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1. Introduction
Avalon® interfaces simplify system design by allowing you to easily 
connect components in an FPGA. The Avalon interface family defines 
interfaces for use in both high-speed streaming and memory-mapped 
applications. These standard interfaces are designed into the components 
available in the system-on-a-programmable-chip (SOPC) environment 
and the MegaWizard Plug-In Manager. You can also use these 
standardized interfaces in your custom components.

This specification defines all of the Avalon interfaces. After reading it, 
you should understand which interfaces are appropriate for your 
components and which signal types are used for which desired 
behaviors. There are six different interface types: 

■ Avalon Memory Mapped Interface (Avalon-MM)—an address-based 
read/write interface typical of master–slave connections

■ Avalon Streaming Interface (Avalon-ST)—an interface that supports 
the unidirectional flow of data, including multiplexed streams, 
packets, and DSP data

■ Avalon Memory Mapped Tristate Interface—an address-based 
read/write interface to support off-chip peripherals. Multiple 
peripherals can share data and address buses to reduce the pincount 
of an FPGA and the number of traces on the PCB 

■ Avalon Clock—an interface that drives or receives clock and reset 
signals to synchronize interfaces and provide reset connectivity 

■ Avalon Interrupt—an interface that allows components to signal 
events to other components 

■ Avalon Conduit—an interface that allows signals to be exported out 
at the top level of an SOPC Builder system where they can be 
connected to other modules of the design or FPGA pins 

A single component can include any number of these interfaces and can 
also include multiple instances of the same interface type. For example, in 
Figure 1.1, the Ethernet Controller includes four different interface types: 
Avalon-MM, Avalon-ST, clock, and conduit.
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1 This specification supersedes the separate specifications for the 
Avalon-MM Interface and the Avalon-ST Interfaces. 

Figures 1.1 and 1.2 illustrate the use of each of the Avalon interfaces. 

Figure 1.1. Avalon Interfaces in a System Design with Scatter Gather DMA Controller and Nios II Processor
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In Figure 1.1, the Nios® II processor accesses the control and status 
registers of on-chip components using an Avalon-MM interface. The 
scatter gather DMAs send and receive data using Avalon-ST interfaces. 
Four components include interrupt interfaces that are serviced by 
software running on the Nios II processor. A PLL accepts a clock via a 
clock sink interface and provides two clock sources. Finally, two 
components include conduit interfaces to access off-chip resources.

Figure 1.2. Avalon Interfaces in a System Design with PCI Express Endpoint and External Processor
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Avalon Properties and Parameters
In Figure 1.2, an external processor accesses the control and status 
registers of on-chip components via an external bus bridge with an 
Avalon-MM interface. The PCI Express root port controls the printed 
circuit board and the other components of the FPGA by driving an 
on-chip PCI Express endpoint with an Avalon-MM master interface. Five 
components include interrupts that are handled by the external processor. 
As in Figure 1.1, a PLL accepts a reference clock via a clock sink interface 
and provides two clock sources. Finally, the flash and SRAM memories 
use an Avalon-MM tristate interface to share FPGA pins.

1.1. Avalon 
Properties and 
Parameters

Avalon interfaces use properties to describe their behavior. For example, 
the setupTime and holdTime properties of an Avalon-MM tristate 
interface specify the timing of external memory devices. The 
maxChannel property of Avalon-ST interfaces allows you to state the 
number of channels supported by the interface. The specification for each 
interface type defines all of its properties and specifies the default values. 
For a complete list of properties for each interface type, refer to the 
following sections: 

■ For Avalon-MM properties, refer to: “Slave Interface Properties” on 
page 3–5 and “Master Interface Properties” on page 3–23

■ For Avalon-MM tristate properties, refer to: “Tristate Slave 
Properties” on page 5–6 

■ For Avalon-ST properties, refer to: “Avalon-ST Interface Properties” 
on page 6–5

■ For the properties of interrupts, refer to: “Interrupt Sender 
Properties” on page 4–2 and “Interrupt Receiver Properties” on 
page 4–3

1.2. Signal 
Types

Each of the Avalon interfaces defines a number of signal types and their 
behavior. Many signal types are optional, allowing component designers 
the flexibility to select only the signal types necessary. For example, the 
Avalon-MM interface includes optional beginbursttransfer and 
burstcount signal types used only for components that support 
bursting. The Avalon-ST interface includes the optional 
startofpacket and endofpacket signal types for interfaces that 
support packets. 

With the exception of conduit interfaces, each interface may only include 
one signal of each signal type. Active-low signals are permitted for many 
signal types. Active-high signals are generally used in this document.
1–4 Altera Corporation
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1.3. Interface 
Timing

Subsequent chapters of this document include timing information that 
describes transfers for individual interface types interfaces. There is no 
guaranteed performance for any of these interfaces; actual performance 
depends on many factors, including component design and system 
implementation.

Most Avalon interfaces must not be edge sensitive to signals other than 
the clock, because the signals may transition multiple times before they 
stabilize. The exact timing of signals between clock edges varies 
depending upon the characteristics of the selected Altera device. 

1.4. Related 
Documents

You can find additional information on related topics in the following 
documents:

■ Quartus II Handbook Volume 4: SOPC Builder 

This volume includes information on memory-mapped and 
streaming interfaces, Tcl scripting, designing memory sub-systems, 
and interconnect components.

■ Quartus II Handbook Volume 5: Embedded Peripherals

This volume includes documentation for the many embedded 
peripherals that are available in SOPC Builder. 

■ Building a Component Interface with Tcl Scripting Commands. 

This is a reference for a programmatic interface that you can use to 
define SOPC Builder components. 
ltera Corporation 1–5
ctober 2008 Avalon Interface Specifications
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2. Clock Interfaces
Clock interfaces are used to define the clock and resets used by a 
component. Typical components have one or more clock inputs; they 
rarely have clock outputs. A phase locked loop (PLL) is an example of a 
component that has both a clock input and clock outputs. Figure 2.1 is a 
simplified illustration showing the most important inputs and outputs of 
a PLL component.

Figure 2.1. PLL Core Clock Outputs and Inputs
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Clock Output (Source)
2.1.1. Properties

There are no properties for the clock sink interface.

2.1.2. Signal Types

Table 2.1 lists the clock input signals.

2.1.3. associatedClock Interfaces 

All synchronous interfaces have an associatedClock property that 
specifies which clock input on the component is used as a 
synchronization reference for the interface. This property is illustrated in 
Figure 2.2.

Figure 2.2. associatedClock Property

2.2. Clock 
Output (Source)

A clock source interface, or clock output interface, is an interface that 
drives a clock signal out of a component. Clock output interfaces cannot 
have reset signals. 

Table 2.1. Clock Input Signal Types

Signal Type Width Direction Required Description

clk 1 Input No A clock signal. Provides synchronization for internal 
logic and for other interfaces.

reset
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2.2.1. Properties

There are no properties for clock source interfaces. 

2.2.2. Signal Types

Table 2.2 lists the clock source signals.

Table 2.2. Clock Source Signal Types

Signal Type Width Direction Required Description

clk 1 Output Yes An output clock signal.
ltera Corporation 2–3
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3. Avalon Memory-Mapped
Interfaces
3.1.Introduction Avalon Memory-Mapped (Avalon-MM) interfaces are used for 
read/write interfaces on master and slave components in a memory-
mapped system. These components include microprocessors, memories, 
UARTs, and timers, and have master and slave interfaces connected by a 
system interconnect fabric. Avalon-MM interfaces can describe a wide 
variety of components, from an SRAM which supports simple, fixed-
cycle read/write transfers to a more complex, pipelined interface capable 
of burst transfers. Figure 3.1 shows a typical system, highlighting the 
Avalon-MM slave interface connection to the system interconnect fabric. 

Figure 3.1. Focus on Avalon-MM Slave Transfers
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Introduction
Features of the Avalon-MM interface include: 

■ Definition of a point to point connection between a component and 
an interconnect fabric

■ Freedom to implement only the required subset of signals 
■ Variable data widths: 8, 16, 32, 64, . . . 1024
■ Automatic interconnect generation

Avalon-MM components typically include only the signals required for 
the component logic. The 16-bit general-purpose I/O peripheral shown 
in Figure 3.2 only responds to write requests, therefore it only includes 
the slave signals required for write transfers. 

Figure 3.2. Example Slave Component
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3.2.Slaves Table 3.1 lists the signal types that constitute the Avalon-MM slave. This 
specification does not require all signals to exist in an Avalon-MM slave. 
The minimum requirements are readdata for a read-only interface or 
writedata and write for a write-only interface. 

Table 3.1.  Avalon-MM Slave Port Signals (1) (Part 1 of 3)

Signal Type Width Dir Req’d Description

Fundamental Signals

read
read_n

1 In No Asserted to indicate a read transfer. If present, 
readdata is required. 

write
write_n

1 In No Asserted to indicate a write transfer. If present, 
writedata is required.

address 1-32 In No Specifies an offset into the slave address space. Each 
slave address value selects a word of slave data. For 
example, address= 0 selects the first <slave data width> 
bits of slave data; address=1 selects the second <slave 
data width> bits of slave data.

readdata 8,16,32,

64,

128,256,

512

1024

Out No The readdata provided by the slave in response to a read 
transfer. 

writedata 8,16,32,

64,

128,256,

512,102

4

In No Data from the system interconnect fabric for write transfers. 
The width must be the same as the width of readdata if 
both are present. 
ltera Corporation 3–3
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Slaves
byteenable
byteenable_n

1,2,4,8, 
16, 32, 
64, 128

In No Enables specific byte lane(s) during transfers.
Each bit in byteenable corresponds to a byte in 
writedata and readdata. During writes, byteenables 
specify which bytes are being written to; other bytes should 
be ignored by the slave. During reads, byteenables 
indicates which bytes the master is reading. Slaves that 
simply return readdata with no side effects are free to 
ignore byteenables during reads.
When more than one bit is asserted, all asserted lanes are 
adjacent. The number of adjacent lines must be a power of 
two, and the specified bytes must be aligned on an address 
boundary for the size of the data. The following values are 
legal for a 32-bit slave:

1111 write full 32 bits
0011 writes lower 2 bytes
1100 writes upper 2 bytes
0001 writes byte 0 only
0010 write byte 1 only
0100 write byte 2 only
1000 write byte 3 only

begintransfer 1 In No Asserted by the system interconnect fabric for the first cycle 
of each transfer regardless of waitrequest and other 
signals.

Wait-State Signals

waitrequest
waitrequest_n

1 Out No Asserted by the slave when it is unable to respond to a 
read or write request. When asserted, the control 
signals to the slave, with the exception of 
begintransfer and beginbursttransfer, remain 
constant, as is illustrated by Figure 3.7 on page 3–15. An 
Avalon-MM slave may assert waitrequest during idle 
cycles. An Avalon-MM master may initiate a transaction 
when waitrequest is asserted. The design of 
Avalon-MM slaves must take this possibility into account.

Pipeline Signals

readdatavalid
readdatavalid_n

1 Out No Used for variable-latency, pipelined read transfers. 
Asserted by the slave to indicate that the readdata signal 
contains valid data in response to a previous read request. 
A slave with readdatavalid must assert this signal for 
one cycle for each read access it has received. There 
must be at least one cycle of latency between acceptance 
of the read and assertion of readdatavalid. 
Figure 3.5 on page 3–12 illustrates the readdatavalid 
signal.

Table 3.1.  Avalon-MM Slave Port Signals (1) (Part 2 of 3)

Signal Type Width Dir Req’d Description
3–4 Altera Corporation
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Burst Signals

burstcount 1-32 In No During the first cycle of a burst, burstcount indicates the 
number of transfers the burst contains. A burstcount 
port of width N can encode a max burst of size 2(N-1). The 
burstcount signal remains constant for entire transfer. 

beginbursttransfer 1 In No Asserted for the first cycle of a burst to indicate when a 
burst transfer is starting. This signal is deasserted after one 
cycle regardless of the value of waitrequest. Refer to 
Figure 3.3 for an example of its use. 

Flow Control Signals

readyfordata 1 Out No Used for transfers with flow control. Indicates that the 
peripheral is ready for a write transfer.

dataavailable 1 Out No Used for transfers with flow control. Indicates that the 
peripheral is ready for a read transfer.

Reset Signals

resetrequest
resetrequest_n

1 Out No Allows the peripheral to reset the entire Avalon-MM system. 
All reset signals are ORed together to generate the system 
reset signal.

Notes to Table 3.1:
(1) All Avalon signals are active high. Avalon signals that can also be asserted low list a _n versions of the signal in the 

Signal Type column. 

Table 3.1.  Avalon-MM Slave Port Signals (1) (Part 3 of 3)

Signal Type Width Dir Req’d Description
ltera Corporation 3–5
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3.3.Slave 
Interface 
Properties

Table 3–2 describes the interface properties for an Avalon-MM slave 
interface. 

Table 3–2. Avalon-MM Slave Interface Properties (Part 1 of 2)

Name Default 
Value

Legal 
Values Description

readLatency 0 0–63 Read latency for fixed-latency slaves. Not 
used on interfaces that include the 
readdatavalid signal. Refer to Figure 5.5 
on page 5–12 for an timing diagram that uses 
this property.

writeWaitTime 0 0–1000 
cycles

For slave interfaces that don’t use the 
waitrequest signal, writeWaitTime 
indicates the number of cycles before the 
slave accepts a write. The timing is as if the 
slave asserted waitrequest for 
writeWaitTime cycles. Refer to Figure 3.4 
on page 3–10 for a timing diagram that uses 
this property.

readWaitTime 1 0–1000 
cycles

For slave interfaces that don’t use the 
waitrequest signal, readWaitTime 
indicates the number of cycles before the 
slave responds to a read. The timing is as if 
the slave asserted waitrequest for 
readWaitTime cycles.

maximumPendingRead
Transactions

1 (1) 1–64 The maximum number of pending reads 
which can be queued up by the slave. Refer to 
Figure 3.5 on page 3–12 for a timing diagram 
that uses this property.

burstOnBurstBoundariesOnly false true,false If true, burst transfers presented to this 
interface are guaranteed to begin at 
addresses which are multiples of the burst 
size. 

linewrapBursts false true,false If true, indicates that the slave implements a 
line wrapping burst instead of an incrementing 
burst. With a wrapping burst, when the 
address reaches a burst boundary, it wraps 
back to the previous burst boundary such that 
only the low order bits need to be used for 
addressing. A wrapping burst with burst 
boundaries every 32 bytes across a 32-bit 
interface to address 0xC would write to 
addresses 0xC, 0x10, 0x14, 0x18, 0x1C, 0x0, 
0x4, and 0x8.
3–6 Altera Corporation
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3.4.Slave 
Timing

This section describes issues related to timing and sequencing of 
Avalon-MM slave signals.

3.4.1. Synchronous Interface

The Avalon-MM interface is a synchronous protocol. Each Avalon-MM 
port is synchronized to an associated clock interface. Signals may be 
combinational if they are driven from the outputs of registers that are 
synchronous to the clock signal. An Avalon-MM peripheral must not be 
sensitive to any signal besides the reference clock. This document does 
not dictate how or when signals transition between clock edges and 
timing diagrams are devoid of fine-grained timing information. 

3.4.2. Performance

There is no guaranteed performance of the Avalon-MM interface. The 
maximum performance is dependent on peripheral design and system 
implementation. 

3.4.3. Electrical Characteristics

The Avalon-MM interface specification does not specify any electrical 
characteristics. 

maxBurstSize 1 64 The maximum burst size that a slave can 
accept.

bridgesToMaster null  Avalon-MM 
master on 
same 
component

An Avalon-MM bridge consists of a slave and 
a master, and has the property that an access 
to the slave requesting a particular byte or 
bytes will cause the same byte or bytes to be 
requested by the master. 

associatedClock — — Name of the clock interface that this 
Avalon-MM slave interface is synchronous to.

Note to Table 3–2:
(1) If a component accepts more read transfers than the value indicated here, the internal pending read FIFO may 

overflow, causing the system to lockup.

Table 3–2. Avalon-MM Slave Interface Properties (Part 2 of 2)

Name Default 
Value

Legal 
Values Description
ltera Corporation 3–7
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Slave Transfers
3.5.Slave 
Transfers

This section defines two basic concepts before introducing the slave 
transfer types.

■ Transfer—A transfer is a read or write operation of a word of data, 
between an Avalon-MM slave and the system interconnect fabric. 
Avalon-MM transfers words ranging in size from 8–1024 bits. 
Transfers take one or more clock cycles to complete. 

Both masters and slaves are part of a transfer; the Avalon-MM master 
initiates the transfer and the Avalon-MM slave responds to it.

■ Master-slave pair —This term refers to the master port and slave port 
involved in a transfer. During a transfer, the master port's control and 
data signals pass through the system interconnect fabric and interact 
with the slave port. 

3.5.1. Typical Slave Read and Write Transfers 

This section describes a typical Avalon-MM slave that supports read and 
write transfers with peripheral-controlled waitrequest. The slave can 
stall the system interconnect fabric for as many cycles as required by 
asserting the waitrequest signal. If a slave uses peripheral-controlled 
waitrequest for either read or write transfers, it must use peripheral-
controlled waitrequest for both. 

The slave receives address, byteenable, read or write, and 
writedata after the rising edge of the clock. The slave port must assert 
waitrequest before the next rising clock edge to hold off the transfers. 
When waitrequest is asserted, the transfer is delayed and the address 
and control signals are held constant. Transfers complete on the rising 
edge of the first clk after the slave port deasserts waitrequest. 

There is no limit on how long a slave port can stall. Therefore, you must 
ensure that a slave port does not assert waitrequest indefinitely. 
Figure 3.3 shows read and write transfers using waitrequest. 
3–8 Altera Corporation
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Figure 3.3. Slave Read and Write Transfers with Peripheral-Controlled Waitrequest 

Notes to Figure 3.3: 
(1) address, read and begintransfer are asserted after the rising edge of clk. The slave asserts waitrequest, 

stalling the transfer. 
(2) waitrequest is sampled. Because waitrequest is asserted, the cycle becomes a wait-state, and address, read, 

write, and byteenable remain constant. Begintransfer is not held constant.
(3) The slave presents valid readdata and deasserts waitrequest.
(4) readdata and deasserted waitrequest are sampled, completing the transfer.
(5) address, writedata, byteenable, begintransfer and write signals are asserted. The slave responds by 

asserting waitrequest, stalling the transfer.
(6) The slave captures writedata and deasserts waitrequest, ending the transfer.

3.5.2. Slave Read and Write Transfers with Fixed Wait-States

Instead of using waitrequest to hold off a transfer, a slave can specify 
fixed wait-states using the readWaitTime and writeWaitTime 
properties. The address and control signals (byteenable, read, and 
write) are held constant for the duration of the transfer. The read/write 
timing with readWaitTime/writeWaitTime set to N is exactly the 
same as asserting waitrequest for N cycles per transfer.

clk

address

byteenable

read

write

waitrequest

begintransfer

readdata

writedata

address

byteenable

readdata

writedata

1 2 3 4 5 6
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Slave Transfers
Figure 3.4 shows an example slave read and write transfers with 
writeWaitTime = 2 and readWaitTime = 1. 

Figure 3.4. Slave Read and Write Transfer with Fixed Wait-States

Notes to Figure 3.4:
(1) address and read are asserted on the rising edge of clk.
(2) The next rising edge of clk marks the end of the first and only wait-state cycle because the readWaitTime is 1. 
(3) readdata is captured on the rising edge of clk, and the read transfer ends.
(4) writedata, address, byteenable, and write signals are available to the slave. 
(5) Because writeWaitTime is 2, the transfer terminates after completing. The data and control signals are held 

constant until this time. 

Transfers with a single wait-state are commonly used for synchronous, 
on-chip peripherals. The peripheral can capture address and control 
signals on the rising edge of clk, and has one full cycle to return data. 
Components with zero wait-states are allowed, but may decrease 
achievable frequency because they generate the response in the same 
cycle as the request.

3.5.3. Pipelined Transfers

Avalon-MM pipelined read transfers increase the throughput for 
synchronous slave peripherals that require several cycles to return data 
for the first access, but can return one data value per cycle for some time 
thereafter. New pipelined read transfers can be started before readdata 
for the previous transfers in returned. Write transfers cannot be pipelined.

A pipelined read transfer is divided into two phases: an address phase 
and a data phase. A master initiates a transfer by presenting the address 
during the address phase; a slave port fulfills the transfer by delivering 
the data during the data phase. The address phase for a new transfer (or 
multiple transfers) can begin before the data phase of a previous transfer 
completes. This delay is called pipeline latency, which is the duration from 
the end of the address phase to the beginning of the data phase. 

clk

address

byteenable

read

write

readdata

writedata

address address

readdata

writedata

4 51 2 3
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The key differences between how wait-states and pipeline latency affect 
transfer timing is as follows: 

■ Wait-states—Wait-states determine the length of the address phase, 
and limit the maximum throughput of a port. If a slave requires one 
wait-state to respond to a transfer request, then the port requires at 
least two clock cycles per transfer. 

■ Pipeline Latency—Pipeline latency determines the time until data is 
returned independently of the address phase. A pipelined slave port 
with no wait-states can sustain one transfer per cycle, even though it 
may require several cycles of latency to return the first unit of data. 

Wait states and pipelined reads can be supported concurrently, and 
pipeline latency can be either fixed or variable, as discussed in the 
following sections.

3.5.3.1. Slave Pipelined Read Transfer with Variable Latency

An Avalon-MM pipelined slave takes one or more cycles to produce data 
after address and control signals have been captured. A pipelined slave 
port may have multiple pending read transfers at any given time. 
Variable-latency pipelined read transfers use the same set of signals as 
non-pipelined read transfers, with one additional signal, 
readdatavalid. Slave peripherals that use readdatavalid are 
considered pipelined with variable latency; the readdata and 
readdatavalid signals can be asserted the cycle after the read cycle is 
asserted, at the earliest.

The slave port must return readdata in the same order that it accepted 
the addresses. Pipelined slave ports with variable latency must use 
peripheral-controlled waitrequest. The slave can assert waitrequest 
to stall transfers to maintain the number of pending transfers at an 
acceptable level. 

1 The maximum number of pending transfers is a property of the 
slave interface. The system interconnect fabric builds logic 
which routes readdata to the requesting masters, 
parameterized by this maximum number. It is the responsibility 
of the slave interface, not the system interconnect fabric, to keep 
the number of pending reads from exceeding the stated 
maximum. Typically, the slave interface restricts the number of 
pending reads by asserting waitrequest when that number 
has reached the maximum value
ltera Corporation 3–11
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Figure 3.5 shows several slave read transfers between the system 
interconnect fabric and a pipelined slave with variable latency. In this 
example, the slave can accept a maximum of two pending transfers and 
uses waitrequest to prevent overrunning this maximum.

Figure 3.5. Slave Pipelined Read Transfers with Variable Latency 

Notes to Figure 3.5: 
(1) address and read are asserted, initiating a read transfer. 
(2) The slave captures addr1, and immediately provides the response data1 and asserts readdatavalid. 
(3) The slave captures addr2 and immediately provides the response data2 and asserts readdatavalid.
(4) The slave asserts waitrequest causing the third transfer to be stalled for 2 cycles. 
(5) The peripheral drives readdatavalid and valid readdata in response to the third read transfer.
(6) The data from transfer 3 is captured by the interconnect as addr4 is captured by the slave. 
(7) data5 is presented with readdatavalid completing the data phase for the final pending read transfer.

If the slave cannot handle a write transfer while it is processing pending 
read transfers, the slave must assert its waitrequest and stall the write 
operation until the pending read transfers have completed. The Avalon-
MM specification does not define the value of readdata in the event that 
a slave accepts a write transfer to the same address as a currently pending 
read transfer. 

3.5.3.2. Restrictions
Pipelined slaves with variable latency must support 
peripheral-controlled waitrequest.

3.5.3.3. Slave Pipelined Read Transfer with Fixed Latency 

The address phase for fixed latency slave read transfers is identical to the 
variable latency case. After the address phase, a pipelined slave port with 
fixed read latency takes a fixed number of clock cycles to return valid 
readdata, as indicated by the readWaitTime property. The system 
interconnect fabric captures readdata on the appropriate rising clock 
edge, and the data phase ends. 

clk

address

read

waitrequest

readdata

readdatavalid

1 2 3 4 5 6 7

addr1 addr2 addr3 addr4 addr5

data1 data2 data 3 data4 data5
3–12 Altera Corporation
Avalon Interface Specifications October 2008



A
O

Avalon Memory-Mapped Interfaces
During the address phase, the slave port can assert waitrequest to hold 
off the transfer or can specify readWaitTime for a fixed number of wait 
states. The address phase ends on the next rising edge of clk after 
wait-states, if any. 

During the data phase, the slave drives readdata after a fixed latency. If 
the peripheral has a read latency of N, the slave port must present valid 
readdata on the Nth rising edge of clk after the end of the address 
phase. 

Figure 3.6 shows multiple data transfers to a slave pipelined port that 
uses peripheral-controlled waitrequest and has a fixed read latency of 
2 cycles. 

Figure 3.6. Slave Pipelined Read Transfer with Fixed Latency of Two Cycles

Notes to Figure 3.6: 
(1) A read transfer is initiated with the assertion of read and addr1 and slave asserts waitrequest to hold off the 

transfer for one cycle.
(2) The slave deasserts waitrequest and captures addr1 at the rising edge of clk. The address phase ends here.
(3) The slave presents valid readdata after 2 cycles, ending the transfer. 
(4) addr2 and read are asserted for a new read transfer.
(5) A third read transfer is issued during the next cycle, before the data from the prior transfer is returned.

3.5.4. Burst Transfers

A burst executes multiple transfers as a unit, rather than treating every 
word independently. Bursts may increase throughput for slave ports that 
achieve greater efficiency when handling multiple word at a time, such as 
DDR. The net effect of bursting is to lock the arbitration for the duration 
of the burst.

To support bursts, an Avalon-MM slave includes a burstcount input 
signal. The burstcount signal behaves as follows:

■ At the start of a burst, burstcount presents the number of 
sequential transfers in the burst.

■ For width N of burstcount, the maximum burst length is 2N-1. The 
minimum legal burst length is one.

clk

address

read

waitrequest

readdata

addr1 addr2 addr3

data1 data2 data3

1 2 3 4 5
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To support slave read bursts, a slave must also support:

■ peripheral-controlled wait-states with the waitrequest signal. 
■ Pipelined transfers with variable latency with the readdatavalid 

signal. 

At the start of a burst, the slave sees the address and a burst length value 
on burstcount. For a burst with an address of A and a burstcount 
value of B, the slave must perform B consecutive transfers starting at 
address A. The burst completes after the slave receives (write) or returns 
(read) the Bth word of data. The bursting slave must capture address 
and burstcount only once for each burst. The peripheral logic must 
infer the address for all but the first transfers in the burst. A slave can also 
use the input signal beginbursttransfer, which the system 
interconnect fabric asserts for the first cycle of each burst.

3.5.4.1. Slave Write Bursts

These rules apply when a slave write burst begins with burstcount 
greater than one:

■ If a burstcount of N is presented at the beginning of the burst, then 
the slave must accept N successive units of writedata to complete 
the burst. Arbitration between the master-slave pair is locked until 
the burst completes, guaranteeing that data arrives, in order, from 
the master port that initiated the burst.

■ The slave must only capture writedata when write is asserted. 
During the burst, write can be deasserted to indicate that it is not 
presenting valid writedata. Deasserting write does not terminate 
the burst; it only delays it. 

■ The slave can delay a transfer by asserting waitrequest which 
forces writedata, write, and byteenable to be held constant, as 
usual. 

■ The functionality of the byteenable signal is the same for bursting 
and non-bursting slaves. For a 32-bit master burst-writing to a 64-bit 
slave, starting at byte address 4, the first write transfer seen by the 
slave is at its address 0, with byteenable = b’11110000.

■ The byteenable signals do not all have to be asserted. A burst 
master writing unaligned data can use the byteenable signal to 
identify the data being written.

Figure 3.7 demonstrates a slave write burst of length 4. In this example, 
the slave port asserts waitrequest twice delaying the burst. 
3–14 Altera Corporation
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Figure 3.7. Slave Write Burst 

Notes to Figure 3.7: 
(1) address, burstcount, write, and the first unit of writedata are asserted. The slave immediately asserts 

waitrequest, indicating that it is not ready to proceed with the transfer. 
(2) waitrequest is low; the slave captures addr1, burstcount, and the first unit of writedata is accepted. On 

subsequent cycles of the transfer, address and burstcount are ignored. 
(3) The slave port captures the second unit of data at the rising edge of clk.
(4) The burst is paused while write is deasserted. 
(5) The slave captures the third unit of data at the rising edge of clk.
(6) The slave asserts waitrequest. In response, all outputs are held constant through another clock cycle. 
(7) The slave captures the last unit of data on this rising edge of clk. The slave write burst ends.

In Figure 3.7, the beginbursttransfer signal is asserted for the first 
clock cycle of a burst and is deasserted on the next clock cycle. Even if the 
slave asserts waitrequest, the beginbursttransfer signal is only 
asserted for the first clock cycle. 

3.5.4.2. Slave Read Bursts

Slave read bursts are similar to slave pipelined read transfers with 
variable latency. A read burst has distinct address and data phases, and 
the slave port uses the readdatavalid signal to indicate when it is 
presenting valid readdata. The difference is that a single read burst 
address results in multiple data transfers. 

These rules apply to slave read bursts:

■ When burstcount is N, the slave must return N words of 
readdata to complete the burst. 

■ The slave presents each word by providing readdata and asserting 
readdatavalid for a cycle. Deassertion of readdatavalid 
delays but does not terminate the burst data phase.

■ The byteenables presented with a read burst command apply to 
all cycles of the burst. A byteenable value of 1 means that the least 
significant byte is being read across all of the read cycles.
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Figure 3.8 illustrates a system with two bursting masters accessing a 
slave. Note that Master B can drive a read request before the data has 
returned for Master A.

Figure 3.8. Slave Read Burst

Notes to Figure 3.8:
(1) address (A0), burstcount, and read for master A are asserted after the rising edge of clk. The slave asserts 

waitrequest, causing all inputs except beginbursttransfer to be held constant through another clock cycle.
(2) The slave captures A0 and burstcount at this rising edge of clk. A new transfer could start on the next cycle. 
(3) Master B drives address (A1), burstcount, and read. The slave asserts waitrequest, causing all inputs except 

beginbursttransfer to be held constant. The slave could have returned read data from the first read request at 
this time, at the earliest.

(4) The slave presents valid readdata and asserts readdatavalid, transferring the first word of data for master A.
(5) The second word for master A is transferred. The slave deasserts readdatavalid pausing the read burst. The slave 

port can keep readdatavalid deasserted for an arbitrary number of clock cycles.
(6) The first word for master B is returned.

3.5.4.3. Line–Wrapped Bursts

Processors with data or instruction caches gain efficiency by using line-
wrapped bursts. When a processor requests data, and the data is not in 
the cache, the cache controller reads enough data from the memory to fill 
the entire cache line. For a processor with a cache line size of 64 bytes, a 
cache miss causes 64 bytes to be read from memory. If the processor reads 
from address 0xC when the cache miss occurred, then an incrementing 
addressing burst uses read addresses 0x0, 0x4, 0x8, 0xC, 0x10, 0x14, 0x18, 
and 0x1C – the data that the processor requested isn’t available until the 
fourth read. With wrapping bursts, the address order is 0xC, 0x10, 0x14, 
0x18, 0x1C, 0x0, 0x4, and 0x8 such that the data that the processor 
requested data is returned first.

f For more information about burst transfers and burst adapters refer to 
the Avalon Memory-Mapped Design Optimizations chapter in the Embedded 
Design Handbook.
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3.5.4.4. Flow Control

A slave, such as a FIFO, can support the dataavailable and 
readyfordata signals or both to indicate that it has data available for 
reading or has space available to which data can be written. Masters that 
have the doStreamReads and doStreamWrites properties set see 
waitrequest asserted when they access a slave with the 
dataavailable and readyfordata signals deasserted, respectively.

3.6.Address 
Alignment 

For systems in which master and slave data widths differ, the 
interconnect manages address alignment issues. The Avalon-MM 
interface resolves data width differences, so that any master port can 
communicate with any slave port, regardless of the respective data 
widths. 

Dynamic bus sizing refers to a service provided by the system interconnect 
fabric that dynamically manages data during transfers between 
master-slave pairs of differing data widths, such that all slave data are 
aligned in contiguous bytes in the master address space.

If the master is wider than the slave, data bytes in the master address 
space map to multiple locations in the slave address space. For example, 
when a 32-bit master port performs a read transfer from a 16-bit slave 
port, the system interconnect fabric executes two read transfers on the 
slave side on consecutive addresses, and presents 32-bits of slave data 
back to the master port.

If the master is narrower than the slave, then the system interconnect 
fabric manages the slave byte lanes. During master read transfers, the 
system interconnect fabric presents only the appropriate byte lanes of 
slave data to the narrower master. During master write transfers, the 
system interconnect fabric automatically asserts the byteenable signals 
to write data only to the specified slave byte lanes.
ltera Corporation 3–17
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Slaves must have a data width of 8, 16, 32, 64, 128, 256, 512 or 1024 bits. 
Table 3.3 shows how slave data of various widths is aligned within a 
32-bit master. In Table 3.3, OFFSET[N] refers to a slave word size offset 
into the slave address space. 

1 Avalon-MM masters always issue byte addresses. If an 
Avalon-MM master is accessing a 32-bit on-chip slave, the two 
least significant bits are not connected. The third least significant 
bit connects to address[0] of the memory device. A 32-bit 
master port drives addresses aligned on 4-byte boundaries, such 
as: 0x00, 0x04, 0x08, 0x0c. To write a specific byte within a data 
word, the master port can use the byteenable signal. 

In versions of the SOPC Builder software before v8.0, a slave interface 
could specify that it had native addressing. When a master port addresses 
a slave port with the native address alignment property, all slave data are 
aligned on native master address boundaries. When a master port reads 
from a narrower slave port, the slave data bits map to the lower bits of the 
master data, and the upper master data bits are padded with zero. During 
write transfers, the upper bits are ignored. For example, if a 16-bit master 
port reads an 8-bit slave port, the readdata signal is of the form 0x00<nn>, 
where <nn> represents valid data.meaning that each word address as 
seen by each master addresses a different word on the slave. 

With native addressing, the effective address map of the slave is 
dependent on the master that is accessing it, and in some cases, the 
address span of the slave changes as masters are added to the system. In 
many cases, extra logic is required to handle accesses from different 
masters, leading to increased logic usage and performance degradation.    
Native addressing is now deprecated, meaning that it is still supported by 
the system interconnect fabric, but is not recommended for new 
components.

Table 3.3. Dynamic Bus Sizing Master-to-Slave Address Mapping

Master Address 
32-Bit Master Data

When Accessing a 16-Bit Slave Port When Accessing a 64-Bit Slave Port

0x00 OFFSET[1]15..0:OFFSET[0]15..0 OFFSET[0]31..0

0x04 OFFSET[3]15..0:OFFSET[2]15..0 OFFSET[0]63..32

0x08 OFFSET[5]15..0:OFFSET[4]15..0 OFFSET[1]31..0

0x0C OFFSET[7]15..0:OFFSET[6]15..0 OFFSET[1]63..32

... ... ...
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3.7.Masters This section defines the behavior of Avalon-MM master transfers 
between a master and the system interconnect fabric as shown in 
Figure 3.9. 

Figure 3.9. Focus of Avalon-MM Master Transfers

The signal types available for Avalon-MM masters allow you to create 
masters that use bursts for both reads and writes. Because the system 
interconnect fabric creates point-to-point connections between master 
and slave pairs, you can increase the throughput of your system by 
initiating reads with multiple pipelined slave peripherals. In responding 
to reads, when a slave peripheral has valid data it asserts 
readdatavalid and the system interconnect fabric enables the 
connection between the master and slave pair. 
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Master Signal Types
The following sections provide details of the signal types available for 
Avalon-MM masters and provide timing diagrams that detail these 
transfers. 

3.8.Master 
Signal Types

Table 3.4 lists the signal types that constitute the Avalon-MM interface for 
master ports. 

Table 3.4. Avalon-MM Master Signals (1) (Part 1 of 4)

Signal Type Width Direction Req’d Description 

Fundamental Signals

address 1-32 Out Yes The address signal represents a byte address 
regardless of the data-width of the master. The 
value of the address must be aligned to the data 
width. To write to specific bytes within a data word, 
the master must use the byteenable signal.

Masters always issue byte addresses, regardless 
of the data width of the master or slave port. The 
system interconnect fabric translates this address 
into a word address in the slave’s address space 
so that each slave access is for a word of data from 
the perspective of the slave.

read
read_n

1 Out No Read request signal from the master. Not required 
if the master never performs read transfers. 
If present, readdata must also be present.

readdata 8,16,32,64, 
128, 256, 
512, 1024 

In No Data signal for read transfers. 

write
write_n

1 Out No Write request signal from the master. Not required 
if the master never performs write transfers. 
If present, writedata must also be used.

writedata 8,16,32,64, 
128, 256, 
512, 1024 

Out No Data signal from the master for write transfers. 
Not required if the master never performs write 
transfers. If readdata is also present, 
readdata and writedata must be the same 
width.
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byteenable
byteenable_n

1, 2,4,8, 16, 
32, 64, 128

Out No Enables specific byte lanes during transfers on 
ports of width greater than 8 bits. Each bit in 
byteenable corresponds to a byte lane in 
writedata and readdata. The master bit N of 
byteenable indicates whether byte N is being 
written to. During writes, byteenables specify 
which bytes to write to. Other bytes should be 
ignored by the slave. During reads, byteenables 
indicates which bytes the master is reading. 

When more than one byte lane is asserted, all 
asserted lanes must be adjacent. The number of 
adjacent lines must be a power of 2, and the 
specified bytes must be aligned on an address 
boundary for the size of the data. The are legal 
values for a 32-bit slave:

1111 write full 32 bits
0011 writes lower 2 bytes
1100 writes upper 2 bytes
0001 writes byte 0 only
0010 write byte 1 only
0100 write byte 2 only
1000 write byte 3 only

waitrequest
waitrequest_n

1 In Yes Forces the master to wait until the system 
interconnect fabric is ready to proceed with the 
transfer. At the start of all transfers, a master 
initiates the transfer, and waits until 
waitrequest is deasserted. Masters must keep 
its control signals the same on subsequent cycles 
if waitrequest is asserted

Table 3.4. Avalon-MM Master Signals (1) (Part 2 of 4)

Signal Type Width Direction Req’d Description 
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arbiterlock
arbiterlock_n

1 Out No arbiterlock ensures that once a master wins 
arbitration, it maintains access to the slave for 
multiple transfers. It is de-asserted coincident with 
read or write and with the deassertion of the 
last locked transfer read or write signal. 
Arbiterlock assertion does not guarantee that 
arbitration will be won, but after the arbiterlock-
asserting master has been granted, it retains grant 
until it deasserts arbiterlock, whether or not it 
is making an access.

Burst masters cannot use the arbiterlock 
signal. Arbitration priority values for arbiterlock-
equipped masters are ignored.

arbiterlock is particularly useful for read-
modify-write operations, where master A reads 
32-bit data that has multiple bitfields, changes one 
field, and writes the 32-bit data back. If master B 
were to able to write between the read and the 
write, master A’s write would undo what master B 
had done.

A master that asserts arbiterlock indefinitely 
blocks all other masters, causing a deadlock.

Pipeline Signals 

readdatavalid
readdatavalid_n

1 In No For pipelined read transfers with latency. Indicates 
that valid data is present on the readdata lines. 
Required if the master supports pipelined reads. 

flush
flush_n

1 Out No Used for pipelined read transfers. The master port 
asserts flush with a new read or write 
command to indicate that read responses from all 
previous read transfers are to be dropped to clear 
any pending read transfers in the pipeline.

Burst Signals

burstcount 1-32 Out No Used by bursting masters to indicate the number of 
transfers in each burst.

Table 3.4. Avalon-MM Master Signals (1) (Part 3 of 4)

Signal Type Width Direction Req’d Description 
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3.9.Master 
Interface 
Properties

Table 3–5 describes the interface properties for an Avalon-MM master 
interface. 

Reset Signals

resetrequest
resetrequest_n

1 Out No Asserted by the master to request a reset the 
entire system. 

Note to Table 3.4: 
(1) All Avalon signals are active high. Avalon signals that can also be asserted low list an _n version of the signal in the 

Signal Type column. 

Table 3.4. Avalon-MM Master Signals (1) (Part 4 of 4)

Signal Type Width Direction Req’d Description 

Table 3–5. Avalon-MM Master Interface Properties (Part 1 of 2)

Name Default 
Value

Legal 
Values Description

burstOnBurstBoundariesOnly false true,false If true, the master guarantees that all bursts 
will begin on a multiple of the burst size. 

linewrapBursts false true,false Some memory devices implement a wrapping 
burst instead of an incrementing burst. The 
difference between the two is that with a 
wrapping burst, when the address reaches a 
burst boundary, the address wraps back to the 
previous burst boundary such that only the low 
order bits need to be used for address 
counting. A wrapping burst with burst 
boundaries every 32 bytes across a 32-bit 
interface to address 0xC would write to 
addresses 0xC, 0x10, 0x14, 0x18, 0x1C, 0x0, 
0x4, and 0x8.

maxBurstSize 1 64 The maximum burst size that a master can 
send.
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3.10.Master 
Transfers 

A typical transfer is initiated by the master and transfers a word of data. 
When necessary, waitrequest is asserted to stall the master until the 
transfer can be accepted. The transfer terminates when waitrequest is 
deasserted. 

If waitrequest is asserted for N cycles, then the total transfer takes (N 
+ 1) cycles. The system interconnect fabric does not provide a time-out; 
the master must stall for as long as waitrequest remains asserted. 

A master can use the byteenable signal to indicate that it only requires 
data for specific bytes of readdata or to write specific bytes of 
writedata. If a master port does not have a byteenable signal, the 
transfer proceeds as if all byteenable are asserted. 

A master transfer starts on the rising edge of clk. During the first cycle, 
the master asserts the address, byteenable, and the read or write 
signals. If waitrequest is asserted, the master must hold all outputs 
constant through the next cycle. The transfer ends on the first rising clock 
edge with a deasserted waitrequest, and the master may initiate 
another transfer immediately.

Figure 3.10 shows a typical master transfers. 

doStreamReads false true,false Indicates that the master wishes to be held off 
with the waitrequest signal whenever it 
reads from a slave that has dataavailable 
deasserted.

doStreamWrites false true,false Indicates that the master wishes to be held off 
with the waitrequest signal whenever it 
writes to a slave that has readyfordata 
deasserted.

Table 3–5. Avalon-MM Master Interface Properties (Part 2 of 2)

Name Default 
Value

Legal 
Values Description
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Figure 3.10. Fundamental Master Read and Write Transfers 

Notes to Figure 3.10: 
(1) The master starts a read by asserting address, byteenable and read. readdata is returned during the first 

cycle.
(2) The master captures readdata and deasserts read, ending the transfer. It immediately asserts address, 

byteenable, writedata, and write for the next transfer.
(3) waitrequest is not asserted at the rising edge of clk, so the write transfer completes. 
(4) The master asserts valid address, byteenable, writedata and write beginning a second write transfer. 

waitrequest is asserted, so the master holds all outputs.
(5) waitrequest is not asserted so the write transfer completes. The master asserts address, byteenable and read 

for the next transfer. waitrequest is asserted. The master holds all outputs.
(6) waitrequest is not asserted at the rising edge of clk, so the read transfer completes.

3.10.1.Master Pipelined Read Transfer

A master that supports pipelined reads can initiate a new read transfer 
before it receives data from a previous transfer. To support pipeline reads, 
a master includes the one-bit input signal readdatavalid. 
readdatavalid is asserted to indicate that readdata is valid data in 
response to a previous read. 

The timing and sequence of signals during the address phase is identical 
to that of the fundamental Avalon-MM master read transfer, except for 
the readdata signal. The master must present read, address, and 
byteenable, and must hold these signals constant as long as 
waitrequest is asserted. Once waitrequest is deasserted, the master 
can initiate another read or write transfer.

For pipelined transfers, readdata is returned some number of cycles 
later. readdata is always returned in the same order as the reads were 
issued by the master. There is no limit on the time until readdatavalid 
is asserted. Pipelined masters can have an arbitrary number of read 
transfers pending at any given time.

clk
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byteenable

read

write

waitrequest

readdata

writedata

addr2addr1 addr3 addr4

be3be1 be2 be4

d3d2
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Pipelined masters can optionally use the flush signal, which is provided 
for cases in which a master peripheral determines that it does not need 
the data for all currently pending transfers. Flushing the pipeline is a 
common requirement for pipelined CPUs that prefetch instructions 
before knowing if the instructions are valid or not. When the master port 
asserts flush on the rising edge of clk, readdatavalid is cancelled 
for all pending reads. The master port can initiate a new read transfer 
during the same clock cycle that flush is asserted. In this case, the data 
corresponding to this transfer becomes the next valid data to be returned 
on readdata. 

Figure 3.11 shows several pipelined master read transfers. This example 
demonstrates that the master must respond appropriately to both 
waitrequest and readdatavalid. In this example, the second-to-last 
transfer is flushed using the flush signal. However, the unwanted data 
might have appeared on readdata if the latency for that transfer were 
shorter. 

Figure 3.11. Master Pipelined Read Transfer

Notes to Figure 3.11:
(1) The master initiates a read transfer by presenting addr1 and asserting read. waitrequest is asserted so the 

master port waits and asserts addr1 and read for another cycle.
(2) The system interconnect fabric deasserts waitrequest accepting the read command. 
(3) The system interconnect fabric accepts a second read command. readdatavalid is asserted, so the master 

captures valid readdata (data1), in response to the first read command.
(4) The system interconnect fabric accepts a third command, making a total of two pending transfers. 
(5) readdatavalid is asserted, so master captures valid readdata (data2).
(6) readdatavalid is not asserted, so master does not capture readdata. Master asserts flush, causing pending 

transfer (addr3) to be dropped. 
(7) readdatavalid is asserted, so the master captures valid readdata (data4).
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3.10.2.Burst Transfers

A burst transfer guarantees that a master is granted uninterrupted access 
to a target slave for the duration of the burst. Once a burst begins no other 
master can access the slave port until the burst completes. 

Avalon-MM bursts do not guarantee that a master or slave sustains one 
transfer per cycle during the burst, they only guarantee that arbitration 
between the master-slave pair remains locked throughout the burst. To 
support master read bursts, a master must also support pipelined 
transfers. 

For an Avalon-MM master, burstcount is an output signal used to 
indicate the length of the burst. At the start of each burst, a master asserts 
a valid address and a burst length value on burstcount, measured in 
word transfers. The master presents only one address for each burst; the 
addresses for all subsequent transfers in the burst are inferred by the 
slave. 

When a master starts a burst with an address of A and a burstcount 
value of B, it is committing to B consecutive transfers starting at address 
A. The burst does not complete until the master transfers B units of data. 
A master cannot abort the burst without first exhausting remaining 
transfers in the current burst. The master can issue a new read burst 
before the data for the previous burst has been returned.

3.10.2.1.Master Write Bursts

To start a write burst the master port asserts address, writedata, 
write, byteenable, and burstcount. If waitrequest is deasserted, 
address, burstcount, and the first unit of writedata are captured on 
the rising edge of clk. The master must hold constant values on 
address and burstcount throughout the write burst.

The following rules apply to burst transfers:

■ The master can pause a write burst without ending it by deasserting 
write. 

■ When waitrequest is asserted, the master must hold 
byteenable, writedata, write, and address constant. 

Figure 3.12 demonstrates an example of a master write burst of length 4. 
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Figure 3.12. Master Write Burst 

Notes to Figure 3.12:
(1) The master begins a burst of 4 transfers. waitrequest is asserted, pausing the burst and causing the master to hold 

all outputs constant.
(2) Because waitrequest is deasserted, the first write transfer is accepted by the system interconnect fabric.
(3) The second writedata (data2) is accepted. The master then deasserts write, pausing the burst. 
(4) The system interconnect captures writedata (data3) and then the master presents the last unit of writedata 

(data4) waitrequest pauses the burst again.
(5) waitrequest is deasserted and the last unit of writedata (data4) is captured on the next rising edge of clk 

ending the burst.

3.10.2.2.Master Read Bursts

Read bursts are a form of pipelined read transfer. In contrast to non-burst 
pipelined read transfers, a single read burst transfer corresponds to 
multiple data transfers. To start a read burst, the master asserts address, 
read, and burstcount. When waitrequest is deasserted, the address 
phase ends.

The data phase consists of a number of words of data being provided on 
readdata, with readdatavalid asserted to mark valid cycles. The 
burst data phase is complete once the number of words transferred is 
equal to the value provided by burstcount. readdatavalid may be 
deasserted at any time, pausing the transfer. The master cannot pause the 
data phase. The following rules apply when a master starts a read burst:

■ Unless flush is asserted, if the master specifies burstcount of N, 
the master is guaranteed to see readdatavalid for N cycles to 
complete the burst.

■ The master must capture readdata whenever readdatavalid is 
asserted. Each value of readdata is valid for a single clock cycle. 

■ The master must hold constant all byteenable lines throughout the 
burst address phase.

Figure 3.13 demonstrates a master read burst of length 4.
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Figure 3.13. Master Read Burst

Notes to Figure 3.13:
(1) The master asserts address, burstcount, and read. In this example, burstcount is 4. waitrequest is 

asserted for one cycle, pausing the transfer. 
(2) address and burstcount are captured. The master could begin a new transfer on the following cycle. 
(3) readdata and readdatavalid are presented.
(4) Master captures the first unit of readdata (data1).
(5) Master captures the next unit of readdata (data2).
(6) readdatavalid is deasserted, pausing the burst. readdatavalid can be deasserted for an arbitrary number of 

clock cycles.
(7) The system interconnect fabric presents valid readdata, and asserts readdatavalid again.
(8) The master captures the next unit of readdata (data3).
(9) The master captures the last unit of readdata (data4), ending the burst.
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4. Interrupt Interfaces
Interrupt interfaces allow slave components to signal events to master 
components. For example, a DMA controller can interrupt a processor 
when it has completed a DMA transfer.

4.1.Interrupt 
Sender

An interrupt sender drives a single interrupt signal to an interrupt 
receiver. The timing of the irq signal must be synchronous to the rising 
edge of its associated clock, but has no relationship to any transfer on any 
other interface. irq must be asserted until the interrupt has been 
acknowledged on the associated Avalon Memory-Mapped (Avalon-MM) 
slave interface. 

The interrupt receiver typically determines how to respond to the event 
by reading an interrupt status register from an Avalon-MM slave 
interface. The mechanism used to acknowledge an interrupt is 
component specific.

4.1.1. Signal Types 

Table 4.1 lists the interrupt signal types.

Table 4.1. Interrupt Sender Signal Types

Signal Type Width Direction Required Description

irq
irq_n

1 Output Yes Interrupt Request. A slave asserts irq when it needs 
to be serviced.
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4.1.2. Interrupt Sender Properties

Table 4.2 lists the properties associated with interrupt senders.

4.2.Interrupt 
Receiver

An interrupt receiver interface receives interrupts from interrupt sender 
interfaces. Components with an Avalon-MM master interface can include 
an interrupt receiver to detect interrupts asserted by slave components 
with interrupt sender interfaces. Interrupt receiver interfaces support two 
interrupt schemes: 

■ Individual requests—the interrupt receiver expects to see each 
interrupt request from each interrupt sender as a separate bit and is 
responsible for determining the relative priority of the interrupts,

■ Priority encoded—the interrupt receiver expects to see a single-bit irq 
signal and a six-bit interrupt number signal that indicates the 
number of the highest priority interrupt currently being asserted. 
Interrupt zero is the highest priority. There can only be one interrupt 
sender at each priority for a total of 64 senders in a system.

Table 4.2. Interrupt Sender Properties

Property Name Default 
Value Legal Values Description

associatedClockReset — Name of clock 
Interface on this 
component.

The name of the clock interface that this 
interrupt sender is synchronous to. The 
sender and receiver may have different 
values for this property.

associatedAddressable
Point

— Name of Avalon-MM 
slave on this 
component.

The name of the Avalon-MM slave that 
provides access to the registers that should 
be accessed to service the interrupt.
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4.2.1. Interrupt Receiver Properties

Table 4.3 lists the properties associated with interrupt receivers.

4.2.2. Signal Types

Table 4.4 lists the interrupt receiver signal types.

4.2.3. Interrupt Timing 

Figure 4.1 illustrates interrupt timing using both individual requests and 
priority encoding. In both cases, the Avalon-MM master services the 
priority 0 interrupt before the priority 1 interrupt.

Table 4.3. Interrupt Receiver Properties

Property Name Default Value Legal Values Description

irqScheme individual
Requests

individualRequests, 
priorityEncoded 

Selects one of the two interrupt 
encoding schemes.

associated
AddressablePoint

— The name of Avalon-MM 
slave on this component.

The name of the Avalon-MM slave 
that provides access to the registers 
that should be cleared after the 
interrupt is serviced.

Table 4.4. Interrupt Receiver Signal Types

Signal Type Width Direction Required Description

irq 1–32 Input Yes Indicates when one or more slave ports have 
requested an interrupt. 
If irqScheme=individualRequests, irq is an 
n-bit vector, where each bit corresponds directly to one 
IRQ sender, with no inherent assumption of priority.

If irqScheme=priorityEncoded, irq is a one 
bit logical OR of all connected interrupt sender signals.

irqnumber 6 Input No Only used when irqScheme = 
priorityEncoded. irqnumber indicates the 
current highest priority interrupt. 
ltera Corporation 4–3
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Figure 4.1. Interrupt Timing for Individual Request and Priority Encoded Interrupts

Notes to Figure 4.1:
(1) Interrupt 0 serviced.
(2) Interrupt 1 serviced.
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5. Avalon Memory-Mapped
Tristate Interfaces
Avalon Memory-Mapped (Avalon-MM) tristate slave interfaces allow 
Avalon-MM masters to drive off-chip devices. The interface allows data 
and address pins to be shared across multiple tristate devices. Sharing is 
valuable in systems that have multiple external memory devices and 
limited pins. Figure 5.1 shows a typical example where multiple flash 
memories and an SRAM device are connected to the FPGA through a 
tristate bridge. The Avalon-MM tristate interface is required for these 
external devices to share pins.

Figure 5.1. Typical Use of Avalon-MM Tristate Interface
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5.1.Tristate 
Slave Signal 
Types

Tristate slave ports use the bidirectional signal data rather than the 
separate, unidirectional signals readdata and writedata. Avalon-MM 
tristate ports must also use the outputenable signal. Table 5.1 lists the 
Avalon-MM tristate signal types 

Table 5.1.  Avalon-MM Tristate Slave Signals (1)

Signal Type Width Direction Req’d Description

address 1-32 In No Address lines to the slave port. Specifies a byte 
offset into the slave’s address space. 

read
read_n

1 In No Read-request signal. Not required if the slave port 
never outputs data. 
If present, data must also be used. 

write
write_n

1 In No Write-request signal. Not required if the slave port 
never receives data from a master. 
If present, data must also be present, and 
writebyteenable cannot be present.

chipselect
chipselect_n

1 In No When present, the slave port ignores all Avalon-MM 
signals unless chipselect is asserted. 
chipselect is always present in combination with 
read or write. 

outputenable
outputenable_n

1 In Yes Output-enable signal. When deasserted, a tristate 
slave port must not drive its data lines otherwise data 
contention may occur.

data 8,16,32,
64, 128, 
256, 512, 
1024 

Bidir No Bidirectional data. During write transfers, the 
FPGA drives the data lines. During read transfers 
the slave device drives the data lines, and the 
FPGA captures the data signals and provides them 
to the master.
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5.1.1. address Behavior

For Avalon-MM tristate slaves, the address signal represents a byte 
address. The address signal can be shared among multiple off-chip 
devices which have differing data widths. If the Avalon-MM tristate slave 
port data width is greater than one byte, it is necessary to correctly map 
the address signals from the system interconnect fabric to the address 
lines on the slave peripheral. 

byteenable
byteenable_n

2,4,8, 16, 
32, 64, 
128

Out No Enables specific byte lane(s) during transfers.
Each bit in byteenable corresponds to a byte lane 
in data. During writes, byteenables specify which 
bytes the master is writing to the slave. During reads, 
byteenables indicates which bytes the master is 
reading. Slaves that simply return data with no side 
effects are free to ignore byteenables during reads.
When more than one byte lane is asserted, all 
asserted lanes are guaranteed to be adjacent. The 
number of adjacent lines must be a power of 2, and 
the specified bytes must be aligned on an address 
boundary for the size of the data. The are legal 
values for a 32-bit slave:

1111 write full 32 bits
0011 writes lower 2 bytes
1100 writes upper 2 bytes
0001 writes byte 0 only
0010 write byte 1 only
0100 write byte 2 only
1000 write byte 3 only

writebyteenable
writebyteenable_n

2,4,8,
16, 32, 
64, 128

In No Equivalent to the logical AND of the byteenable 
and write signals. When used, the write signal is 
not used.

begintransfer 1 In No Asserted for the first cycle of each transfer.

Note to Table 5.1:
(1) All Avalon signals are active high. Avalon signals that can also be asserted low list both versions in the Signal Type 

column. 

Table 5.1.  Avalon-MM Tristate Slave Signals (1)

Signal Type Width Direction Req’d Description
ltera Corporation 5–3
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Table 5.2 specifies which Avalon-MM address line corresponds to A0 
(the least-significant address line) on the external device for a number of 
data widths.

For example, when connecting the system interconnect fabric to a 32-bit 
memory device using an Avalon-MM tristate slave interface, the two 
least-significant bits of the Avalon-MM address signal do not connect to 
the address lines on the memory chip. Avalon-MM address[2] 
connects to the device's A0 pin, address[3] connects to the A1 pin, and 
so forth.

5.1.2. outputenable and read Behavior

The system interconnect fabric asserts the outputenable signal during 
read transfers only. When a port's outputenable is deasserted, the 
data lines may be active with signals for a write transfer or with signals 
from some other peripheral that shares the data signals. Therefore, it is 
critical for the slave peripheral to tristate its data lines any time 
outputenable is deasserted.

5.1.3. write_n and writebyteenable Behavior

If a memory device has a combined R/Wn pin, the Avalon-MM signal 
write_n can be connected to a read/write (R/Wn) pin. write_n is only 
asserted during write transfers, and remains deasserted (i.e., in read 
mode) at all other times. In this case, the Avalon-MM outputenable_n 
signal connects to the output enable pin on the external device, and the 
Avalon-MM write_n signal connects to the R/Wn pin.

Some synchronous memory devices use individual write-enable signals 
for each byte lane (such as BWn1, BWn2, BWn3, and BWn4). The 
Avalon-MM port writebyteenable is the logical AND of the write and 
byteenable signals, and can be connected directly to such BWn pins. 

Table 5.2. Connecting External Device AO to Avalon-MM address

Data Width of External Device External Device Address LSB Connects to 

8 address[0] of Avalon-MM address

16 address[1] of Avalon-MM address

32 address[2] of Avalon-MM address

64 address[3] of Avalon-MM address
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5.1.4. Interfacing to Synchronous Off-Chip Memory

Avalon-MM tristate slaves can write data to off-chip synchronous 
memory devices, such as SRAM and ZBT RAM. The hold time property 
is used to keep data asserted several clock cycles after write is 
deasserted. 

Pipelined read transfers are supported if the component has fixed read 
latency. Pending pipelined read transfers are completed before initiating 
new write transfers to prevent possible signal contention. As a result, 
Avalon-MM tristate slaves might not achieve the maximum possible 
throughput when performing back-to-back read-write transfer 
sequences. 

Figure 5.2 shows an example of the connections between the system 
interconnect fabric and a synchronous, 32-bit memory. In this example, 
the Avalon-MM tristate slave port is pipelined to accommodate the 
synchronous memory. The port uses separate read_n and 
outputenable_n signals. The chip in this example uses the 
writebyteenable signal for its four byte lanes. This chip has an 18-bit 
address. Note that the lower two bits of the 20-bit Avalon-MM address 
signal specify a byte address, and therefore do not connect to the chip's 
address lines. 

Figure 5.2. Connection to Synchronous Memory Chip
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5.2.Tristate 
Slave Properties

Table 5–3 lists the properties of Avalon-MM tristate slave interfaces. 
These include all the properties for slave interfaces defined in Chapter 3, 
Avalon Memory-Mapped Interfaces plus some additional properties to 
support off-chip devices. 

5.3.Slave 
Transfers 

This section illustrates slave transfers that are specific to the Avalon-MM 
tristate interface. 

5.3.1. Asynchronous Transfers

Figure 5.3 illustrates connections to an asynchronous memory chip. This 
chip has an 18-bit address and 4 byte-enable lanes. Note that the lower 2 
bits of the 20-bit Avalon-MM address are not connected to the chip's 
address lines. For Avalon-MM tristate ports without pipelining, the read 

Table 5–3. Avalon-MM Tristate Interface Properties 

Name Default 
Value Legal Values Description

readLatency 0 num_cycles Read latency for fixed-latency slaves. Refer to 
Figure 5.5 for an illustration of this property.

writeLatency 0 num_cycles Delay in cycles between acceptance of a write 
access and acceptance of valid writedata.

timingUnits cycles cycles, 
nanoseconds

Specifies the units for setupTime, 
holdTime, writeWaitTime and 
readWaitTime. Use cycles for synchronous 
devices and nanoseconds for asynchronous 
devices.

writeWaitTime 0 0–1000 Specifies additional time in units of 
timingUnits for write to be asserted.

holdTime 0 — Specifies time in timingUnits between the 
deassertion of write and the deassertion of 
chipselect, address, and data. (Only 
applies to write transactions.)

readWaitTime 1 0–1000 Specifies additional time in units of 
timingUnits for read to be asserted.

setupTime 0 — Specifies time in timingUnits between the 
assertion of chipselect, address, and 
data and assertion of read/write.

activeCSThroughRead
Latency

false true,false If true, chipselect is asserted while 
readdata is pending.

associatedClockReset — — Name of the clock interface that this tristate 
interface is synchronous to.
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signal and the outputenable signal are identical. Therefore, the 
Avalon-MM signal read_n can connect directly to both an external 
device's output enable pin (OE_n) and read-enable pin (READ_n).

When connecting directly to asynchronous off-chip devices with an 
Avalon-MM tristate slave port, the clk signal is not needed. Instead, 
pulses on the chipselect, read, and/or write signals synchronize the 
transfer, using the defined setup and hold times. All output signals are 
glitch-free throughout the transfer. Even though the timing units may be 
specified in nanoseconds, the system interconnect fabric is always 
synchronous, and it toggles and captures signals only at integer multiples 
of the clock period.

Figure 5.3. Connection to Asynchronous Memory Chip
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5.3.1.2. Hold Time

A nonzero hold time of N means that, after write is deasserted, 
address, byteenable, writedata, and chipselect remain constant 
for N more cycles. Hold time only applies to write transactions. The total 
number of cycles to complete the transfer depends on setup, wait-state, 
and hold cycles. For example, a slave port with 2 cycles of setup time, 3 
cycles of write wait time, 2 cycles of hold time takes 8 cycles to complete 
the transfer: 2 setup cycles plus 3 wait time cycles plus 2 hold cycles plus 
1 cycle to capture data. 

A slave port does not have to use both setup and hold times.

5.3.1.3. Example Read and Write Using Setup, Hold and Wait Times

Figure 5.4 shows Avalon-MM tristate slave asynchronous read and write 
transfers, assuming a 50 MHz clock. This port uses the following 
Avalon-MM tristate properties:

■ timingUnits is given in nanoseconds
■ setupTime is 50 ns (3 clocks @ 50 MHz)
■ holdTime is 10 ns (1 clock @ 50 MHz)
■ writeWaitTime is 30 ns (2 clocks @ 50 MHz)
■ readWaitTime is 30 ns (2 clocks @ 50 MHz)
■ No pipelining

Note that when the wait time is expressed in nanoseconds, the read or 
write period, as seen on the FPGA pins, is as long as the specified wait 
time, rounded up to the next clock period. Table 5.4 illustrates this point.

Table 5.4. Wait Times Expressed in Nanoseconds - 50 MHz Clock

Wait Time Number of cycles

0 ns 1 cycle

10 ns 1 cycle

20 ns 1 cycle

21 ns 2 cycles
5–8 Altera Corporation
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When the wait time is expressed as cycles, the number of cycles that the 
read or write signal is asserted is the value of waitTime plus one cycle 
for data capture.

Figure 5.4 shows the tristate behavior for a single asynchronous memory. 
The data lines could be active at any time due to the transfer activity of 
other peripherals sharing the data and address signals. clk is shown only 
to illustrate the relationship between signals and the system clock; it is not 
connected to the asynchronous device. 

Table 5.5. Wait Times Expressed in Cycles

Wait Time Number of cycles

0 cycles 1 clock period

1 cycle 2 clock periods

2 cycles 3 clock periods
ltera Corporation 5–9
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Figure 5.4. Tristate Slave Read and Write Transfers with Setup Time and Wait-States 

Notes to Figure 5.4:
(1) The system interconnect fabric drives address and asserts chipselect_n
(2) After 3 cycles (from 50 ns) of setupTime, the system interconnect fabric asserts read_n.
(3) The slave port deasserts read_n after 2 cycles (from 30 ns) of readWaitTime. Data is sampled at the rising clock 

edge.
(4) address and writedata are driven.
(5) write_n is driven after 3 cycles (from 50 ns) setupTime.
(6) write_n is deasserted after two cycles (from 30 ns) of writeWaitTime.
(7) address, chipselect, and the data bus stop being driven after 1 cycle (from 10 ns) of holdTime. 

5.3.2. Synchronous Transfers

Synchronous read and write transfers are the same as for Avalon-MM 
interfaces described in Chapter 3, Avalon Memory-Mapped Interfaces.

5.3.3. Pipelined Slave Read Transfers

The pipelined Avalon-MM tristate slave read transfer is suitable for 
connecting to off-chip synchronous memory devices, such as SSRAM. For 
Avalon-MM tristate ports with pipelining, read is asserted during the 
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address phase only and is deasserted through the data phase. 
outputenable is asserted before the final rising clock edge of the 
transfer, causing the peripheral device to drive its data pins. 
outputenable is deasserted when there are no pending read transfers. 
Avalon-MM slave tristate ports cannot be pipelined with variable latency. 
Only pipelined tristate ports with fixed latency are supported. 

Some synchronous memory chips which use pipelined transfers require 
the chipselect signal to be asserted only during the address phase, 
while other chips require the chip select signal to be asserted until the 
entire transfer completes. The Avalon-MM tristate slave interface 
supports both cases, using the activeCSThroughReadLatency 
property. 

The tristate slave must declare which chipselect timing it supports 
according to the guidelines:

■ When a tristate slave declares activeCSThroughReadLatency 
property to be true, chipselect is asserted throughout both the 
address and data phases of the read transfer. In this case, 
chipselect mirrors outputenable.

■ When a port does not use the activeCSThroughReadLatency 
property, chipselect is only asserted during the address phase. In 
this case, chipselect mirrors read. 

Figure 5.5 shows a pipelined Avalon-MM tristate slave read transfer. This 
port uses the Avalon-MM properties:

■ readLatency is set to 2
■ writeLatency is set to 2 
■ activeCSThroughReadLatency is shown for both the true and 

false settings

The diagram shows the behavior for one peripheral. However, the data 
lines could be active at any time due to the transfer activity of a different 
peripheral sharing the data and address signals. 
ltera Corporation 5–11
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Figure 5.5. Pipelined Tristate Slave Read Transfers

Notes to Figure 5.5:
(1) chipselect_n, addr1, and read_n are asserted, initiating a read transfer. At this time outputenable_n is also 

asserted, so the slave peripheral can drive the data lines at any time. 
(2) The slave peripheral captures addr1 and read_n on this rising edge of clk. The data phase begins, and the slave 

produces valid data two clock cycles later.
(3) read_n is deasserted on this rising edge of clk, so the master isn't issuing a new read command.  When 

activeCSThroughReadLatency is false, chipselect_n is deasserted, and the tristate slave must not drive the 
data bus.

(4) data1 is captured at this rising edge of clk. chipselect_n, addr2, and read_n are asserted initiating transfer 2.
(5) The system interconnect fabric asserts chipselect_n, addr3, and read_n at this rising edge of clk, initiating 

transfer 3. Because outputenable_n is asserted, the slave peripheral could drive the data lines. 
(6) The system interconnect fabric captures data2 at the rising edge of clk. read_n is deasserted, ending the sequence 

of read transfers. If activeCSThroughReadLatency is asserted chipselect remains asserted until all pending 
read transfers have completed, otherwise it is deasserted.

(7) The system interconnect fabric captures data3. 
(8) The system interconnect fabric captures data4. There are no more pending transfers so chipselect and 

outputenable_n are deasserted, forcing the slave peripheral to stop driving its data lines.

5.4.Master 
Transfers

Avalon-MM tristate slaves are mastered by Avalon-MM masters via a 
tristate bridge. Avalon-MM tristate masters are not supported on other 
components. For more information on Avalon-MM master refer to 
Chapter 3, Avalon Memory-Mapped Interfaces. 
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6. Avalon Streaming
Interfaces
6.1.Introduction Avalon Streaming (Avalon-ST) interfaces are used for components that 
drive high bandwidth, low latency, unidirectional data. Typical 
applications include multiplexed streams, packets, and DSP data. The 
Avalon-ST interface signals can describe traditional streaming interfaces 
supporting a single stream of data without knowledge of channels or 
packet boundaries. The interface can also support more complex 
protocols capable of burst and packet transfers with packets interleaved 
across multiple channels. Figure 6.1 illustrates a typical application of the 
Avalon-ST interface.

Figure 6.1. Avalon-ST Interface - Typical Application
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Introduction
All Avalon-ST source and sink interfaces are not necessarily 
interoperable. However, if two interfaces provide compatible functions 
for the same application space, adapter logic is available to allow them to 
interoperate.

6.1.1. Features

Some of the prominent features of the Avalon-ST interface are:

■ Low latency, high throughput point-to-point data transfer
■ Multiple channel support with flexible packet interleaving
■ Sideband signaling of channel, error, and start and end of packet 

delineation
■ Support for data bursting
■ Automatic interface adaptation

6.1.2. Terms and Concepts

This section defines terms and concepts used in the Avalon-ST interface 
protocol. 

■ Avalon Streaming System—An Avalon Streaming System is a system 
that contains one or more Avalon-ST connections that transfer data 
from a source interface to a sink interface. The system shown in 
Figure 6.1 consists of Avalon-ST interfaces to transfer data from the 
system input to output and Avalon Memory-Mapped (Avalon-MM) 
control and status register interfaces to allow software control.

■ Avalon Streaming Components—A typical system using Avalon-ST 
interfaces combines multiple functional modules, called components. 
The system designer configures the components and connects them 
together to implement a system.

■ Source and Sink Interfaces and Connections—When two components 
are connected, the data flows from the source interface to the sink 
interface. The combination of a source interface connected to a sink 
interface is referred to as a connection. 

■ Backpressure—Backpressure is a mechanism by which a sink can 
signal to a source to stop sending data. The sink typically uses 
backpressure to stop the flow of data when its FIFOs are full or when 
there is congestion on its output port. Support for backpressure is 
optional.
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■ Transfers and Ready Cycles—A transfer is an operation that results in 
data and control being propagated from a source interface to a sink 
interface. For data interfaces, a ready cycle is a cycle during which 
the sink can accept a transfer. 

■ Symbol—A symbol is the smallest atomic unit of data. For most 
packet interfaces, a symbol is a byte. One or more symbols make up 
the single unit of data transferred in a cycle.

■ Channel—A channel is a physical or logical path or link through 
which information passes between two ports. 

■ Packet—A packet is an aggregation of data and control signals that is 
transmitted together. A packet may contain a header to help routers 
and other network devices direct the packet to the correct 
destination. The packet format is defined by the application, not this 
specification. Avalon-ST packets can be variable in length and can be 
interleaved across a connection. With an Avalon-ST interfaces, the 
use of packets is optional.

6.2.Avalon-ST 
Interface 
Signals

Each signal in an Avalon-ST source or sink interface corresponds to one 
Avalon-ST signal type; an Avalon-ST interface may contain only one 
instance of each signal type. All Avalon-ST signal types apply to both 
sources and sinks and have the same meaning for both.

Table 6.1 lists the signal types that comprise an Avalon-ST data interface. 

Table 6.1. Avalon-ST Interface Signals 

Signal Type Width Direction Required Description

Fundamental Signals

ready 1 Sink → 
Source

No Asserted high to indicate that the sink can accept data. 
On interfaces supporting flow control, ready is 
asserted by the sink on cycle N to mark cycle 
N+readyLatency as a ready cycle, during which the 
source may assert valid and transfer data. 

Sources without a ready input cannot be 
backpressured, and sinks without a ready output 
never need to backpressure. 
ltera Corporation 6–3
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6.2.1. Signal Polarity

All signal types listed in Table 6.1 are active high. 

valid 1 Source → 
Sink

No Asserted by the source to qualify all other source to sink 
signals. On ready cycles where valid is asserted, the 
data bus and other source to sink signals are sampled 
by the sink, and on other cycles are ignored. 

Sources without a valid output implicitly provide valid 
data on every cycle that they're not being 
backpressured, and sinks without a valid input 
expect valid data on every cycle that they are not 
backpressuring.

data 1–256 Source → 
Sink

No The data signal from the source to the sink, typically 
carries the bulk of the information being transferred.

The contents and format of the data signal is further 
defined by parameters.

channel 0–8 Source → 
Sink

No The channel number for data being transferred on the 
current cycle. 

If an interface supports the channel signal, it must also 
define the maxChannel parameter. 

error 1–255 Source → 
Sink

No A bit mask used to mark errors affecting the data being 
transferred in the current cycle. A single bit in error is 
used for each of the errors recognized by the 
component, as defined by the errorDescriptor 
property.

Packet Transfer Signals

startofpacket 1 Source → 
Sink

No Asserted by the source to mark the beginning of a 
packet. 

endofpacket 1 Source → 
Sink

No Asserted by the source to mark the end of a packet. 

empty 0–8 Source → 
Sink

No Indicates the number of symbols that are empty during 
cycles that contain the end of a packet. The empty 
signal is not used on interfaces where there is one 
symbol per beat. If endofpacket is not asserted, this 
signal is not interpreted.

Table 6.1. Avalon-ST Interface Signals 

Signal Type Width Direction Required Description
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6.2.2. Signal Sequencing and Timing

This section describes issues related to timing and sequencing of 
Avalon-ST signals.

6.2.2.1. Synchronous Interface

All transfers of an Avalon-ST connection occur synchronous to the rising 
edge of the associated clock signal. All outputs from a source interface to 
a sink interface, including the data, channel, and error signals, must 
be registered on the rising edge of clock. Inputs to a sink interface do not 
have to be registered. Registering signals at the source provides for high 
frequency operation while eliminating back-to-back registers with no 
intervening logic. 

6.2.2.2. Clock Enables

Avalon-ST components typically do not include a clock enable input, 
because the Avalon-ST signaling itself is sufficient to determine the cycles 
that a component should and should not be enabled. Avalon-ST 
compliant components may have a clock enable input for their internal 
logic, but they must take care to ensure that the timing of the interface 
control signals still adheres to the protocol. 

6.3.Avalon-ST 
Interface 
Properties

Table 6–2 lists the properties that characterize an Avalon-ST interface. 

Table 6–2. Avalon-ST Interface Properties (Part 1 of 2)

Name Default 
Value

Legal 
Values Description

dataBitsPerSymbol 8 1–512 Defines the number of bits per symbol. For example, 
byte-oriented interfaces have 8-bit symbols. This value 
is not restricted to be a power of 2. 

readyLatency 0 0–8 Defines the relationship between assertion/deassertion 
of the ready signal, and cycles which are considered to 
be ready for data transfer, separately for each 
interface.
ltera Corporation 6–5
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6.4.Typical Data 
Transfers

This section defines the transfer of data from a source interface to a sink 
interface. In all cases, the data source and the data sink must comply with 
the specification. It is not the responsibility of the data sink to detect 
source protocol errors.

6.4.1. Signal Details

This section describes the basic Avalon-ST protocol that all data transfers 
must follow. It also highlights the flexibility you have in choosing 
Avalon-ST signals to meet the needs of a particular component and makes 
recommendations concerning the signals that should be used. 

Figure 6.2. typical Avalon-ST Interface Signals 

■ ready – On interfaces supporting backpressure, ready is asserted 
by the sink to mark ready cycles, cycles where transfers may take 
place. Data interfaces that support backpressure must define the 
readyLatency parameter so that if ready is asserted on cycle N, 
cycle (N+readyLatency) is considered a ready cycle.

maxChannel 0 0–255 The maximum number of channels that a data interface 
can support.

errorDescriptor 0 list of strings A list of words that describe the error associated with 
each bit of the error signal. The length of the list must 
be the same as the number of bits in the error signal, and 
the first word in the list applies to the highest order bit. 
For example, “crc, overflow" means that bit[1] of 
error indicates a CRC error, and bit[0] indicates an 
overflow error.

Table 6–2. Avalon-ST Interface Properties (Part 2 of 2)

Name Default 
Value

Legal 
Values Description

channel
<max_channel>

valid

data

error

ready

Data SinkData Source
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■ valid – The valid signal qualifies valid data on any cycle where 
data is being transferred from the source to the sink. The valid 
signal is required by all interfaces. On each active cycle the data 
signal and other source to sink signals are sampled by the sink. 

■ data – The data signal typically carries the bulk of the information 
being transferred from the source to the sink, and consists of one or 
more symbols being transferred on every clock cycle. The 
dataBitsPerSymbol parameter defines how the data signal is 
divided into symbols. 

■ error – Errors are signaled with the error signal, where each bit in 
error corresponds to a possible error condition. A value of 0 on any 
cycle indicates the data on that cycle is error-free. The action that a 
component takes when an error is detected is not defined by this 
specification.

■ channel – The optional channel signal is driven by the source to 
indicate the channel to which the data belongs. The meaning of 
channel for a given interface depends on the application: some 
applications use channel as a port number indication, while other 
applications use channel as a page number or timeslot indication. 
When the channel signal is used, all of the data transferred in each 
active cycle belongs to the same channel. The source may change to 
a different channel on successive active cycles.

An interface that uses the channel signal must define the 
maxChannel parameter to indicate the maximum channel number. If 
the number of channels that the interface supports varies while the 
component is operating, maxChannel is the maximum channel 
number that the interface can support.

6.4.2. Data Layout

Symbol ordering is big endian, such that the high-order symbol is 
composed of the most significant bits. Figure 6.3 shows a 64–bit data 
signal with symbolsPerBeat=4 and dataBitsPerSymbol=16.

Figure 6.3. Data Symbols

 symbol 0 symbol 3symbol 2symbol 1

63 48 47 32 31 16 15 0
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The timing diagram in Figure 6.4, provides a 32–bit example where 
dataBitsPerSymbol=8 symbolsPerBeat=4. In this figure, D0 is the 
most significant symbol and and data[31] is the most significant bit of the 
most significant symbol.

Figure 6.4. Big Endian Layout of Data 

6.5.Data 
Transfer without 
Backpressure

The data transfer without backpressure is the most basic of Avalon-ST 
data transfers. On any given clock cycle, the source interface drives the 
data and the optional channel and error signals, and asserts valid. 
The sink interface samples these signals on the rising edge of the reference 
clock if valid is asserted. Figure 6.5 shows an example of data transfer 
without backpressure.

Figure 6.5. Data Transfer without Backpressure
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6.6.Data 
Transfer with 
Backpressure

The sink indicates to the source that it is ready for an active cycle by 
asserting the ready signal for a single clock cycle. Cycles during which 
the sink is ready for data are called ready cycles. During a ready cycle, the 
source may assert valid and provide data to the sink. If it has no data to 
send, it deasserts valid and can drive data to any value. 

Each interface that supports backpressure defines the readyLatency 
parameter to indicate the number of cycles from the time that ready is 
asserted until valid data can be driven. If an interface defines 
readyLatency to be 0, then the cycle during which ready is asserted is 
the ready cycle. If readyLatency has a nonzero value, the interface 
considers cycle (N + readyLatency) to be a ready cycle if ready is 
asserted on cycle N. Any interface that includes the ready signal and 
defines the readyLatency parameter supports backpressure. 

When readyLatency=0, data is transferred only when ready and 
valid are asserted on the same cycle. In this mode of operation, the 
source does not receive the sink’s ready signal before it begins sending 
valid data. The source provides the data and asserts valid whenever it 
can and waits for the sink to capture the data and assert ready. The sink 
only captures input data from the source when ready and valid are 
both asserted. 

Figure 6.6 illustrates a transfer with backpressure and 
readyLatency=0. The source provides data and asserts valid on cycle 
1, even though the sink is not ready. The source waits until cycle two, 
when the sink does assert ready, before moving onto the next data cycle. 
In cycle 3, the source drives data on the same cycle and the sink is ready 
to receive it; the transfer happens immediately. In cycle 4, the sink asserts 
ready, but the source does not drive valid data.

Figure 6.6.  Transfer with Backpressure, readyLatency=0 

Figure 6.7 and Figure 6.8 show data transfers with readyLatency=1 
and readyLatency=2, respectively. In both these cases, ready is 
asserted before the ready cycle, and the source responds 1 or 2 cycles later 
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by providing data and asserting valid. When readyLatency is not 0, 
the source must deassert valid on non-ready cycles. The sink captures 
data on any cycle where valid is asserted, regardless of the value of 
ready on that cycle.

Figure 6.7. Transfer with Backpressure, readyLatency=1

Figure 6.8. Transfer with Backpressure, readyLatency=2

6.7.Packet Data 
Transfers

The packet transfer property adds support for transferring packets from 
a source interface to a sink interface. Three additional signals are defined 
to implement the packet transfer. 
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Figure 6.9. Avalon-ST Packet Interface Signals

6.7.1. Signal Details

■ startofpacket – The startofpacket signal is required by all 
interfaces supporting packet transfers and marks the active cycle 
containing the start of the packet. This signal is only interpreted 
when valid is asserted.

■ endofpacket – The endofpacket signal is required by all 
interfaces supporting packet transfer and marks the active cycle 
containing the end of the packet.This signal is only interpreted when 
valid is asserted.

■ empty – The optional empty signal indicates the number of symbols 
that are empty during the cycles that mark the end of a packet. The 
sink only checks the value of the empty signal during active cycles 
that have endofpacket asserted. The empty symbols are always 
the last symbols in data, those carried by the low-order bits. The 
empty signal is required on all packet interfaces whose data signal 
carries more than one symbol of data and have a variable length 
packet format. The size of the empty signal in bits is log2(symbols 
per cycle).

6.7.2. Protocol Details

Packet data transfer follows the same protocol as the typical data transfer 
described in “Typical Data Transfers” on page 6–6, with the addition of 
the startofpacket, endofpacket, and empty.
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Figure 6.10 illustrates the transfer of a 17-byte packet from a source 
interface to a sink interface, where readyLatency=0. Data transfer 
occurs on cycles 1, 2, 4, 5, and 6, when both ready and valid are 
asserted. During cycle 1, startofpacket is asserted, and the first 4 
bytes of packet are transferred. During cycle 6, endofpacket is asserted, 
and empty has a value of 3, indicating that this is the end of the packet 
and that 3 of the 4 symbols are empty. In cycle 6, the high-order byte, 
data[31:24] drives valid data because Avalon-ST is big-endian.

Figure 6.10. Packet Transfer
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7. Conduit Interfaces
Conduit interfaces are used to group together an arbitrary collection of 
signals to be exported to the outside of an SOPC Builder system. A 
conduit interface can consist of both input and output signals. Directions, 
such as source and sink for Avalon-ST interfaces or in and out for 
Avalon-MM masters and slaves, do not apply to conduit interfaces. A 
module can have multiple conduit interfaces to provide a logical 
grouping of the signals being exported. Figure 7.1 illustrates this 
interface. 

Figure 7.1. Focus on the Conduit Interface
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Properties
In this figure, signals that interface to the SDRAM, such as address, data 
and control signals, form a conduit interface and would have the signal 
type export. 

7.1.Properties There are no properties for conduit interfaces. 

7.2.Signals Table 7.1 lists the conduit signal types.

Table 7.1. Conduit Signal Types

Signal Type Width Direction Required Description

export n In, out or 
bidirectional

Yes A conduit interface consists of one or more signals of 
arbitrary width, that are inputs or output, of type 
export. All of these signals are exported out the top 
level of the SOPC Builder system.
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v1.0

Combined previous Avalon Memory-Mapped Interface 
Specification with Avalon Streaming Interface Specification. 
Added separate chapters for clocks, tristate slaves, interrupts, 
and conduits.

—

Information Type Contact Method Contact (1)

Technical support Website www.altera.comsupport/ 

Technical training Website www.altera.com/training/

Email ccustrain@altera.com

Altera literature services Email liliterature@altera.com

Non-technical support (General) Email nacomp@altear.com

(Software Licensing) Email aauthorization@altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.
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Avalon Streaming Interface Specification
Typographic 
Conventions

This document uses the typographic conventions shown below.

Visual Cue Meaning

Bold Type with Initial 
Capital Letters 

Command names, dialog box titles, checkbox options, and dialog box options are 
shown in bold, initial capital letters. Example: Save As dialog box. 

bold type External timing parameters, directory names, project names, disk drive names, 
filenames, filename extensions, and software utility names are shown in bold 
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital 
Letters 

Document titles are shown in italic type with initial capital letters. Example: AN 75: 
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type. 
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type. 
Example: <file name>, <project name>.pof file. 

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples: 
Delete key, the Options menu. 

“Subheading Title” References to sections within a document and titles of on-line help topics are 
shown in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1, 
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For 
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an 
actual file, such as a Report File, references to parts of files (e.g., the VHDL 
keyword BEGIN), as well as logic function names (e.g., TRI) are shown in 
Courier. 

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is 
important, such as the steps listed in a procedure. 

■ ● • Bullets are used in a list of items when the sequence of the items is not important. 

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention. 

c
The caution indicates required information that needs special consideration and 
understanding and should be read prior to starting or continuing with the 
procedure or process.

w The warning indicates information that should be read prior to starting or 
continuing the procedure or processes

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic. 
Info–2  Altera Corporation
 March 2008
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