt_u8 addr, alt_u8 data)

The alt_tpo_lcd_read_config_register() function reads a
register and returns the data it reads. This function accepts the following
parameters:

■ lcd: Instance variable corresponding to your screen
■ addr: LCD module configuration register to access

The alt_tpo_lcd_write_config_register() function writes a
register. It has all the parameters that the read function has, and the
following additional input parameter:

■ data: The data value to be written.

Before calling either of these functions, you must assign the
corresponding pins to the C lcd structure, as shown in Example 1.

f For more information about the LCD configuration registers, refer to the
user guide at www.terasic.com under TRDB_LTM.

Video Pipeline Subsystem API

The video pipeline software API provides a self-contained method to
control the video pipeline and manage the graphical frame buffers.

The video pipeline source code is located in the following two files:

■ alt_video_display.h
■ alt_video_display.c

http://www.terasic.com

Altera Corporation 17
Preliminary

Software Driver and Graphics Routines

API operations are available to perform the following three distinct
actions on the video pipeline:

■ Initialize
■ Stop
■ Manage and manipulate frame buffers

Initializing

The initialization function for the video pipeline is a high-level wrapper
function that provides a managed interface for system frame buffers. The
initialization function has the following prototype:

alt_video_display* alt_video_display_init(
char* sgdma_name,
int width,
int height,
int color_depth,
int buffer_location,
int descriptor_location,
int num_buffers);

The alt_video_display_init() function initializes the video
pipeline for operation. This function returns a pointer to an
alt_video_display structure if successful, or null if it fails. The C
source alt_video_display struct keeps track of all of the frame buffer
information, including the start addresses for all of the frame buffers. This
function accepts the following parameters:

■ sgdma_name: SGDMA instance connected up to the video pipeline
■ width: Width of display
■ height: Height of display
■ color_depth: Bits required to represent a pixel
■ buffer_location: Location of frame buffer
■ descriptor_location: Location of SGDMA descriptor memory
■ num_buffers: Total number of frame buffers to use

After this function completes successfully, all frame buffers in the system
are allocated and the video pipeline hardware is running. All allocated
frame buffers are filled with the pixel data corresponding to the color
black. You can overwrite these default parameters by modifying the
macros defined in the header file alt_video_display.h.

Buffer and SGDMA Descriptor Locations
The buffer_location and descriptor_location parameters can
specify either of the following two modes of operation:

18 Altera Corporation
Preliminary

Implementing an LCD Controller

■ Absolute address operation
■ Heap-based operation

In absolute address operation, the integer value you provide for both
parameters corresponds to the first address in a range of addresses. The
buffer_location parameter value is the initial address of the video
display buffer, and the descriptor_location parameter value is the
initial address of the descriptor memory.

In heap-based operation you do not specify an absolute address, but
instead rely on the C runtime library's heap-memory manager to provide
you with the memory required. The advantage of the heap-based
approach is that all frame buffer video memory is managed for you. The
limitation of this approach is the potential access contention when both
the SGDMA—the initial stage in the video pipeline—and the Nios II
processor require access to the heap memory, which could result in some
performance degradation for both peripherals.

To implement heap-based operation for either of the two parameters—
the buffer_location or the descriptor_location parameter—
you must pass the macro value ALT_VIDEO_DISPLAY_USE_HEAP to the
alt_video_display_init() function as the value for that parameter.

Stopping

Video pipeline operation is stopped through the use of the
alt_video_display_close() function, which has the following
prototype:

void alt_video_display_close(alt_video_display* display,
int buffer_location,
int descriptor_location);

The function accepts the following parameters:

■ display: Pointer to the alt_video_display structure
■ buffer_location: Pointer to the frame buffer
■ descriptor_location: Pointer to the SGDMA descriptors

1 Call the alt_video_display_close() function only after
you have completed using the video pipeline subsystem and do
not intend to display any more graphical information on the
LCD display.

Altera Corporation 19
Preliminary

Software Driver and Graphics Routines

Managing and Manipulating Frame Buffers

The video pipeline frame buffers are managed with the functions
alt_video_display_buffer_is_available() and
alt_video_display_register_written_buffer(). In addition,
the alt_video_display_clear_screen() function is provided to
clear the screen with a single function call.

Managing Frame Buffers
The frame buffers are managed through the
alt_video_display_buffer_is_available() and
alt_video_display_register_written_buffer() functions.
The former function acquires a free frame buffer to which to write, and
the latter function displays the frame buffer.

The alt_video_display_buffer_is_available() function has
the following prototype:

int alt_video_display_buffer_is_available(alt_video_display* display);

This function returns the next free frame buffer available for display. The
function returns a condition code of 0 if an empty buffer is found; any
other return value indicates failure. The function accepts the following
parameter:

■ display: This variable is a pointer to a data structure that keeps
track of all of the frame buffer information, including the start
addresses for all of the frame buffers.

The alt_video_display_register_written_buffer() function
has the following prototype:

int alt_video_display_register_written_buffer(alt_video_display* display);

You call this function to register your written frame buffer for display.
This function returns a condition code of 0 if the buffer is registered for
display successfully. Any other return value indicates that the buffer
registered for display is already being displayed by the video pipeline
component. This function accepts the following parameter:

■ display: This variable is a pointer to a data structure that keeps
track of all of the frame buffer information, including the start
addresses for all of the frame buffers. The function uses this
information to determine the actual frame buffer to display.

An important behavioral aspect of video-pipeline software is the
persistence of the displayed buffer contents. A buffer registered for
display with the

20 Altera Corporation
Preliminary

Implementing an LCD Controller

alt_video_display_register_written_buffer() function
continues to be displayed on the LCD screen until this function is called
again with a new buffer. Calling the
alt_video_display_register_written_buffer() function
repeatedly causes the registered buffers to display in FIFO ordering, and
the contents of the final buffer to remain on display.

Manipulating Frame Buffer Contents
The video pipeline API is intentionally limited to the single helper
function alt_video_display_clear_screen(), which clears the
screen. Your application is responsible for filling the frame buffer
memory with the pixel data you would like to display to the screen.

The alt_video_display_clear_screen() function has the
following prototype:

inline void alt_video_display_clear_screen(
alt_video_display* frame_buffer, char color);

The function accepts the following parameters:

■ frame_buffer: Pointer to the frame buffer to be cleared
■ color: The 8-bit value specifying the color representation for each of

red, green, and blue in the pixel color with which to fill the display

To display your own screen contents, you must manipulate the pixel data
in the frame buffer manually. In the case of the Altera-supplied reference
design, the pixels are encoded in BGR0 format. The pixels are arranged in
the frame buffer such that the first buffer location contains the
upper-leftmost pixel for the display. The LCD module rasterizes the
pixels on the LCD screen from left to right, line by line.

Graphics Libraries and Software
In your design, you may wish to use a graphics library or display routines
to simplify your system design. The NEEK includes several graphics
libraries that you can use. Altera provides a simple graphics library that
includes support for rendering shapes and displaying text on the screen.
Demonstrations of several third-party graphics libraries are also
provided.

For a list of all of the Altera-supplied graphics libraries and examples for
which source code is available, refer to “Appendix A. NEEK Design
Examples and Sources” on page 32.

Altera Corporation 21
Preliminary

Porting Guidelines

Porting
Guidelines

This section discusses porting the LCD design to your own hardware. To
plan how to port the LCD design, first consider the following aspects of
your design:

1. LCD touch-screen interface: Determine the peripherals required to
support the LCD module's touch screen—if present—and to
communicate with the controller hardware. Determine the
configuration of the video sync generator peripheral that is required
to support the LCD module's graphical data interface.

2. External device: Determine whether you need additional external
devices to support the video interface (such as an Altera MAX II
CPLD device).

3. Video frame buffer and SGMDA peripheral: Determine how many
frame buffers you wish your system to have, the required size of
these frame buffers, and their location in memory. You must
configure the SGDMA peripheral to support the memory type you
choose.

4. Video pipeline peripherals: Determine the peripherals you require
in the video pipeline to support the transport, sequencing, and
conversion of the pixel data from the video frame buffer(s) to the
video sync generator peripheral.

This section discusses these steps in detail.

In addition, you must plan to port your software routines, implement
LCD panel drivers, and use the video pipeline subsystem API to
implement your application.

This section of the document contains the following sections:

■ “LCD Panel Interface”
■ “Using the MAX II Device” on page 24
■ “Video Buffer Memory and SGDMA” on page 25
■ “Video Pipeline Peripherals” on page 27
■ “Software Routines” on page 31
■ “LCD Module Drivers” on page 31
■ “Video Pipeline Subsystem API” on page 31

LCD Panel Interface

Most LCD panels have at least two different classes of interfaces, a
data-plane interface for receiving graphical data, and a control-plane
interface for communicating with control registers or the touch panel.
You must consider these two classes of interfaces separately when

22 Altera Corporation
Preliminary

Implementing an LCD Controller

connecting them to the system. The Toppoly LCD module has three
interfaces, an LCD data interface (a data-plane interface), and the touch
screen and LCD controller interfaces (control-plane interfaces).

Touch Screen and LCD Controller Interfaces

In the case of the LCD display for the NEEK board, both the LCD panel's
control register and touch screen controller interfaces use serial
communication channels. The LCD panel's control register uses a
proprietary three-wire interface, and the touch screen controller interface
uses an SPI interface (provided through the AD7843 digitizer chip).

Serial interfaces are very popular for low-speed, control-plane
communication between integrated circuits. Your LCD module probably
has a serial configuration interface. SOPC Builder supports different
classes of serial interfaces easily, as shown in Table 11.

As shown in Table 11, SOPC Builder supports several different standard
and non-standard serial interfaces. When performance is not a concern,
almost any serial bus interface can be created using the Altera PIO
peripheral driven by Nios II processor software. The LCD controller
interface is implemented this way.

f For more information about available serial IP core offerings, refer to the
Altera IP Megastore.

LCD Data Interface

The LCD module's data interface is composed of the following two parts:

■ Physical interface—data pins that drive the display
■ Logical interface—the encoding of the pixel data—how red, green,

and blue color components are represented

Table 11. Supporting Different Classes of Serial Interfaces

Type Description Solution(s)

SPI Serial Peripheral Interface Altera Avalon SPI core

I2C Inter-Integrated Circuit Altera Avalon PIO core and software implementation

Third-party IP

Proprietary Any non-standard serial interface Altera Avalon PIO core and software implementation

Custom or third-party IP

http://www.altera.com/products/ip/iup/ipm-index.jsp

Altera Corporation 23
Preliminary

Porting Guidelines

To implement your LCD controller straightforwardly in SOPC Builder,
you must ensure that your LCD module's physical and logical interfaces
are compatible with that of the video sync generator component. Physical
interface compatibility requires that both the voltages and the pin
mappings of the two components are compatible. Altera recommends
that you design for compatibility between the LCD module’s data
interface and the FPGA in the following order:

1. “Voltage Compatibility”—part of the physical interface
2. “Physical Interface”—pin mapping
3. “Logical Interface”

Voltage Compatibility
Ensure that the LCD module's data voltage signaling requirements match
those of the FPGA. If an incompatibility exists, you must bridge the
difference with a voltage translation device such as a buffer IC or Max II
device.

The NEEK development kit uses the MAX3378E IC from Maxim
Integrated Products (www.maxim-ic.com) for direct voltage translation,
and the MAX II CPLD for indirect voltage translation. Voltage translators
are required because the Cyclone III device uses 2.5-V input and output
pins while many of the external peripherals to which it connects use 3.3-V
pins.

Physical Interface
Ensure that the LCD module's data physical interface is compatible with
the video sync generator peripheral's interface presented on the FPGA.
The video sync generator peripheral exposes a very specific set of pins to
support one class of LCD display. The only configurable aspect of the
video sync generator's physical interface is the multiplexing of the red,
green, and blue color channels to a single set of data lines.

If the video sync generator cannot interface to your LCD display's data
interface directly, you must use additional logic, either inside the FPGA
or externally through another device, to correct this problem.

 In the NEEK board design, the video sync generator's physical interface
does not match that of the LCD module. The video sync generator is
configured to multiplex color channels on a single 8-bit data bus, to
conserve FPGA pin resources. The MAX II device accepts the video sync
generator's 8-bit data and control signals and performs demultiplexing to
match the LCD module's data interface.

f For more information about the pins available on the video sync
generator peripheral, refer to the Video Sync Generator and Pixel Converter
Cores chapter in volume 5 of the Quartus II Handbook.

http://www.altera.com/literature/hb/nios2/qts_qii55006.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55006.pdf
http://www.maxim-ic.com

24 Altera Corporation
Preliminary

Implementing an LCD Controller

Logical Interface
The logical interface, in the context of the LCD controller's data interface,
is how the physical interface signals of the video sync generator
component are sequenced to transmit a video frame. In the NEEK board
design, the video sync generator peripheral control signals (HSYNC,
VSYNC, and others) output the pixel data (RED, GREEN, and BLUE bus
signals) in some defined sequence to transmit a video frame.

The video sync generator component provides parameterization options
to control the height, width, and control signals timings for the LCD
module.

1 The logical interface between the video sync generator and the
LCD module's data interface may or may not be compatible. In
some cases, the interface mismatch can be handled with glue
logic implemented in the FPGA or through an external device
such as a MAX II CPLD. For basic information on how to create
logical interface glue logic, refer to “Using the MAX II Device”.

f For more information about the configuration options provided by the
video sync generator peripheral, refer to the Video Sync Generator and
Pixel Converter Cores chapter in volume 5 of the Quartus II Handbook.

Using the MAX II Device

If you use a pin-limited FPGA device for your application, you can use an
additional programmable logic device to perform multiplexing and
demultiplexing operations on the signals.

The NEEK board design uses this strategy to bridge both the physical and
logical interfaces of the LCD module and the video sync generator
component.

f For more information about the multiplexing and demultiplexing
operations on the NEEK board, refer to the Nios II Standard Hardware for
the Embedded Evaluation Board chapter in the Nios II Embedded Evaluation
Kit, Cyclone III Edition User Guide.

The design files for the MAX II design are available on the NEEK
installation CD. For a list of the design examples and software source files
included in this CD, refer to “Appendix A. NEEK Design Examples and
Sources” on page 32.

http://www.altera.com/literature/ug/niosii_eval_user_guide.pdf
http://www.altera.com/literature/ug/niosii_eval_user_guide.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55006.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55006.pdf

Altera Corporation 25
Preliminary

Porting Guidelines

Video Buffer Memory and SGDMA

The next step in porting the LCD controller is to determine the location of
your video buffer in physical memory, and the best way to access this
memory with the SGDMA peripheral. Based on your LCD module’s
display parameters, you must determine the following parameters for
your video buffer:

■ Size required for each frame buffer
■ Total number of frame buffers to use
■ Physical memory location of the frame buffers
■ How the SGDMA should access the frame buffers

Size

The size of your video buffer depends on the color depth of the pixels, the
number of pixels per frame, and the number of frame buffers you wish to
use.

The color depth of the pixels is the number of bits used to encode a single
pixel. In the case of the 4.3" Toppoly TD043MTEA1 display, the color
depth is 24 bits per pixel, with 8 bits assigned to each of the colors red,
green, and blue. Aligning data units on word boundaries is most efficient
for the processor and the SGDMA. Therefore, consider using 32 bits per
pixel, leaving the extra 8 bits unused.

The frame buffer size required to display a single frame of LCD data is
determined by the following formula, in which frame buffer size is
expressed in bytes, and frame height and frame width are expressed in
numbers of pixels:

Frame buffer size = (bits per pixel/8) × frame height × frame width

The total video buffer memory size also depends on the number of frame
buffers you wish to have in your system. As described in “Video Pipeline
Subsystem API” on page 16, you can use multiple frame buffers to
sequence data to the display. The total video buffer memory size is
determined by the following formula, in which the video buffer memory
size and frame buffer size are expressed in bytes:

Video buffer memory size = frame buffer size × number of frame buffers

For display data integrity, ensure that the memory peripheral in which
your video buffer is located is at least as large as the video buffer memory
size derived from the equations.

26 Altera Corporation
Preliminary

Implementing an LCD Controller

Location

After you determine the total video buffer size, you must select the video
buffer location in physical memory. Select a memory in your system that
can support the bandwidth required by your LCD module's interface. In
SOPC Builder, you must connect the SGDMA peripheral M_READ and the
Nios II processor's DATA_MASTER ports to the memory component, as
shown in Figure 1 on page 2.

If you expect several peripherals in the system to share the video buffer
memory, you may wish to tune the arbitration share mechanism for the
memory peripheral that holds the video buffer. The arbitration shares
parameter is configured in SOPC Builder. This parameter specifies how
many transactions a master can transact with a slave before relinquishing
control to another master. To ensure that the video pipeline subsystem
can display pixel data without interruption, you must assign an adequate
number of arbitration shares to the SGDMA peripheral M_READ master
port that is connected to the video buffer memory peripheral.

All of the NEEK reference designs locate the video buffer in the same
memory peripheral as the Nios II processor's execution memory. This
sharing requires a memory component with adequate bandwidth, and
careful tuning of the Nios II processor and SGDMA arbitration shares to
the memory.

f For more information about arbitration shares, refer to the System
Interconnect Fabric for Memory-Mapped Interfaces chapter in volume 4 of
the Quartus II Handbook and the Avalon Memory-Mapped Design
Optimizations chapter in the Embedded Design Handbook.

SGDMA Access Mode and Parameters

The SGDMA peripheral moves pixel data from the video frame buffer to
the rest of the video pipeline. You must determine the SGDMA
peripheral's data width and memory location to store the SGDMA
descriptors.

For more information about the SGDMA peripheral and its role in the
NEEK LCD controller, refer to “NEEK LCD Controller Hardware
Components” on page 2.

Data Width

For efficiency, the SGDMA peripheral should have a data width equal to
the frame buffer memory peripheral's data width. This match ensures
that the SGDMA peripheral reads the maximum possible amount of data

http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf

Altera Corporation 27
Preliminary

Porting Guidelines

in each bus transaction. In the NEEK example designs, both the DDR
SDRAM component that holds the frame buffer, and the SGDMA
peripheral, have a width of 64 bits.

Descriptor Location

The SGDMA peripheral performs data transfers by accessing a list of
descriptors from memory. The Nios II processor creates the descriptors,
and the SGDMA peripheral's descriptor_read and
descriptor_write master ports operate on them.

You must decide the location of the descriptors in memory. The memory
you select must accommodate the total number of descriptors for all
frame buffers in the system. The maximum required size is determined by
the following formulas, in which frame buffer size is expressed in bytes:

Max bytes per descriptor = 65280
Descriptor size = 32 bytes
Descriptors per frame = frame buffer size / max bytes per descriptor,

rounded up to the nearest whole number
Total descriptor memory size =

descriptors per frame × number of frame buffers × descriptor size

In the NEEK reference designs, the SGDMA peripheral's descriptors are
located in the same memory peripheral as the Nios II processor's
execution memory. This peripheral sharing does not impact system
performance, because the descriptors do not require continuous access by
the SGDMA peripheral for operation.

f For more information about the SGDMA peripheral, refer to the
Scatter-Gather DMA Controller Core chapter in volume 5 of the Quartus II
Handbook.

Video Pipeline Peripherals

After you configure the video sync generator peripheral for your LCD
module, and configure the SGDMA peripheral and frame buffer, you
have completed the input and output portions of the LCD controller
subsystem. The next step in the configuration process is to manage—
buffer and convert—the flow of the pixel data from the frame buffer to the
video sync generator peripheral.

The NEEK LCD controller reference design, shown in Figure 1 on page 2,
includes a series of Avalon-ST hardware blocks to manage the pixel data
flow. Each hardware block performs a specific task on a unit of data
before passing it to the following hardware block.

http://www.altera.com/literature/hb/nios2/qts_qii55003.pdf

28 Altera Corporation
Preliminary

Implementing an LCD Controller

The SGDMA and video sync generator peripherals are the initial and final
stages, respectively, of the NEEK LCD controller’s video pipeline
subsystem. For more information about the SGDMA in the NEEK video
pipeline subsystem, refer to “Scatter-Gather DMA (SGDMA) Controller
Peripheral” on page 11. For more information about porting the SGDMA
for your own design, refer to “Video Buffer Memory and SGDMA” on
page 25. For more information about the video sync generator peripheral
in the video pipeline subsystem, refer to “Video Sync Generator
Peripheral” on page 5. For more information about porting the video sync
generator peripheral for your own design, refer to “LCD Data Interface”
on page 22.

Your LCD subsystem may have different requirements than the NEEK
LCD reference design. However, your system probably requires that you
perform one or more management functions on the data. The following
sections describe the Avalon-ST hardware blocks that you can use to
manage your pixel data flow.

Avalon-ST Timing Adapter

The Avalon-ST timing adapter peripheral is used as an adapter between
two pipelined peripherals that have different ready latency values. When
inserted between the upstream peripheral's output interface and the
downstream peripheral's input interface, the timing adapter ensures a
smooth flow of data between these peripherals.

SOPC Builder has a built-in facility to check whether any two peripherals
in an Avalon-ST pipeline require timing adapters. If so, the tool warns
you of this error condition. If you add a timing adapter between two
peripherals, ensure that the timing latency values for the upstream and
downstream peripherals are correct, as determined from the peripheral
datasheet. Also, verify that the timing adapter’s Bits per Symbol and
Symbols per Beat values for the peripherals you are connecting are
consistent with their protocols and functions.

For information about how the Avalon-ST timing adapter is used in the
NEEK LCD controller’s video pipeline subsystem, refer to “Avalon-ST
Timing Adapter Peripheral (FIFO-to-Data Format Adapter)” on page 9
and “Avalon-ST Timing Adapter Peripheral (SGDMA to FIFO Memory)”
on page 10.

f For more information about the Avalon-ST timing adapter, refer to the
Avalon Streaming Interconnect Components chapter in volume 4 of the
Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii54021.pdf

Altera Corporation 29
Preliminary

Porting Guidelines

On-Chip FIFO Memory

The on-chip FIFO memory peripheral buffers pixel data between the
SGDMA peripheral and the rest of the video pipeline. In the NEEK LCD
controller’s video pipeline subsystem, the on-chip FIFO memory
peripheral is loaded with data by the SGDMA peripheral.

You should incorporate an on-chip FIFO memory peripheral in your
video pipeline because it can prevent data underflow. Data underflow
can occur if the SGDMA controller is temporarily prevented from
accessing the video frame buffer (by another master accessing the frame
buffer memory, latency due to bank switching in SDRAM, or other access
contention issues). The FIFO memory helps prevent a data underflow
condition by acting as a buffer, supplying video data to the rest of the
video pipeline when the SGDMA cannot access new video data from the
frame buffer memory.

When adding the on-chip FIFO memory peripheral in your system, you
must ensure that the Avalon-ST port settings for Bits per Symbol and
Symbols per Beat are set correctly, as follows:

SGDMA width = Bits per Symbol × Symbols per Beat

For most systems, the default value for Bits per Symbol is 8. Most
memory peripherals have data widths that are multiples of 8 bits, and the
SGDMA peripheral is designed to operate with this constraint. Therefore,
any data passed to the on-chip FIFO memory has a multiple of 8 bits.

For information about how the on-chip FIFO memory peripheral is used
in the NEEK LCD controller’s video pipeline subsystem, refer to “FIFO
Memory Peripheral” on page 9.

f For more information about the Avalon-ST on-chip FIFO memory
peripheral, refer to the On-Chip FIFO Memory Core chapter in volume 5 of
the Quartus II Handbook.

Avalon-ST Data Format Adapter

The Avalon-ST data format adapter peripheral is typically used to modify
the width of data units between different Avalon-ST peripherals. In the
NEEK LCD controller reference design, two Avalon-ST data format
adapters are included in the video pipeline subsystem. One Avalon-ST
data format adapter peripheral converts a single 64- bit unit of data (8
data units × 8 bits) into two sequential 32- bit units of data (4 data units ×
8 bits). The other instance converts a single 24-bit unit of data (3 data units
× 8 bits) into three sequential 8-bit units of data (1 data unit × 8 bits).

http://www.altera.com/literature/hb/nios2/qts_qii55002.pdf

30 Altera Corporation
Preliminary

Implementing an LCD Controller

Plan to incorporate an Avalon-ST data format adapter in your video
pipeline subsystem if the data output width of an Avalon-ST peripheral
does not match the input width on the following Avalon-ST peripheral in
the pipeline.

For information about how the Avalon-ST data format peripheral is used
in the NEEK LCD controller’s video pipeline subsystem, refer to “Avalon-
ST Data Format Adapter Peripheral (64 Bits to 32 Bits)” on page 8 and
“Avalon-ST Data Format Adapter Peripheral (24 Bits to 8 Bits)” on page 7.

f For more information about the Avalon-ST data format adapter
peripheral, refer to the Avalon Streaming Interconnect Components chapter
in volume 4 of the Quartus II Handbook.

Avalon-ST Pixel Converter

In the NEEK LCD controller video pipeline, the Avalon-ST pixel
converter peripheral converts the pixel data in the pipeline from the
32-bit format to the 24-bit format that the NEEK LCD data interface
requires.

You may need to include an Avalon-ST pixel converter in your design if
your LCD module's pixel data format does not match the pixel data
format in your video frame buffer.

Because the pixel data format required by LCD display modules varies
widely, Altera provides only a minimal configuration GUI for the
Avalon-ST pixel converter. To configure the Avalon-ST pixel converter
component fully, you must edit an SOPC Builder-generated Verilog HDL
file called altera_avalon_pixel_converter.v to specify the peripheral’s
pixel conversion behavior in your system.

For more information about how the Avalon-ST pixel converter
peripheral is used in the NEEK LCD controller’s video pipeline
subsystem, refer to “Avalon-ST Pixel Converter Peripheral (BGR0 -->
BGR)” on page 8.

f For more information about creating a customized version of the
Avalon-ST pixel converter peripheral, refer to the Video Pipeline Data Flow
appendix in the Nios II Embedded Evaluation Kit, Cyclone III Edition User
Guide.

http://www.altera.com/literature/ug/niosii_eval_user_guide.pdf
http://www.altera.com/literature/ug/niosii_eval_user_guide.pdf
http://www.altera.com/literature/hb/qts/qts_qii54021.pdf

Altera Corporation 31
Preliminary

Porting Guidelines

Software Routines

Most of the software drivers that control the LCD subsystem are portable
to diverse designs. This section provides porting notes for the software
drivers. However, the best source of detailed information is the source
files themselves. These files contain extensive comments describing the
implementation, use, and porting of the functions.

LCD Module Drivers

The LCD controller and touch screen driver source code may not be
directly portable to your LCD module, because many manufacturers use
their own proprietary interfaces to the LCD controller and touch screen
components on their LCD modules.

The NEEK LCD module's controller uses a proprietary three-wire
interface for communication, and the touch-screen controller uses an SPI
interface. The following sections briefly describe the device driver source
code files.

LCD Panel Controller Sources

The LCD panel controller device driver implementation requires three
lines from a PIO peripheral. The lines are used to implement a three-wire
serial interface. Because this type of interface occurs frequently, the NEEK
LCD controller source code may be functional in your design with only
minor modifications.

For a list of the source files that implement the NEEK LCD controller
device driver, refer to Table 13 on page 33.

Touch Screen Sources

The touch screen device driver implementation requires a HAL system
clock timer alarm, a PIO line connected to the pen_down signal, and an
IRQ-enabled SPI peripheral connected to the AD7843 digitizer chip. For a
list of the source files that implement the NEEK LCD touch screen
interface device driver, refer to Table 13 on page 33.

Video Pipeline Subsystem API

The video pipeline subsystem API should be portable to your system
without modifications. For a list of the source files that implement the
NEEK video pipeline subsystem API, refer to Table 13 on page 33.

32 Altera Corporation
Preliminary

Implementing an LCD Controller

When porting this API, you should be aware of the following settings in
the alt_video_display.h file:

■ ALT_VIDEO_DISPLAY_MAX_BUFFERS: This value must be greater
than or equal to the number of buffers you intend to use.

■ ALT_VIDEO_DISPLAY_BLACK_8: This macro is the 8-bit repeating
color value to set the initial frame buffers to the color black.The
current code assumes you repeat this value for each of the red, green,
and blue components of the pixel value, to display the color black. In
the NEEK LCD display, a pixel is black when you write the value 0
to each byte of the RGB color value.

You may need to change this value for your particular LCD module.

Conclusion LCD graphics modules are a popular user interface device in embedded
systems. As the capabilities of LCD modules increase—additional pixels,
larger color depth, and so on—designers need to develop more advanced
LCD controllers. By implementing the LCD controller on FPGAs, you can
quickly and easily accommodate the needs of new LCD modules.

Appendix A.
NEEK Design
Examples and
Sources

The NEEK example designs include all of the hardware and source code
files for implementing the LCD controller. The design examples and
corresponding source code files are listed in Table 12 and Table 13.

In Table 12, a checkmark indicates the code base listed in the current row
is used in the example design listed in the current column. A dash
indicates the code is not used in the example design.

Table 12. NEEK Example Designs and Software Source Locations (Part 1 of 2)

Role
(Directory Name)

Application Selector
Utility

Mandelbrot C2H
Application

Picture Viewer
Application

Web Server
Application

LCD Touch Panel
(alt_touchscreen)

v v v —

LCD Controller
(alt_tpo_lcd)

v v v —

Video Pipeline
(alt_video_display)

v v v v

Graphics Libraries
(graphics_lib)

v — v v

Fonts (fonts) v — — v

Gimp support
(gimp_bmp)

v — — —

Altera Corporation 33
Preliminary

Appendix A. NEEK Design Examples and Sources

1 The design examples are available on the NEEK installation CD.
By default, they are installed in the directory <Installation
Path>/kits/cycloneIII_3c25_niosII_eval/examples. Each design
example in Table 12 has its own <example> directory under this
directory. The software source files for each design example are
located in the directory <example>/software_examples/app.

Table 13 lists the source code files for each of the peripherals in the NEEK
LCD controller subsystem.

Bitmap Library (bmp) — — v —

JPEG Library (jpeg) — — v —

Table 12. NEEK Example Designs and Software Source Locations (Part 2 of 2)

Role
(Directory Name)

Application Selector
Utility

Mandelbrot C2H
Application

Picture Viewer
Application

Web Server
Application

Table 13. NEEK Component Software Source Files (Part 1 of 2)

Role (directory name)
/Source File Description

LCD Touch Panel
(alt_touchscreen)

Support for LCD touch panel

alt_touchscreen.h Header file to support touch screen interface for LCD panel

alt_touchscreen.c Touch screen interface for LCD panel

LCD Controller (alt_tpo_lcd) Support for communicating with LCD controller

alt_tpo_lcd.h Header file to support LCD controller interface for LCD panel

alt_tpo_lcd.c LCD controller interface for LCD panel

alt_tpo_lcd_console.c Console debug tool for LCD panel drivers

Video Pipeline
(alt_video_display)

Frame buffer management for video pipeline

alt_video_display.h Header file to support video pipeline components

alt_video_display.c Video pipeline driver

Graphics Libraries
(graphics_lib)

Altera simple graphics library

simple_graphics.h Header file to support Altera simple graphics routines

simple_graphics.c General purpose graphics routines

simple_text.c Support for displaying text

34 Altera Corporation
Preliminary

Implementing an LCD Controller

Referenced
Documents

This application note references the following documents:

■ Avalon Interface Specifications
■ Avalon Memory-Mapped Design Optimizations chapter in the Embedded

Design Handbook
■ Avalon Streaming Interconnect Components chapter in volume 4 of the

Quartus II Handbook
■ Nios II Embedded Evaluation Kit, Cyclone III Edition User Guide
■ On-Chip FIFO Memory Core chapter in volume 5 of the Quartus II

Handbook
■ Scatter-Gather DMA Controller Core chapter in volume 5 of the

Quartus II Handbook
■ System Interconnect Fabric for Memory-Mapped Interfaces chapter in

volume 4 of the Quartus II Handbook
■ System Interconnect Fabric for Streaming Interfaces chapter in volume 4

of the Quartus II Handbook
■ Video Sync Generator and Pixel Converter Cores chapter in volume 5 of

the Quartus II Handbook

Document
Revision History

Table 14 shows the revision history for this application note.

Fonts (fonts)

fonts.h Header file to support font display

tahomabold_20.c Source for Tahoma bold 20pt font

tahomabold_32.c Source Tahoma bold 20pt font

Gimp support (gimp_bmp) Used to support GIMP generated bitmaps

gimp_bmp.h Header file to support Altera simple graphics library

gimp_bmp.c Source for supporting rendering of GIMP generated bitmaps

Table 13. NEEK Component Software Source Files (Part 2 of 2)

Role (directory name)
/Source File Description

Table 14. Document Revision History

Date and Document
Version Changes Made Summary of Changes

May 2008
v1.0

Initial release. —

Nios II Embedded Evaluation Kit, Cyclone III Edition User�s Guide
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii54019.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55006.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55002.pdf
http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/hb/qts/qts_qii54021.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55003.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf

Altera Corporation 35
Preliminary

101 Innovation Drive
San Jose, CA 95134
www.altera.com
Technical Support:
www.altera.com/support/

Copyright © 2008 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company,
the stylized Altera logo, specific device designations, and all other words and logos that are identified as
trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera
Corporation in the U.S. and other countries. All other product or service names are the property of their re-
spective holders. Altera products are protected under numerous U.S. and foreign patents and pending
applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products
to current specifications in accordance with Altera's standard warranty, but reserves the right to make chang-
es to any products and services at any time without notice. Altera assumes no responsibility or liability
arising out of the application or use of any information, product, or service described
herein except as expressly agreed to in writing by Altera Corporation. Altera customers
are advised to obtain the latest version of device specifications before relying on any pub-
lished information and before placing orders for products or services.

Document Revision History

36 Altera Corporation
Preliminary

Implementing an LCD Controller

	Implementing an LCD Controller
	Introduction
	Prerequisites
	NEEK LCD Controller Hardware Components
	Touch Screen LCD Module
	LCD Data Interface
	Touch Screen Interface
	LCD Controller Interface

	MAX II Device
	Video Pipeline
	Video Sync Generator Peripheral
	Avalon-ST Data Format Adapter Peripheral (24 Bits to 8 Bits)
	Avalon-ST Pixel Converter Peripheral (BGR0 --> BGR)
	Avalon-ST Data Format Adapter Peripheral (64 Bits to 32 Bits)
	Avalon-ST Timing Adapter Peripheral (FIFO-to-Data Format Adapter)
	FIFO Memory Peripheral
	Avalon-ST Timing Adapter Peripheral (SGDMA to FIFO Memory)
	Scatter-Gather DMA (SGDMA) Controller Peripheral

	Software Driver and Graphics Routines
	Touch Screen Software API
	Initializing
	Calibrating the Screen Coordinates
	Operating
	Querying
	Callback Methodology

	Stopping

	LCD Module Software API
	Initializing
	Accessing the Configuration Registers

	Video Pipeline Subsystem API
	Initializing
	Buffer and SGDMA Descriptor Locations

	Stopping
	Managing and Manipulating Frame Buffers
	Managing Frame Buffers
	Manipulating Frame Buffer Contents
	Graphics Libraries and Software

	Porting Guidelines
	LCD Panel Interface
	Touch Screen and LCD Controller Interfaces
	LCD Data Interface
	Voltage Compatibility
	Physical Interface
	Logical Interface

	Using the MAX II Device
	Video Buffer Memory and SGDMA
	Size
	Location
	SGDMA Access Mode and Parameters
	Data Width
	Descriptor Location

	Video Pipeline Peripherals
	Avalon-ST Timing Adapter
	On-Chip FIFO Memory
	Avalon-ST Data Format Adapter
	Avalon-ST Pixel Converter

	Software Routines
	LCD Module Drivers
	LCD Panel Controller Sources
	Touch Screen Sources

	Video Pipeline Subsystem API

	Conclusion
	Appendix A. NEEK Design Examples and Sources
	Referenced Documents
	Document Revision History

