ALTERAW

101 Innovation Drive
San Jose, CA 95134
www.altera.com

QII5V4-9.0

&

QUARTUS*II

Quartus Il Handbook Version 9.0

Volume 4: SOPC Builder

Copyright © 2009 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and
logos that are identified as trademarks and /or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All oth-
er product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork
rights, and copyrights. Altera warrants performance of its semicond uctor products to current specifications in accordance with Altera's standard warranty, butreserves the right to make
changes to any productsand services at any time withoutnotice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service
described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications be-

fore relying on any published information and before placing orders for products or services. nSsal

LS. EN IS0 9001

ii Altera Corporation

QA | D _E 5Y/A ® Contents

ChapterRevisionDatesttt ss st sn s nnssnnnnnnnnnns Xi

Section 1. SOPC Builder Features

Chapter 1. Introduction to SOPC Builder

Quick Start GUIAE i e e e e e 1-1
OVerVIEW 1-1
Architecture of SOPC Builder Systems 1-2
SOPC Builder Modules 1-2
Example System 1-2
Available Components 1-3
Custom Components 1-4
Third-Party Components 1-4
Functions of SOPC Builder 1-5
Defining and Generating the System Hardware ... 1-5
Creating a Memory Map for Software Development 1-6
Creating a Simulation Model and TestBench 1-6
Visualization of Large SOPC Builder Systems 1-6
Operating System Support 1-6
Talkback SUpport 1-7
Referenced Documents 1-7
Document Revision History 1-8

Chapter 2. System Interconnect Fabric for Memory-Mapped Interfaces

INtrodUCtONo e 2-1
High-Level Description 2-1
Fundamentals of Implementation i 2-3
Functions of System Interconnect Fabric il 2-3

Address Decoding 2-4

Datapath MultipleXing 2-5

Wait State Insertion e 2-5

Pipelined Read Transfersttt 2-6

Dynamic Bus Sizing and Native Address Alignment 2-7
Dynamic BusSizing 2-7

Wider Mastert 2-7
NarrOWer Mastero 2-8
Native Address AGgnment 2-8

Arbitration for Multimaster Systems 2-9
Traditional Shared Bus Architectures e 2-9
Slave-Side Arbitration e 2-10
Arbiter Detailso 2-10
Arbitration RUles 2-11

Setting Arbitration Parameters in SOPC Builder 2-11
Fairness-Based Shares 2-12
Round-Robin Scheduling 2-13
Burst Transfers 2-13
Burst Adapters 2-13

© March 2009 Altera Corporation Quartus 11 Handbook Version 9.0 Volume 4: SOPC Builder

iv Contents

Interrupts 2-14
Individual Requests IRQ Scheme 2-15
Priority Encoded InterruptScheme 2-15
Assigning IRQs in SOPC Builder 2-16

Reset Distribution 2-16

Referenced Documents 2-17

Document Revision History 2-17

Chapter 3. System Interconnect Fabric for Streaming Interfaces

Introduction 3-1
High-Level Description 3-1
Avalon Streaming and Avalon Memory-Mapped Interfaces 3-2

Adapters . .o 3-3
Data Format Adapter 3-4
Timing Adapter 3-4
Channel Adapter 3-4
Error Adapter 3-5

Multiplexer Examples 3-5
Example to Double Clock Frequency 3-5
Example to Double Data Width and Maintain Frequency 3-5
Example to Boost the Frequency 3-6

Referenced DocUMENtSo 3-6

Document Revision History 3-7

Chapter 4. SOPC Builder Components

Component Providers 4-1
Component Hardware Structure i 4-2
Components Inside the SOPC Builder System 4-3
Static HDL COMPONENtsttt 4-3
Dynamic HDL Components e 4-3
Components Outside the SOPC Builder System 4-3
Exported Connection Points—Conduit Interfaces o i, 4-4
SOPC Builder Component SearchPath o ool 4-4
Installing Additional Components 4-5
Copy to the IP Root Directory i 4-5
Reference Components inan .ipxFile i 4-6
Understanding IPX FileSyntax 4-6
Upgrading from Earlier Versions i 4-7
Component SEIUCtUIe 4-7
Component Description File (_hw.tcl) o o o o o oo 4-7
Component File Organization 4-8
Classic Components inSOPC Builder i i i il 4-8
Referenced DOCUIMENESo ouuii 4-9
Document Revision History 4-9

Chapter 5. Using SOPC Builder with the Quartus Il Software

Introduction 5-1
QuartusITIP File 5-1
Quartus Il Incremental Compilation 5-1

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Contents v

TimeQuest Timing Analyzer 5-2
Analyzing PLLs o 5-2
Analyzing Slow Asynchronous I/OPaths L 5-3
Analyzing Single Data Rate SDRAM and SSRAM 5-4
Analyzing Tristate Bridges and Asynchronous Devices 5-6
Analyzing DDR and DDR2 MemOIiesiiiiiiiit i 5-6

Referenced Documents 5-7

Document Revision History 5-7

Chapter 6. Component Editor

Introduction 6-1
Component Hardware Structure i i 6-2
Starting the Component Editor 6-2
HDLFiles Tabo e e 6-2
Bottom-Up Design 6-3
Top-Down Designo 6-3
Signals Tab 6-3
Naming Signals for Automatic Type and Interface Recognition 6-4
Templates for Interfaces to External Logic il 6-5
Interfaces Tab 6-6
Component Wizard Tab 6-6
Identifying Information 6-6
Parameters 6-7
Saving a Component 6-8
Editing a Component 6-8
Software ASSIGNMENES 6-8
Component GUIL 6-8
Referenced Documents i 6-9
Document Revision History 6-9

Chapter 7. Component Interface Tcl Reference

Introduction 7-1
Information in a Hardware Component DescriptionFileo oo, 7-1
Component Phasesuiiiii i 7-2
Writing a Hardware Component DescriptionFile o oL 7-2
Providing Basic Information 7-2
Declaring Parameters 7-3
Declaring Interfaces 7-6
Adding Files and Guiding Generation i 7-6
Default Behaviors ... 7-7
Validation Phase Behavior i i 7-7
Elaboration Phase Behavior i 7-7
Generation Phase Behavior i i 7-7
Editor Phase Behavior i 7-8
Overriding Default Behaviors 7-9
Validation Callback 7-9
Elaboration Callback 7-10
Generation Callback 7-10
Editor Callback 7-11
Hardware Tcl Command Reference i i 7-12

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

vi Contents

Module Definition 7-14
get_module_properties 7-14
get_module_property 7-15
set_module_property 7-16
get_module_ports 7-16
get_module_assignment 7-16
set_module_assignment 7-17
add_file 7-17
get_files L. 7-18
get_file property ... 7-18
set_file_property 7-18
SENA_MESSAZE oottt 7-19

Parameters 7-19
get_parameter_properties 7-19
add_parameter 7-22
get_parameters 7-22
get_parameter_property 7-23
set_parameter_property i 7-23
get_parameter_value 7-23
set_parameter_value 7-24
decode_address_map 7-24
add_display_item 7-24

Interfaces and Ports 7-25
add_interface 7-25
get_interfaces 7-26
get_interface_properties 7-27
get_interface_property 7-27
set_interface_property 7-27
add_interface_port 7-28
get_interface_ports 7-28
get_PpOrt_Properties 7-29
get_pOrt_property 7-29
Set_POrt_Property 7-30
get_interface_assignment 7-30
set_interface_assignment 7-31

Generation 7-31
get_generation_properties 7-31
get_generation_property 7-32
get_ProjJect_Property 7-32

Referenced Document 7-33

Document Revision History 7-33

Chapter 8. Archiving SOPC Builder Projects

INtrodUCtiON . ..o it e 8-1
LImitations e e e 8-1
Required Files 8-2
Referenced DocUmMENtsottt e e e e e 8-3
Document Revision History 8-3

Section Il. Building Systems with SOPC Builder

Chapter 9. SOPC Builder Memory Subsystem Development Walkthrough

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Contents vii

Introduction 9-1
Example Design 9-1
Example Design Structure 9-2
Example Design Starting Point 9-3
Hardware and Software Requirements i 9-3
Design FIow 9-4
Component-Level Design in SOPC Builder 9-4
SOPC Builder System-Level Design 9-4
Simulation 9-5
Quartus I Project-Level Design 9-5
Board-Level Design 9-5
Simulation Considerations 9-5
Generic Memory Models 9-5
Vendor-Specific Memory Models 9-6
On-Chip RAM and ROM 9-6
Component-Level Design for On-Chip Memoryo, 9-6
Memory Typeo 9-6

SiZe . 9-7
Read Latency 9-7
Non-Default Memory Initialization L 9-7
Enable In-System Memory Content Editor Feature 9-8
SOPC Builder System-Level Design for On-Chip Memory 9-8
Simulation for On-Chip Memory 9-8
Quartus II Project-Level Design for On-Chip Memory 9-8
Board-Level Design for On-Chip Memory i 9-8
Example Design with On-Chip Memory i 9-8
EPCS Serial Configuration Device 9-9
Component-Level Design foran EPCSDevice 9-9
SOPC Builder System-Level Design for an EPCS Device 9-9
Simulation foran EPCSDevice 9-10
Quartus II Project-Level Design for an EPCS Device 9-10
Board-Level Design foran EPCSDevice i 9-10
Example Design with an EPCS Device i i, 9-10
SDR SDRAM ... 9-11
Component-Level Design for SDRAM i, 9-11
SOPC Builder System-Level Design for SDRAM 9-11
Simulation for SDRAM 9-12
Quartus II Project-Level Design for SDRAM, 9-12
Connecting and Assigning the SDRAM-Related Pins 9-12
Accommodating Clock Skew 9-12
Board-Level Design for SDRAM i 9-13
Example Design with SDRSDRAM i 9-13
DDR SDRAM ... 9-14
DDR2 SDRAM ... 9-14

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

viii Contents

Off-Chip SRAM and FlashMemory i 9-15
Component-Level Design for SRAM and Flash Memory 9-15
Avalon-MM Tristate Bridge 9-16
Flash Memory 9-16

SR A L 9-17
SOPC Builder System-Level Design for SRAM and FlashMemory 9-18
Simulation for SRAM and Flash Memory 9-18
Quartus II Project-Level Design for SRAM and FlashMemory 9-18
Board-Level Design for SRAM and Flash Memory 9-19
Aligning the Least-Significant Address Bits 9-19
Aligning the Most-Significant Address Bitsl 9-20
Example Design with SRAM and FlashMemory 9-21
Adding the Avalon-MM Tristate Bridge 9-21
Adding the Flash Memory Interface 9-21
Adding the SRAM Interface 9-21
SOPC Builder System Contents Tab 9-21
Connecting and Assigning Pins in the Quartus Il Project 9-22
Connecting FPGA Pins to DevicesontheBoard 9-23
Referenced Documents 9-25
Document Revision History 9-26

Chapter 10. SOPC Builder Component Development Walkthrough

Introduction 10-1
SOPC Builder Components and the Component Editor 10-1
Prerequisites 10-1
Hardware and Software Requirements i i il 10-2

Component Development Flow 10-2
Typical Design Steps 10-2
Hardware Design 10-3

Design Example: Checksum Hardware Accelerator 10-4
Software Design 10-5
Verifying the Component 10-6

System Console 10-6
System-Level Verification 10-7

Sharing COMPONENnts 10-7

sopcinfo FIles 10-7

Referenced Documents oo 10-8

Document Revision History 10-9

Section lll. Interconnect Components

Chapter 11. Avalon Memory-Mapped Bridges

Introductionto Bridges 11-1
Structure of a Bridge 11-1
Reasons for Using a Bridge 11-2
Address Mapping for Systems with Avalon-MM Bridges 11-5
Tools for Visualizing the Address Map 11-7
Differences between Avalon-MM Bridges and Avalon-MM Tristate Bridges 11-7

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Contents ix

Avalon-MM Pipeline Bridge 11-7
Component OVerview 11-7
Functional Description 11-8

Interfaces 11-8
Pipeline Stages and Effectson Latency il 11-9
Burst Support 11-9
Example System with Avalon-MM Pipeline Bridges 11-9

Clock Crossing Bridge 11-10
Choosing Clock Crossing Methodology, 11-10
Functional Description 11-11

Interfaces 11-11
Clock Crossing Bridge and FIFOs 11-12
Burst Support 11-12
Example System with Avalon-MM Clock-Crossing Bridges 11-13
Instantiating the Avalon-MM Clock-Crossing Bridge in SOPC Builder 11-14

Clock Domain Crossing LOgICuuuuuu e 11-15
Description of Clock Domain Adapter 11-15
Location of Clock Domain Adapter i 11-16
Duration of Transfers Crossing Clock Domains 11-17
Implementing Multiple Clock Domains in SOPC Builder 11-17

Avalon-MM DDR Memory Half-Rate Bridge 11-18
Resource Usage and Performance 11-19
Functional Description 11-19
Instantiating the Corein SOPC Builder 11-20
Example System 11-21

Device SUPPOTt o 11-22

Hardware Simulation Considerations 11-22

Software Programming Model 11-22

Referenced Documents 11-22

Document Revision History 11-23

Chapter 12. Avalon Streaming Interconnect Components

Introduction to Interconnect Components il i il 12-1
Interconnect Component Usage i 12-1
Address Mapping i 12-3

Timing Adapter e 12-3
Resource Usage and Performance i 12-4
Instantiating the Timing Adapter in SOPC Builder 12-4

Data Format Adapter 12-6
Resource Usage and Performance i 12-6
Instantiating the Data Format Adapter in SOPC Builder 12-7

Channel Adapter 12-8
Resource Usage and Performance i 12-8
Instantiating the Channel Adapter in SOPC Builder 12-8

Error Adapter o 12-9
Instantiating the Error Adapterin SOPCBuilder 12-9

Installation and Licensing 12-10

Hardware Simulation Considerations i i i 12-10

Software Programming Model 12-10

Referenced Documents oo 12-11

Document Revision History 12-11

Additional Information

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

Contents

About this Handbook Info-1
How to Contact Altera Info-1
Third-Party Software Product Information L Info-1
Typographic Conventions i Info-2

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter Revision Dates
/ANO[S R¥A P

The chapters in this book, Quartus II Handbook Version 9.0 Volume 4: SOPC Builder,
were revised on the following dates. Where chapters or groups of chapters are
available separately, part numbers are listed.

Chapter1 Introduction to SOPC Builder
Revised: March 2009
Part Number: QII54001-9.0.0

Chapter2 System Interconnect Fabric for Memory-Mapped Interfaces
Revised: March 2009
Part Number: QII54003-9.0.0

Chapter3 System Interconnect Fabric for Streaming Interfaces
Revised: March 2009
Part Number: QI154019-9.0.0

Chapter4 SOPC Builder Components
Revised: March 2009
Part Number: QI154004-9.0.0

Chapter 5 Using SOPC Builder with the Quartus II Software
Revised: March 2009
Part Number: QI154023-9.0.0

Chapter 6 Component Editor
Revised: March 2009
Part Number: QII54005-9.0.0

Chapter 7 Component Interface Tcl Reference
Revised: March 2009
Part Number: QI154022-9.0.0

Chapter 8 Archiving SOPC Builder Projects
Revised: March 2009
Part Number: QI154017-9.0.0

Chapter 9 SOPC Builder Memory Subsystem Development Walkthrough
Revised: March 2009
Part Number: QII54006-9.0.0

Chapter 10 SOPC Builder Component Development Walkthrough
Revised: March 2009
Part Number: QI154007-9.0.0

Chapter 11 Avalon Memory-Mapped Bridges

Revised: March 2009
Part Number: QI154020-9.0.0

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

Xii Chapter Revision Dates

Chapter 12 Avalon Streaming Interconnect Components
Revised: March 2009
Part Number: QII54021-9.0.0

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

fAEl TERA Section I. SOPC Builder Features

This section introduces the SOPC Builder system integration tool. Chapters in this
section answer the following questions:

m What is SOPC Builder?

m What features does SOPC Builder provide?

This section includes the following chapters:

m Chapter 1, Introduction to SOPC Builder

Chapter 2, System Interconnect Fabric for Memory-Mapped Interfaces
Chapter 3, System Interconnect Fabric for Streaming Interfaces
Chapter 4, SOPC Builder Components

Chapter 5, Using SOPC Builder with the Quartus II Software

Chapter 6, Component Editor

Chapter 7, Component Interface Tcl Reference
m Chapter 8, Archiving SOPC Builder Projects

['=~ For information about the revision history for chapters in this section, refer to each
individual chapter’s revision history.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

-2 Section I: SOPC Builder Features

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

/ANO

i)
J0
>

™ N

1. Introduction to SOPC Builder

l
[|
:

Q1154001-9.0.0

Quick Start Guide

Overview

For a quick introduction on how to use SOPC Builder, follow these general steps:

m Install the Quartus®II software, which includes SOPC Builder. This is available at
www.altera.com.

m Take advantage of the one-hour online course, Using SOPC Builder.

m Download and run the checksum sample design described in the SOPC Builder
Memory Subsystem Development Walkthrough chapter in volume 4 of the Quartus I1
Handbook.

SOPC Builder is a powerful system development tool. SOPC Builder enables you to
define and generate a complete system-on-a-programmable-chip (SOPC) in much less
time than using traditional, manual integration methods. SOPC Builder is included as
part of the Quartus II software.

You may have used SOPC Builder to create systems based on the Nios® II processor.
However, SOPC Builder is more than a Nios Il system builder; it is a general-purpose
tool for creating systems that may or may not contain a processor and may include a
soft processor other than the Nios II processor.

SOPC Builder automates the task of integrating hardware components. Using
traditional design methods, you must manually write HDL modules to wire together
the pieces of the system. Using SOPC Builder, you specify the system components in a
GUI and SOPC Builder generates the interconnect logic automatically. SOPC Builder
generates HDL files that define all components of the system, and a top-level HDL file
that connects all the components together. SOPC Builder generates either Verilog
HDL or VHDL equally.

In addition to its role as a system generation tool, SOPC Builder provides features to
ease writing software and to accelerate system simulation. This chapter includes the
following sections:

m “Architecture of SOPC Builder Systems” on page 1-2
m “Functions of SOPC Builder” on page 1-5

m “Operating System Support” on page 1-6

m “Talkback Support” on page 1-7

© March 2009 Altera Corporation Quartus 11 Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com
http://www.altera.com/literature/hb/qts/qts_qii54006.pdf
http://www.altera.com/literature/hb/qts/qts_qii54006.pdf
http://www.altera.com/education/training/courses/OEMB1115

Chapter 1: Introduction to SOPC Builder
Architecture of SOPC Builder Systems

Architecture of SOPC Builder Systems

An SOPC Builder component is a design module that SOPC Builder recognizes and
can automatically integrate into a system. You can also define and add custom
components or select from a list of provided components. SOPC Builder connects
multiple modules together to create a top-level HDL file called the SOPC Builder
system. SOPC Builder generates system interconnect fabric that contains logic to
manage the connectivity of all modules in the system.

SOPC Builder Modules

5

This document refers to components as the class definition for a module, while module
is the instance of the component class.

SOPC Builder modules are the building blocks for creating an SOPC Builder system.
SOPC Builder modules use Avalon® interfaces, such as memory-mapped, streaming,
and IRQ, for the physical connection of components. You can use SOPC Builder to
connect any logical device (either on-chip or off-chip) that has an Avalon interface.
There are different types of Avalon interfaces, as described in the Avalon Interface
Specifications.

For details on the Avalon-MM interface refer to System Interconnect Fabric for
Memory-Mapped Interfaces in chapter in volume 4 of the Quartus Il Handbook. For
details on the Avalon-ST interface, refer to the System Interconnect Fabric for Streaming
Interfaces chapter in volume 4 of the Quartus II Handbook. For details about the
Avalon-ST interface protocol, refer to Avalon Interface Specifications.

Example System

Figure 1-1 shows an FPGA design that includes an SOPC Builder system and custom
logic modules. You can integrate custom logic inside or outside the SOPC Builder
system. In this example, the custom component inside the SOPC Builder system
communicates with other modules through an Avalon-MM master interface. The
custom logic outside of the SOPC Builder system is connected to the SOPC Builder
system through a PIO interface. The SOPC Builder system includes two SOPC Builder
components with Avalon-ST source and sink interfaces. The system interconnect
fabric connects all of the SOPC Builder components using the Avalon-MM or
Avalon-ST system interconnect as appropriate.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/hb/qts/qts_qii54019.pdf
http://www.altera.com/literature/hb/qts/qts_qii54019.pdf

Chapter 1: Introduction to SOPC Builder 1-3
Architecture of SOPC Builder Systems

Figure 1-1. Example of an FPGA with a SOPC Builder System Generated by SOPC Builder

Printed Circuit Board

System Module

Processor Streaming
(32-bit Data
Master) Sink

PIO DDR2 Streaming
(8-bit Memory Data
slave) Controller Source

DDR2 Co-Processor DIDIRZ
Memory Memory

| | | | | | "l Avalon-MM Master Port
Avalon-MM Slave Port

Eile Avalon-ST Source Port

Bus Bridge

B Avalon-ST Sink Port

A component can be a logical device that is entirely contained within the SOPC
Builder system, such as the processor component shown in Figure 1-1. Alternately, a
component can act as an interface to an off-chip device, such as the DDR2 interface
component in Figure 1-1. In addition to the Avalon interface, a component can have
other signals that connect to logic outside the SOPC Builder system. Non-Avalon
signals can provide a special-purpose interface to the SOPC Builder system, such as
the PIO in Figure 1-1. These non-Avalon signals are described in Conduit Interface
chapter in the Avalon Interface Specifications.

Available Components

Altera and third-party developers provide ready-to-use SOPC Builder components,
including;:

m Microprocessors, such as the Nios II processor

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

1-4 Chapter 1: Introduction to SOPC Builder
Architecture of SOPC Builder Systems

m Microcontroller peripherals, such as a Scatter-Gather DMA Controller and timer

m Serial communication interfaces, such as a UART and a serial peripheral interface
(SPI)

m General purpose /O
m Communications peripherals, such as a 10/100/1000 Ethernet MAC

m Interfaces to off-chip devices

Custom Components

You can import HDL modules and entities that you write using Verilog HDL or
VHDL into SOPC builder as custom components. You use the following design flow
to integrate custom logic into an SOPC Builder system:

1. Determine the interfaces used to interact with your custom component.
2. Create the component logic using either Verilog HDL or VHDL.

3. Use the SOPC Builder component editor to create an SOPC Builder component
with your HDL files.

4. Instantiate your component in the system.

Once you have created an SOPC Builder component, you can use the component in
other SOPC Builder systems, and share the component with other design teams.

- For instructions on developing a custom SOPC Builder component, the details about
the file structure of a component, or the component editor, refer to the SOPC Builder
Components chapter in volume 4 of the Quartus II Handbook.

«o For further details, refer to the System Interconnect Fabric for Memory-Mapped Interfaces
and System Interconnect Fabric for Streaming Interfaces chapters in volume 4 of the
Quartus Il Handbook.

Third-Party Components

You can also use SOPC-ready components that were developed by third-parties.
Altera awards the SOPC Builder Ready certification to IP functions that are ready to
integrate with the Nios Il embedded processor or the system interconnect fabric via
SOPC Builder. These cores support the Avalon-MM interface or the Avalon Streaming
(Avalon-ST) interface and include constraints, software drivers, and simulation
models when applicable.

To find third-party components that you can purchase and use in SOPC Builder
systems, complete the following steps:

1. On the Tools menu in SOPC Builder, click Download Components.

2. On the Intellectual Property Solutions web page, type SOPC Bui | der ready +
in the box labeled Search for IP, Development Kits and Reference Designs.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/hb/qts/qts_qii54004.pdf
http://www.altera.com/literature/hb/qts/qts_qii54004.pdf
http://www.altera.com/products/ip/ipm-index.html
http://www.altera.com/literature/hb/qts/qts_qii54019.pdf

Chapter 1: Introduction to SOPC Builder 1-5

Functions of SOPC Builder

Functions of SOPC Builder

This section describes the functions of SOPC Builder.

Defining and Generating the System Hardware
SOPC Builder allows you to design the structure of a hardware system. The GUI

allows you to add components to a system, configure the components, and specify
connectivity.

After you add and parameterize components, SOPC Builder generates the system
interconnect fabric, and outputs HDL files to your project directory. During system

generation, SOPC Builder creates the following items:

An HDL file for the top-level SOPC Builder system and for each component in the
system. The top-level HDL file is named <system_name>v for Verilog HDL
designs and <system_name>.vhd for VHDL designs.

Synopsis Design Constraints file (.sdc) for timing analysis.

A Block Symbol File (.bsf) representation of the top-level SOPC Builder system for
use in Quartus II Block Diagram Files (.bdf).

An example of an instance of the top-level HDL file,
<SOPC_project_name_inst>.v or <SOPC_project_name_inst>.vhd, which
demonstrates how to instantiate the top-level HDL file in your code.

A data sheet called <systern_name>.html that provides a system overview
including the following information:

m All external connections for the system

m A memory map showing the address of each Avalon-MM slave with respect to
each Avalon-MM master to which it is connected

m All parameter assignments for each component

A functional test bench for the SOPC Builder system and ModelSim® simulation
project files

SOPC Builder information file (.sopcinfo) that describes all of the components and
connections in your system. This file is a complete system description, and is used
by downstream tools such as the Nios II tool chain. It also describes the
parameterization of each component in the system; consequently, you can parse its
contents to get requirements when developing software drivers for SOPC Builder
components.

A Quartus IIIP File (.qip) that provides the Quartus II software with all required
information about your SOPC Builder system. The .qip file includes references to
the following information:

m HDL files used in the SOPC Builder system
m TimeQuest Timing Analyzer Synopsys Design Constraint (.sdc) files

m Component definition files for archiving purposes

After you generate the SOPC Builder system, you can compile it with the Quartus II
software, or you can instantiate it in a larger FPGA design.

© March 2009 Altera Corporation Quartus 11 Handbook Version 9.0 Volume 4: SOPC Builder

1-6 Chapter 1: Introduction to SOPC Builder
Visualization of Large SOPC Builder Systems

Creating a Memory Map for Software Development

When your SOPC Builder system includes a Nios II processor, SOPC Builder
generates a header file, cpu.h, that provides the base address of each Avalon-MM
slave component. In addition, each slave component can provide software drivers
and other software functions and libraries for the processor. You can create C header
files for your system using the sopc- cr eat e- header - f i | es utility.

«o For details type sopc- cr eat e- header-fil es --hel pina NiosII Command
shell.

<o For more details about how to provide Nios II software drivers for components, refer
to the Developing Device Drivers for the Hardware Abstraction Layer chapter of the Nios II
Software Developer’s Handbook. The Nios II EDS is separate from SOPC Builder, but it
uses the output of SOPC Builder as the foundation for software development.

Creating a Simulation Model and Test Bench

You can simulate your system after generating it with SOPC Builder. During system
generation, SOPC Builder outputs a simulation test bench and a ModelSim setup
script that eases the system simulation effort. The test bench does the following:

m Instantiates the SOPC Builder system
m Dirives all clocks and resets

m Instantiates simulation models for off-chip devices when available

Visualization of Large SOPC Builder Systems

For large systems, you can use the Filters dialog box to customize the display of your
system in the connections panel. You can filter the display of your system by interface
type, module name, interface type, or using custom tags. For example, you can use
filtering to view only components that include an Avalon-MM interface or
components that are connected to a particular Nios II processor. For more
information, refer to Quartus II online Help.

Operating System Support

SOPC Builder supports all of the operating systems that the Quartus II software
supports.

“ . For more information refer to Quartus II Installation & Licensing for Windows and Linux

Workstations.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/manual/quartus_install.pdf

Chapter 1: Introduction to SOPC Builder 1-7
Talkback Support

Talkback Support

Talkback is a Quartus II software feature that provides feedback to Altera on tool and
IP feature usage. Altera uses the data to help guide future product planning efforts.
Talkback sends Altera information on the components used, interface types, interface
properties, parameter names and values, clocking, and software assignments. The
Talkback file does not include information about system connectivity, interrupts or the
memory map seen by each master in the system. When problems arise in the
Quartus II software, Talkback data also helps Altera find and fix the cause.

The Talkback feature is enabled by default. You can disable Talkback if you do not
wish to share your tool usage data with Altera.

Referenced Documents

This chapter references the following documents:

m Avalon Interface Specifications

m Component Editor chapter in volume 4 of the Quartus II Handbook
m Conduit Interface chapter in the Avalon Interface Specification

m Developing Device Drivers for the Hardware Abstraction Layer chapter of the Nios II
Software Developer’s Handbook

m Nios Il Hardware Development Tutorial
m SOPC Builder Components chapter in volume 4 of the Quartus II Handbook

m System Interconnect Fabric for Memory-Mapped Interfaces chapter in volume 4 of the
Quartus I Handbook

m System Interconnect Fabric for Streaming Interfaces chapter in volume 4 of the
Quartus I Handbook

© March 2009 Altera Corporation Quartus 11 Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii54019.pdf
http://www.altera.com/literature/hb/qts/qts_qii54004.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii54005.pdf

Chapter 1: Introduction to SOPC Builder

Document Revision History

Document Revision History

Table 1-1 shows the revision history for this chapter.

Table 1-1. Document Revision History

Date and Document

Version Changes Made Summary of Changes
March 2009, m Added sopc-create-header-files command Updated to reflect new
v9.0.0 m Added description of Generate HTML Data Sheet functionality in the 9.0 release.
m Added instructions for downloading third-party IP.
m Named top-level HDL system files that SOPC Builder generates.
m Added paragraph introducing the filtering for visualization of
large systems.
November 2008, m Expanded description of.sopcinfo file —
v8.1.0

Changed page size to 8.5 x 11 inches

May 2008, v8.0.0

Updated references to Avalon Memory-Mapped and Streaming
Interface Specifications and changed to Avalon Interface
Specifications.

Add Quick Start Guide.
Add list of OS support.

The two specifications have
been combined into one for all
Avalon interfaces.

Archive.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

.o For previous versions of the Quartus Il Handbook, refer to the Quartus II Handbook

© March 2009 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

5A5| TERA 2. System Interconnect Fabric for
= e Memory-Mapped Interfaces

Q1154003-9.0.0

Introduction

The system interconnect fabric for memory-mapped interfaces is a high-bandwidth
interconnect structure for connecting components that use the Avalon®
Memory-Mapped (Avalon-MM) interface. The system interconnect fabric consumes
minimal logic resources, provides greater flexibility, and higher throughput than a
typical shared system bus. It is a cross-connect fabric and not a tristated or time
domain multiplexed bus. This chapter describes the functions of system interconnect
fabric for memory-mapped interfaces and the implementation of those functions.

High-Level Description

The system interconnect fabric is the collection of interconnect and logic resources
that connects Avalon-MM master and slaves on components in a system. SOPC
Builder generates the system interconnect fabric to match the needs of the
components in a system. The system interconnect fabric implements the connection
details of a system. It guarantees that signals are routed correctly between master and
slaves, as long as the ports adhere to the rules of the Avalon Interface Specifications. This
chapter provides information on the following topics:

m “Address Decoding” on page 2—4
m “Datapath Multiplexing” on page 2-5
m “Wait State Insertion” on page 2-5
m “Pipelined Read Transfers” on page 2—6
m “Dynamic Bus Sizing and Native Address Alignment” on page 2-7
m “Arbitration for Multimaster Systems” on page 2-9
m “Burst Adapters” on page 2-13
m “Interrupts” on page 2-14
m “Reset Distribution” on page 2-16
<o For details about the Avalon-MM interface, refer to the Avalon Interface Specifications.
System interconnect fabric for memory-mapped interfaces supports the following
items:

B Any number of master and slave components. The master-to-slave relationship
can be one-to-one, one-to-many, many-to-one, or many-to-many.

On-chip components.
Interfaces to off-chip devices.
Master and slaves of different data widths.

Components operating in different clock domains.

Components using multiple Avalon-MM ports.

© March 2009 Altera Corporation Quartus 11 Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

2-2 Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Introduction

Figure 2-1 shows a simplified diagram of the system interconnect fabric in an
example memory-mapped system with multiple masters.

L=~ All figures in this chapter are simplified to show only the particular function being

discussed. In a complete system, the system interconnect fabric might alter the
address, data, and control paths beyond what is shown in any one particular figure.

Figure 2-1. System Interconnect Fabric—Example System

H S
Processor Control
Instruction ~ Data i | DMA Controller
M M : Read Write
3 5 A UETH ST
: bq E A
Pe
.................. ol
System N [[RREEEECLLReLY -
Interconnect : | |} neee el SRR N I -
Fabric H
l YY VVYy
é_Arbiter / \ Arbiter /
Tri-State Bridge
Py I / A 4 A
s s s rob--a
Instruction Data SDRAM \ v
Memory Memory Controller Iil Iil
A Ethernet Flash
' MAC/PHY Memory
' Chip Chip
4
SDRAM Chip
——p Write Data & Control Signals Avalon-MM Master Port
------ » Read Data
== =% |nterface to Off-Chip Device Avalon-MM Slave Port

SOPC Builder supports components with multiple Avalon-MM interfaces, such as the
processor component shown in Figure 2-1. Because SOPC Builder can create system
interconnect fabric to connect components with multiple interfaces, you can create
complex interfaces that provide more functionality than a single Avalon-MM
interface. For example, you can create a component with two different Avalon-MM
slaves, each with an associated interrupt interface.

System interconnect fabric can connect any combination of components, as long as
each interface conforms to the Avalon Interface Specifications. It can, for example,
connect a system comprised of only two components with unidirectional dataflow
between them. Avalon-MM interfaces are suitable for random address transactions,
such as to memories or embedded peripherals.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2-3
Introduction

Generating system interconnect fabric is SOPC Builder’s primary purpose. In most
cases, you are not required to modify the generated HDL; however, a basic
understanding of how HDL works can help you optimize your system. For example,
knowledge of the arbitration algorithm can help designers of multimaster systems
minimize the impact of arbitration on the system throughput.

Fundamentals of Implementation

System interconnect fabric for memory-mapped interfaces implements a partial
crossbar interconnect structure that provides concurrent paths between master and
slaves. System interconnect fabric consists of synchronous logic and routing resources
inside the FPGA.

For each component interface, system interconnect fabric manages Avalon-MM
transfers, interacting with signals on the connected component. Master and slave
interfaces can contain different signals and the system interconnect fabric handle any
adaptation necessary between them. In the path between master and slaves, the
system interconnect fabric might introduce registers for timing synchronization, finite
state machines for event sequencing, or nothing at all, depending on the services
required by the specific interfaces.

<o For more information, refer to the Avalon Memory-Mapped Design Optimizations
chapter in the Embedded Design Handbook.

Functions of System Interconnect Fabric
System interconnect fabric logic provides the following functions:
m “Address Decoding” on page 2—4
m “Datapath Multiplexing” on page 2-5
m “Wait State Insertion” on page 2-5
m “Pipelined Read Transfers” on page 2-6
m “Arbitration for Multimaster Systems” on page 2-9
m “Burst Adapters” on page 2-13
m “Interrupts” on page 2-14
m “Reset Distribution” on page 2-16

The behavior of these functions in a specific SOPC Builder system depends on the
design of the components in the system and the settings made in SOPC Builder. The
remaining sections of this chapter describe how SOPC Builder implements each
function.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Address Decoding

Address Decoding

Address decoding logic in the system interconnect fabric forwards an appropriate
address and produces a chipselect signal for each slave. Address decoding logic
simplifies component design in the following ways:

m The system interconnect fabric selects a slave whenever it is being addressed by a
master. Slave components do not need to decode the address to determine when

they are selected.
m Slave addresses are properly aligned to the slave interface.
m Changing the system memory map does not involve manually editing HDL.

Figure 2-2 shows a block diagram of the address-decoding logic for one master and
two slaves. Separate address-decoding logic is generated for every master ina system.

As Figure 2-2 shows, the address decoding logic handles the difference between the
master address width (<M>) and the individual slave address widths (<S> and <T>).

It also maps only the necessary master address bits to access words in each slave’s

address space.

Figure 2-2. Block Diagram of Address Decoding Logic

chipselectl |
address [M..0] _ Address address [S..0] | ,f;}’i
Master Decoding o (8-bit)
Port Logic
read/write | Shve
address [T..2] Port?
(32-bit)

In SOPC Builder, the user-configurable aspects of address decoding logic are
controlled by the Base setting in the list of active components on the System Contents

tab, as shown in Figure 2-3.

Figure 2-3. Base Settings in SOPC Builder Control Address Decoding

Module Marne Deszcription Baze Enicd IRz
Ecpu Mios Il Proces... B
L instruction_tmaster Master port
L data_master haster port IRz 0 IR 31
¥ jtan_debug_mod... | Slave port 0 =021 20000 EAEl=iri
ext_flash Flash Metmory...| & Ox00000000(0x007FFFFF
ext_ram DTFY4HES... | & 0x02000000| 0x020FFFFF
{¥] ext_ram_bus Avalon Tri-St..
bartton_pio Pl (Parallel 110 0x02120860(0x021 2036F|[2
high_res_timer |nterval timer 0x02120820(0x0212053F|[3

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

© March 2009 Altera Corporation

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2-5
Datapath Multiplexing

Datapath Multiplexing

Datapath multiplexing logic in the system interconnect fabric drives the wri t edat a
signal from the granted master to the selected slave, and the r eaddat a signal from
the selected slave back to the requesting master.

Figure 2—4 shows a block diagram of the datapath multiplexing logic for one master
and two slaves. SOPC Builder generates separate datapath multiplexing logic for
every master in the system.

Figure 2-4. Block Diagram of Datapath Multiplexing Logic

readdatal

) ¢ P>
* > Slave
address Port 1

Data . —>

readdata
Path S M;\ster writedata
Multiplexer ort control
_>

P>
Slave
> Port 2

_>

readdata2

In SOPC Builder, the generation of datapath multiplexing logic is specified using the
connections panel on the System Contents tab.

Wait State Insertion

Wait states extend the duration of a transfer by one or more cycles. Wait state insertion
logic accommodates the timing needs of each slave, and causes the master to wait
until the slave can proceed. System interconnect fabric inserts wait states into a
transfer when the target slave cannot respond in a single clock cycle. System
interconnect fabric also inserts wait states in cases when slave r ead_enabl e and

wr i t e_enabl e signals have setup or hold time requirements.

Wait state insertion logic is a small finite-state machine that translates control signal
sequencing between the slave side and the master side. Figure 2-5 shows a block
diagram of the wait state insertion logic between one master and one slave.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

2-6

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Pipelined Read Transfers

Figure 2-5. Block Diagram of Wait State Insertion Logic

Wait-State
Insertion
Logic

read/write read/write

wait request
Master Slave
Port address Port

data

vy

-
«

System interconnect fabric can force a master to wait for several reasons in addition to
the wait state needs of a slave. For example, arbitration logic in a multimaster system
can force a master to wait until it is granted access to a slave.

SOPC Builder generates wait state insertion logic based on the properties of all slaves
in the system.

Pipelined Read Transfers

The Avalon-MM interface supports pipelined read transfers, allowing a pipelined
master to start multiple read transfers in succession without waiting for the prior
transfers to complete. Pipelined transfers allow master-slave pairs to achieve higher
throughput, even though the slave requires one or more cycles of latency to return
data for each transfer.

SOPC Builder generates system interconnect fabric with pipeline management logic
to take advantage of pipelined components wherever possible, based on the pipeline
properties of each master-slave pair in the system. Regardless of the pipeline latency
of a target slave, SOPC Builder guarantees that read data arrives at each master in the
order requested. Because master and slaves often have mismatched pipeline latency,
system interconnect fabric often contains logic to reconcile the differences. Many cases
of pipeline latency are possible, as shown in Table 2-1.

Table 2-1. Various Cases of Pipeline Latency in a Master-Slave Pair

Master Slave Pipeline Management Logic Structure
No pipeline No pipeline The system interconnect fabric does not instantiate logic to handle pipeline
latency.
No pipeline Pipelined with fixed | The system interconnect fabric forces the master to wait through any slave-side
or variable latency latency cycles. This master-slave pair gains no benefits of pipelining, because
the master waits for each transfer to complete before beginning a new transfer.
However, while the master is waiting, the slave can accept transfers from a
different master.
Pipelined No pipeline The system interconnect fabric carries out the transfer as if neither master nor
slave were pipelined, causing the master to wait until the slave returns data.
Pipelined Pipelined with fixed | The system interconnect fabric allows the master to capture data at the exact
latency clock cycle when data from the slave is valid. This process enables the
master-slave pair to achieve maximum throughput performance.
Pipelined Pipelined with This is the simplest pipelined case, in which the slave asserts a signal when its

variable latency

r eaddat a is valid, and the master captures the data. This case enables this
master-slave pair to achieve maximum throughput.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

© March 2009 Altera Corporation

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2-7
Dynamic Bus Sizing and Native Address Alignment

SOPC Builder generates logic to handle pipeline latency based on the properties of the
master and slaves in the system. When configuring a system in SOPC Builder, there
are no settings that directly control the pipeline management logic in the system
interconnect fabric.

Dynamic Bus Sizing and Native Address Alignment

SOPC Builder generates system interconnect fabric to accommodate master and
slaves with unmatched data widths. Address alignment affects how slave data is
aligned in a master's address space, in the case that the master and slave data widths
are different. Address alignment is a property of each slave, and can be different for
each slave in a system. A slave can declare itself to use one of the following:

®m Dynamic bus sizing
m Native address alignment

The following sections explain the implications of the address alignment property
slave devices.

Dynamic Bus Sizing

=

Dynamic bus sizing hides the details of interfacing a narrow component device to a
wider master, and vice versa. When an <N>-bit master accesses a slave with dynamic
bus sizing, the master operates exclusively on full <N>-bit words of data, without
awareness of the slave data width.

When using dynamic bus sizing, the slave data width in units of bytes must be a
power of two.

Dynamic bus sizing provides the following benefits:

m Eliminates the need to create address-alignment hardware manually.

B Reduces design complexity of the master component.

m Enables any master to access any memory device, regardless of the data width.

In the case of dynamic bus sizing, the system interconnect fabric includes a small
finite state machine that reconciles the difference between master and slave data

widths. The behavior is different depending on whether the master data width is
wider or narrower than the slave.

Wider Master

In the case of a wider master, the dynamic bus-sizing logic accepts a single, wide
transfer on the master side, and then performs multiple narrow transfers on the slave
side. For a data-width ratio of <N>:1, the dynamic bus-sizing logic generates up to
<N> slave transfers for each master transfer. The master waits while multiple
slave-side transfers complete; the master transfer ends when all slave-side transfers
end.

Dynamic bus-sizing logic uses the master-side byte-enable signals to generate
appropriate slave transfers. The dynamic bus-sizing logic performs as many
slave-side transfers as necessary to write or read the specified byte lanes.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

2-8

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Dynamic Bus Sizing and Native Address Alignment

I

Narrower Master

In the case of a narrower master, one transfer on the master side generates one
transfer on the slave side. In this case, multiple master word addresses map to a single
offset in the slave memory space. The dynamic bus-sizing logic maps each master
address to a subset of byte lanes in the appropriate slave offset. All bytes of the slave
memory are accessible in the master address space.

Table 2-2 demonstrates the case of a 32-bit master accessing a 64-bit slave with
dynamic bus sizing. In the table, offset refers to the offset into the slave memory
space.

Tahle 2-2. 32-Bit Master View of 64-Bit Slave with Dynamic Bus Sizing

32-hit Address Data
0x00000000 (word 0) OFFSET[0] 31,0
0x00000004 (word 1) OFFSET[0] 3.3
0x00000008 (word 2) OFFSET[1] 310
0x0000000C (word 3) OFFSETI 1] ¢3.32

In the case of a read transfer, the dynamic bus-sizing logic multiplexes the appropriate
byte lanes of the slave data to the narrow master. In the case of a write transfer, the
dynamic bus-sizing logic uses slave-side byte-enable signals to write only to the
appropriate byte lanes.

Altera recommends that you select dynamic bus sizing whenever possible. Dynamic
bus sizing offers more flexibility when the master and slave components in your
system have different widths.

Native Address Alignment

Table 2-3 demonstrates native address alignment and dynamic bus sizing for a 32-bit
master connected to a 16-bit slave (a 2:1 ratio). In this example, the slave is mapped to
base address <BASE> in the master’s address space. In Table 2-3, OFFSET refers to the
offset into the 16-bit slave address space.

Table 2-3. 32-Bit Master View of 16-Bit Slave Data

32-hit Master Address

Data with Native Alignment

Data with Dynamic Bus Sizing

BASE + 0x0 (word 0) 0x0000: OFFSET[0] OFFSET] 1] : OFFSET] 0]
BASE + 0x4 (word 1) 0x0000: OFFSET] 1] OFFSET] 3] : OFFSET] 2]
BASE + 0x8 (word 2) 0x0000: OFFSET] 2] OFFSET] 5] : OFFSET] 4]
BASE + 0xC (word 3) 0x0000: OFFSET] 3] OFFSET][7] : OFFSET] 6]

BASE + 4N (word N)

0x0000: OFFSET[N|

OFFSET[2N+1] : OFFSET[2N]

SOPC Builder generates appropriate address-alignment logic based on the properties
of the master and slaves in the system. When configuring a system in SOPC Builder,
there are no settings that directly control the address alignment in the system

interconnect fabric.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

© March 2009 Altera Corporation

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2-9
Arbitration for Multimaster Systems

Arbitration for Multimaster Systems

System interconnect fabric supports systems with multiple master components. In a
system with multiple masters, such as the system pictured in Figure 2-1 on page 2-2,
the system interconnect fabric provides shared access to slaves using a technique
called slave-side arbitration. Slave-side arbitration moves the arbitration logic close to
the slave, such that the algorithm that determines which master gains access to a
specific slave in the event that multiple masters attempt to access the same slave at the
same time.

The multimaster architecture used by system interconnect fabric offers the following
benefits:

m Eliminates having to create arbitration hardware manually.

m Allows multiple masters to transfer data simultaneously. Unlike traditional
host-side arbitration architectures where each master must wait until it is granted
access to the shared bus, multiple Avalon-MM masters can simultaneously
perform transfers with independent slaves. Arbitration logic stalls a master only
when multiple masters attempt to access the same slave during the same cycle.

m Eliminates unnecessary master-slave connections. The connection between a
master and a slave exists only if it is specified in SOPC Builder. If a master never
initiates transfers to a specific slave, no connection is necessary, and therefore
SOPC Builder does not waste logic resources to connect the two ports.

m Provides configurable arbitration settings, and arbitration for each slave is
specified independently. For example, you can grant one master more arbitration
shares than others, allowing it to gain more access cycles to the slave. The
arbitration share settings are defined for each slave independently.

m Simplifies master component design. The details of arbitration are encapsulated
inside the system interconnect fabric. Each Avalon-MM master connects to the
system interconnect fabric as if it is the only master in the system. As a result, you
can reuse a component in single-master and multimaster systems without
requiring design changes to the component.

Traditional Shared Bus Architectures

This section discusses the architecture of the system interconnect fabric generated by
SOPC Builder for multimaster systems. As a frame of reference for the discussion of
multiple masters and arbitration, this section describes traditional bus architectures.

In traditional bus architectures, one or more bus masters and bus slaves connect to a
shared bus, consisting of wires on a printed circuit board or on-chip routing. A single
arbiter controls the bus (that is, the path between bus masters and bus slaves), so that
multiple bus masters do not simultaneously drive the bus. Each bus master requests
control of the bus from the arbiter, and the arbiter grants access to a single master ata
time. Once a master has control of the bus, the master performs transfers with any bus
slave. When multiple masters attempt to access the bus at the same time, the arbiter
allocates the bus resources to a single master, forcing all other masters to wait.

Figure 2-6 illustrates the bus architecture for a traditional processor system. Access to
the shared system bus becomes the bottleneck for throughput: only one master has
access to the bus at a time, which means that other masters are forced to wait and only
one slave can transfer data at a time.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

2-10

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Arbitration for Multimaster Systems

Figure 2-6. Bus Architecture in a Traditional Microprocessor System

Master 2
Masters [ALIC DMA
System CPU
Controller

| Arbiter |
1t <«——Bottleneck

| System Bus |
Program Data

Slaves | UART PIO Memory | | Memory

Slave-Side Arbitration

Arbiter Details

The system interconnect fabric uses multimaster architecture to eliminate the
bottleneck for access to a shared bus. Multiple masters can be active at the same time,
simultaneously transferring data with independent slaves. For example, Figure 2-1
on page 2-2 demonstrates a system with two masters (a CPU and a DMA controller)
sharing a slave (an SDRAM controller). Arbitration is performed at the SDRAM slave;
the arbiter dictates which master gains access to the slave if both masters initiate a
transfer with the slave in the same cycle.

Figure 2-7 focuses on the two masters and the shared slave and shows additional
detail of the data, address, and control paths. The arbiter logic multiplexes all address,
data, and control signals from a master to a shared slave.

Figure 2-7. Detailed View of Multimaster Connections

M2 Write Data
Request Control

M1 Address _

M1 Write Data
> Address o

Request Control ol 5 >

£ | Write Data
.| S > Slave =
<
M2 Address _ Control >

>
| -
Ll

Slave Read Data

SOPC Builder generates an arbiter for every slave, based on arbitration parameters
specified in SOPC Builder. The arbiter logic performs the following functions for its
slave:

m Evaluates the address and control signals from each master and determines which
master, if any, gains access to the slave next.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces

Arbitration for Multimaster Systems

2-11

m Grants access to the chosen master and forces all other requesting masters to wait.

m Uses multiplexers to connect address, control, and datapaths between the multiple
masters and the slave.

Figure 2-8 shows the arbiter logic in an example multimaster system with two
masters, each connected to two slaves.

Figure 2-8. Block Diagram of Arbiter Logic

S1 Read Data & Control

Data-Path
Multiplexing
Logic

\ 4

Master 1
(M1)

M1 wait
mmmmag Slave 1 M2 wait
—- BRI o ster Select

M1 Address, Write
Data & Control

\ 4

\ 4

%

Data-Path
Multiplexing
Logic

\ 4

\ 4

> Master 2

(M2)

M2 Address, Write

Data & Control

Slave 2
Arbiter

S2 Read Data & Control

\ 4

M1 wait
M2 wait

Master Select

1

Arbitration Rules

This section describes the rules by which the arbiter grants access to masters when

they contend.

Setting Arbitration Parameters in SOPC Builder

You specify the arbitration shares for each master using the connection panel on the
System Contents tab of SOPC Builder, as shown in Figure 2-9.

© March 2009 Altera Corporation

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

2-12 Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Arbitration for Multimaster Systems

Figure 2-9. Arbitration Settings on the System Contents Tab

Maciule Marne Description Clock
E epu Mios Il Processor - Alte. . |clk
instruction_master Master port
| —t data_master hdzster port
1 1 =+ jtag_debug_module |Slave port
I m— sys_clk_timer Irteryal timer clk
,1_|1_ ext_ram_bus Avalon Tri-State Bridge |clk
ext_flash Flazh Memory (Comma...
ext_ram IDT71% 416 SRAM
,1_|1_ epcs_controller EPCS Serial Flash Cort. . [clk
I lan91c111 LAMS1 111 Interface (...
[1 @ jtag_uart TG UART ik

The arbitration settings are hidden by default. To see them, on the View menu, click
Show Arbitration.

Fairness-Based Shares

Arbiter logic uses a fairness-based arbitration scheme. In a fairness-based arbitration
scheme, each master pair has an integer value of transfer shares with respect to a slave.
One share represents permission to perform one transfer.

For example, assume that two masters continuously attempt to perform back-to-back
transfers to a slave. Master 1 is assigned three shares and Master 2 is assigned four
shares. In this case, the arbiter grants Master 1 access for three transfers, then Master 2
for four transfers. This cycle repeats indefinitely. Figure 2-10 demonstrates this case,
showing each master’s transfer request output, wait request input (which is driven by
the arbiter logic), and the current master with control of the slave.

Figure 2-10. Arbitration of Continuous Transfer Requests from Two Masters

M1_transfer_request .\ | | | | | | | | | | | | | | | |

M1_waitrequest ! | | / | | | \ | | / | | | \ | |

! L ! ! P
[R [[R [[R [[R [i
M2_transfer_request .\ [! ! [! ! L ! ! [! |
M2_waitrequest . | | 1 1 1 ; ; : : : | |
Current_Master -K Master 1 | Master 2 | Master 1 | Master 2 | Master 1 |

If a master stops requesting transfers before it exhausts its shares, it forfeits all its
remaining shares, and the arbiter grants access to another requesting master. Refer to
Figure 2-11. After completing one transfer, Master 2 stops requesting for one clock
cycle. As a result, the arbiter grants access back to Master 1, which gets a replenished
supply of shares.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2-13
Burst Adapters

Figure 2-11. Arbitration of Two Masters with a Gap in Transfer Requests

M1_transfer_request /i | | | | | | | | | | | | | | | |

M1_waitrequest \ ! ! / \ ! ! / 1 1 1 \‘ ! ! / 1 1

| | | | | | | | | | | | | | |

Mz—tranSfer_rEqUESt J\ | | | \\\—/\I | | | | | | | | | | |
M2_waitrequest ; ; \ / ; ; : : : ; ; : :
Current_Master N‘laster;l Master 2 Masteﬁ 1 ; Mas}terz; I‘Maste‘rl Mas‘terz;

Round-Rohin Scheduling

When multiple masters contend for access to a slave, the arbiter grants shares in
round-robin order. Round-robin scheduling drives a request interface according to
space available and data available credit interfaces. At every slave transfer, only
requesting masters are included in the arbitration.

Burst Transfers

Avalon-MM burst transfers grant a master uninterrupted access to a slave for a
specified number of transfers. The master specifies the number of transfers when it
initiates the burst. Once a burst begins between a master-slave pair, arbiter logic does
not allow any other master to access the slave until the burst completes. For burst
masters, the size of the burst determines the number of cycles that the master has
access to the slave, and the selected arbitration shares have no effect.

Burst Adapters

System interconnect fabric provides burst adaptation logic to accommodate the burst
capabilities of each port in the system, including ports that do not support burst
transfers. Burst adaptation logic consists of a finite state machine that translates the
sequencing of address and control signals between the slave side and the master side.

The maximum burst length for each port is determined by the component design and
is independent of other ports in the system. Therefore, a particular master might be
capable of initiating a burst longer than a slave’s maximum supported burst length. In
this case, the burst management logic translates the master burst into smaller slave
bursts, or into individual slave transfers if the slave does not support bursts. Until the
master completes the burst, the arbiter logic prevents other masters from accessing
the target slave.

For example, if a master initiates a burst of 16 transfers to a slave with maximum burst
length of 8, the burst adapter logic initiates two bursts of length 8 to the slave. If the
master initiates a burst of 14, the burst adapter logic segments the burst transfer into a
burst of 8 words followed by a burst of 6 words, because the slave can only handle a
maximum burst length of 8. If a master initiates a burst of 16 transfers to a slave that
does not support bursts, the burst management logic initiates 16 separate transfers to
the slave.

L=~ Theburst adapter inserts one idle cycle at the start of each burst. System throughput is
maximized when burst sizes are as large as possible.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

2-14

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Interrupts

In the case of a non-linewrap burst master connected to a slave with the

['i newr apBur st s property set to TRUE, it is not always possible to issue the
maximum-sized burst to the slave. In cases where a burst would cross a slave burst
boundary, the burst adapter must issue the appropriate smaller bursts according to
the master request. For example, if a non-linewrap burst master, data width=32 issues
a burst of 8 at byte address 0xC to a linewrap burst slave, data width=32, the burst
adapter issues a burst read of 5 at byte address 0xC followed by a burst read of size 3
at address 0x20. This example assumes a maximum burst size of 8 for both the master
and slave. Table 2-3 provides some examples that show how bursts are handled
between master and slaves with and without linewrapping. (Linewrap bursts are
common for SDRAM components.) In these examples the following conditions are
true:

m The master and slave have the same data width.

m Masters with the | i newr apBur st s property set to TRUE must also set
al waysBur st MaxBur st to TRUE due to a limitation in the burst adapter.

Table 2-4. Burst Behavior for Masters and Slaves with and without Linewrapping

Master Max Burst Size 8 4

Slave Max Burst Size 8 4 8

Master Linewrap

Bursts True False True False True False

Slave Linewrap Bursts

T F T F T F T F T F T F

Master bursts
Slave receives

8@ |8@0 |2@0 |2@0 |8@0 |8@0 |2@0 |2@0 |4@0 |4@0 |2@0 |2@0
8@0 |8@0 |2@0 |2@0 |4@0, [8@0 |2@0 |2@0 |4@0 |4@0 |2@0 |2@0

4@4
Master bursts 8@3 |8@3 |6@3 |6@3 |8@3 |4@0 |6@3 |6@3 |4@7 |4@7 |4@7 |4@3
4@4
Slave Receives 8@3 |5@3, |5@3, |6@3 |1@3, |1@s, |1@s, |4@s, |1e7, |1e7, |1e7, |4@s3
3@0 |1@8 1@4, |4@4, |4@4, |2@7 [3@4 |3@4 |3@8

3@0 |3@0 |1@8

Interrupts

For more information about the | i newr apBur st s property, refer to the Avalon
Memory-Mapped Slave Interfaces chapter in the Avalon Interface Specifications.

In systems where components have interrupt request (IRQ) sender interfaces, the
system interconnect fabric includes interrupt controller logic. A separate interrupt
controller is generated for each interrupt receiver. The interrupt controller aggregates
IRQ signals from all interrupt senders, and maps them to user-specified values on the
receiver inputs.

For further information, refer to the Interrupt Interfaces chapter in the Avalon Interface
Specifications.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2-15
Interrupts

Individual Requests IRQ Scheme

In the individual requests IRQ scheme, the system interconnect fabric passes IRQs
directly from the sender to the receiver, without making any assumptions about IRQ
priority. In the event that multiple senders assert their IRQs simultaneously, the
receiver logic (presumably under software control) determines which IRQ has highest
priority, then responds appropriately.

Using individual requests, the interrupt controller can handle up to 32 IRQ inputs.
The interrupt controller generates a 32-bit signal i r q[31: 0] to the receiver, and
simply maps slave IRQ signals to the bits of i r q[31: 0] . Any unassigned bits of

i rq[31: 0] are disabled. Figure 2-12 shows an example of the interrupt controller
mapping the IRQs on four senders to i r q[31: 0] on a receiver.

Figure 2-12. IRQ Mapping Using Software Priority

Sender irg
1
Interrupt
Controller
Sender irq g == ===
2
| -
= == - .
=< Receiver
Sender | ' s ‘
3 Ll _‘/ —_— - —
7/
/7
: 7/
Sender irg
4

Priority Encoded Interrupt Scheme

In the priority encoded interrupt scheme, in the event that multiple slaves assert their
IRQs simultaneously, the system interconnect fabric provides the interrupt receiver
with a 1-bit interrupt signal, and the number of the highest priority active interrupt.
An IRQ of lesser priority is undetectable until all IRQs of higher priority have been
serviced.

Using priority encoded interrupts, the interrupt controller can handle up to 64 slave
IRQ signals. The interrupt controller generates a 1-bit i r g signal to the receiver,
signifying that one or more senders have generated an IRQ. The controller also
generates a 6-biti r gnunber signal, which outputs the encoded value of the highest
pending IRQ. See Figure 2-13.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

2-16 Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Reset Distribution

Figure 2-13. IRQ Mapping Using Hardware Priority

Sender | irq Interrupt
i Controller
Sender irg
2
= irq
. ——P>
Sender
3 g /
-
Lt Receiver
Sender | irg :
4 ::qg > irgnumber [5..0]
irg2 o
irq3 '.
irg4 | Priority
ira5 . | Encoder
irg6 o
° L
irg(i3I

Assigning IRQs in SOPC Builder

You specify IRQ settings on the System Contents tab of SOPC Builder. After adding
all components to the system, you make IRQ settings for all interrupt senders, with
respect to each interrupt receiver. For each slave, you can either specify an IRQ
number, or specify not to connect the IRQ.

Reset Distribution

SOPC Builder generates the logic used in the system interconnect fabric, which drives
the reset pulse to all the logic. The system interconnect fabric distributes the reset
signal conditioned for each clock domain. The duration of the reset signal is at least
one clock period.

The system interconnect fabric asserts the system-wide reset in the following
conditions:

m The global reset input to the SOPC Builder system is asserted.
B Any component asserts its r eset r equest signal.

The global reset and reset requests are ORed together. This signal is then synchronized
to each clock domain associated to an Avalon-MM port, which causes the
asynchronous resets to be de-asserted synchronously.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces 2-17
Referenced Documents

Referenced Documents
This chapter references the following documents:
m Avalon Interface Specifications
m Avalon Memory-Mapped Bridges chapter in volume 4 of the Quartus II Handbook

m Avalon Memory-Mapped Design Optimizations chapter in the Embedded Design
Handbook

Document Revision History

Table 2-5 shows the revision history for this chapter.

Table 2-5. Document Revision History

Date and

Document

Version Changes Made Summary of Changes
March 2009, m Added table showing the behavior of the burst adapter for Clarification of burst behavior.
v9.0.0 master and slaves with and without | i newr apBur st s set to

TRUE.

November 2008, |m Added discussion of a non-bursting Avalon-MM master Minor update to reflect software
v8.1.0 connected to a Avalon-MM slave with | i newr apBur sts = | changes.

TRUE. Removed discussion on minimum arbitration shares;
this feature is no longer supported.

m Changed page size t0 8.5 x 11 inches
May 2008, v8.0.0 | m Updated references to Avalon Memory-Mapped and Streaming | The two specifications have been

Interface Specifications and changed to Avalon Interface combined into one for all Avalon
Specifications. interfaces.
m Moved clock-crossing bridge section from this chapter to
chapter 11.
“ . For previous versions of the Quartus Il Handbook, refer to the Quartus IT Handbook
Archive.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/hb/qts/qts_qii54020.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=Avalon Memory-Mapped bridges
http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf
http://www.altera.com
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

2-18 Chapter 2: System Interconnect Fabric for Memory-Mapped Interfaces
Document Revision History

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

3. System Interconnect Fabric for
/ANO[S R¥A /

Q1154019-9.0.0

® Streaming Interfaces

Introduction

Avalon® Streaming interconnect fabric connects high-bandwidth, low latency
components that use the Avalon Streaming (Avalon-ST) interface. This interconnect
fabric creates datapaths for unidirectional traffic including multichannel streams,
packets, and DSP data. This chapter describes the Avalon-ST interconnect fabric and
its use in connecting components with Avalon-ST interfaces. Descriptions of specific
adapters and their use in streaming systems can be found in the following sections:

m “Adapters” on page 3-3
m “Multiplexer Examples” on page 3-5

High-Level Description

Avalon-ST interconnect fabric is logic generated by SOPC Builder. Using SOPC
Builder, you specify how Avalon-ST source and sink ports connect. SOPC Builder
then creates a high performance point-to-point interconnect between the two
components. The Avalon-ST interconnect is flexible and can be used to implement
on-chip interfaces for industry standard telecommunications and data
communications cores, such as Ethernet IEEE 802.3 MAC and SPI 4.2. In all cases, bus
widths, packets, and error conditions are custom-defined.

Figure 31 illustrates the simplest system example that generates an interconnect
between the source and sink. This source-sink pair includes only the dat a and val i d
signals.

Figure 3-1. Interconnect for a Simple Avalon Streaming Source-Sink Pair

Data m) Data

Source | data Sink

Figure 3-2 illustrates a more extensive interface that includes signals indicating the
start and end of packets, channel numbers, error conditions, and back pressure.

Figure 3-2. Avalon Streaming Interface for Packet Data

_ _ready
Data valid » Data

Source channel 4 Sink
startofpack 't
endofpacket

empty

error

data

© March 2009 Altera Corporation Quartus 11 Handbook Version 9.0 Volume 4: SOPC Builder

3-2

Chapter 3: System Interconnect Fabric for Streaming Interfaces
Introduction

All data transfers using Avalon-ST interconnect occur synchronously to the rising
edge of the associated clock interface. All outputs from the source interface, including
the data, channel, and error signals, must be registered on the rising edge of the clock.
Registers are not required for inputs at the sink interface. Registering signals only at
the source provides for high frequency operation while eliminating back-to-back
registration with no intervening logic. There is no inherent maximum performance of
the interconnect. Throughput for a system depends on the components and how they
are connected.

For details about the Avalon-ST interface protocol, refer to the Avalon Interface
Specifications.

Avalon Streaming and Avalon Memory-Mapped Interfaces

The Avalon-ST and Avalon Memory-Mapped (Avalon-MM) interfaces are
complementary. High bandwidth components with streaming data typically use
Avalon-ST interfaces for the high throughput datapath. These components can also
use Avalon-MM connection interfaces to provide an access point for control. In
contrast to the Avalon-MM interconnect, which can be used to create a wide variety of
topologies, the Avalon-ST interconnect fabric always creates a point-to-point between
a single data source and data sink, as Figure 3-3 illustrates. There are two connection
pairs in this figure:

m The data source in the Rx Interface transfers data to the data sink in the FIFO.
m The data source in the FIFO transfers data to the Tx Interface data sink.

In Figure 3-3, the Avalon-MM interface allows a processor to access the data source,
FIFO or data sink to provide system control.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 3: System Interconnect Fabric for Streaming Interfaces 3-3
Adapters

Figure 3-3. Use of the Avalon Memory-Mapped and Streaming Interfaces

/ Control Plane: Avalon Memory Mapped Inteface \
Processor RAM UART Timer
G— >
Y A 4 v
Control Control Control
Slave Slave Slave
Data So e O Data
i
ready I““ :ready
Data valid »| Data Data |- vaid » Data
Source | channel || sink T Source | channel | giny
data 7 data =
i
\ Data Plane: Avalon Streaming Interface /

Adapters

Adapters are configurable SOPC Builder components that are part of the streaming
interconnect fabric. They are used to connect source and sink interfaces that are not
exactly the same without affecting the semantics of the data. SOPC Builder includes
the following four adapters:

m Data Format Adapter
m Timing Adapter

m Channel Adapter

m Error Adapter

You can add Avalon-ST adapters between two components with mismatched
interfaces. The adapter allows you to connect a data source to a data sink of differing
byte sizes. If you connect mismatched Avalon-ST sources and sinks in SOPC Builder
without inserting adapters, SOPC Builder generates error messages. Inserting
adapters into the system does not change the types of components that SOPC Builder
allows you to connect. The Insert Avalon-ST Adapters command on the System
menu attempts to correct these errors automatically, if possible, by inserting the
appropriate adapter types.

<o For complete information about these adapters, refer to the Avalon Streaming
Interconnect Components chapter in volume 4 of the Quartus II Handbook.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/hb/qts/qts_qii54021.pdf
http://www.altera.com/literature/hb/qts/qts_qii54021.pdf

3-4

Chapter 3: System Interconnect Fabric for Streaming Interfaces
Adapters

The following sections provide an overview of these adapters.

Data Format Adapter

Timing Adapter

Channel Adapter

The data format adapter allows you to connect interfaces that have different values
for the parameters defining the data signal. One of the most common uses of this
adapter is to convert data streams of different widths. Figure 3—4 shows an adapter
that allows a connection between a 128-bit input data stream and three 32-bit output
data streams.

Figure 3-4. Avalon Streaming Interconnect Fabric with Data Format Adapter

. Data))
128Dits 3| £ormat —32-Rits | 32-bit TX
Adapter Interface

i i III] Data)
1I2rﬁe2:‘;2(=220t _ﬂ:l:[m—> Format 32 bits 3| 32-bit TX
El]]]]] Adapter Interface

. Data .
128 hits > Format 32 bits »| 32-bit TX
Adapter Interface

The timing adapter allows you to connect component interfaces that require a
different number of cycles before driving or receiving data. This adapter inserts a
FIFO between the source and sink to buffer data or pipeline stages to delay the back
pressure signals. The timing adapter can also be used to connect interfaces that
support the r eady signal and those that do not.

The channel adapter provides adaptations between interfaces that have different
support for the channel signal or channel-related parameters. For example, if the
source channel is narrower than the sink channel, you can use this adapter to connect
them. The high-order bits of the sink channel are connected to zero. You can also use
this adapter to connect a source with a wider channel to a sink with a narrower
channel. If the source provides data for a channel that the sink cannot receive, the data
is not transferred.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 3: System Interconnect Fabric for Streaming Interfaces 3-5
Multiplexer Examples

Error Adapter

The error adapter ensures that per-bit error information provided by the source
interface is correctly connected to the sink interface’s input error signal. Matching
error conditions handled by the source and sink are connected. If the source has an
error condition that is not supported by the sink, the signal is left unconnected; the
adapter provides a simulation error message and an error indication if this error is
ever asserted. If the sink has an error condition that is not supported by the source, the
sink’s input is tied to zero.

Multiplexer Examples

You can combine these adapters with streaming components to create datapaths
whose input and output streams have different properties. The following sections
provide examples of datapaths constructed using SOPC Builder in which the output
stream is higher performance than the input stream:

m The first example shows an output with double the throughput of each interface
with a corresponding doubling of the clock frequency.

m The second example doubles the data width.

m The third example boosts the frequency of a stream by 10% by multiplexing input
data from two sources.

Example to Double Clock Frequency

Figure 3-5 illustrates a datapath that uses the dual clock version of the on-chip FIFO
memory and Avalon-ST channel multiplexer to merge the 100 MHz input from two
streaming data sources into a single 200 MHz streaming output. As Figure 3-5
illustrates, this example increases throughput by increasing the frequency and
combining inputs.

Figure 3-5. Datapath that Doubles the Clock Frequency

On-Chip FIFO
Data Source Memory — Dual Clk
input’ 200 MHz
ﬁﬂ&,
On-Chip FIFO 200 MHz
Data Source Memory — Dual Clk
input, 100 MHz 200 MHz /

Example to Double Data Width and Maintain Frequency

Figure 3-6 illustrates a datapath that uses the data format adapter and Avalon-ST
channel multiplexer to convert two, 8-bit inputs running at 100 MHz to a single 16-bit
output at 100 MHz.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

3-6 Chapter 3: System Interconnect Fabric for Streaming Interfaces
Referenced Documents

Figure 3-6. Datapath to Double Data Width and Maintain Original Frequency

Data Source

Data Format
Adapter

16 bits

ingut’

ﬁ 16 bits N
@100 MHz

Data Source

Data Format
Adapter

input

|

Example to Boost the Frequency

Figure 3-7 illustrates a datapath that uses the dual clock version of the on-chip FIFO
memory to boost the frequency of input data from 100 MHz to 110 MHz by sampling
two input streams at differential rates. In this example, the on-chip FIFO memory has
an input clock frequency of 100 MHz and an output clock frequency of 110 MHz. The
channel multiplexer runs at 110 MHz and samples one input stream 27.3 percent of
the time and the second 72.7 percent of the time.

You do not need to know what the typical and maximum input channel utilizations
are before attempting this. For example, if the first channel hits 50% utilization, the
output stream exceeds 100% utilization.

Figure 3-7. Datapath to Boost the Clock Frequency

Data Source 30% On:Chip FIFO 27.3% \
channel utilization | Memory —Dual Clk | o506 rate
. . 100%
A0put | @1%g|t'\s/|H 110 MHz__;, SHA channel
z utilization

E output
110 MHz

On-Chip FIFO

72.7%
Data Source Memory—Dual Ck | ¢oric’ e
input 110 MHz

@100 MHz
80%
channel utilization

Referenced Documents

This chapter references the following documents:
m Avalon Interface Specifications

m Avalon Streaming Interconnect Components chapter in volume 4 of the Quartus II
Handbook

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii54021.pdf

Chapter 3: System Interconnect Fabric for Streaming Interfaces

Document Revision History

3-7

Document Revision History

Table 3-1 shows the revision history for this chapter.

Table 3-1. Document Revision History

Date and Document Version

Changes Made

Summary of Changes

March 2009, v9.0.0

No changes from previous release.

November 2008, v8.1.0

m Added information on error adapter.
m Changed page size to 8.5 x 11 inches

May 2008, v8.0.0

Updated references to Avalon
Memory-Mapped and Streaming Interface
Specifications and changed to Avalon
Interface Specifications.

Archive.

© March 2009 Altera Corporation

. TFor previous versions of the Quartus Il Handbook, refer to the Quartus II Handbook

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

3-8 Chapter 3: System Interconnect Fabric for Streaming Interfaces
Document Revision History

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

AIEE:

4. SOPC Builder Components

Q1154004-9.0.0

An SOPC Builder component is a hardware design block available within SOPC
Builder that can be instantiated in an SOPC Builder system. This chapter defines
SOPC Builder components, with emphasis on the structure of custom components.

A component includes the following:

The HDL description of the component’s hardware.

A description of the interface to the component hardware, such as the names and
types of 1/0 signals.

A description of any parameters that specify the structure of the component logic
and component.

A GUI for configuring an instance of the component in SOPC Builder.

Scripts and other information SOPC Builder requires to generate the HDL files for
the component and integrate the component instance into the SOPC Builder
system.

Other component-related information, such as reference to software drivers,
necessary for development steps downstream of SOPC Builder.

This chapter discusses the design flow for new and classic custom-defined SOPC
Builder components, in the following sections:

“Component Providers” on page 4-1

“Component Hardware Structure” on page 4-2

“Exported Connection Points—Conduit Interfaces” on page 44
“SOPC Builder Component Search Path” on page 44
“Component Structure” on page 4-7

“Classic Components in SOPC Builder” on page 4-8

Component Providers

SOPC Builder components can be obtained from many providers, including the
following:

The components automatically installed with the Quartus® Il software.

Third-party IP developers can provide IP blocks as SOPC Builder-ready
components, including software drivers and documentation. A list of third-party
components can be found in SOPC Builder by clicking IP MegaStore on the Tools
menu.

Altera development kits, such as the Nios® Il Development Kit, can provide SOPC
Builder components as features.

You can use the SOPC Builder component editor to convert your own HDL files
into custom components.

© March 2009 Altera Corporation Quartus 11 Handbook Version 9.0 Volume 4: SOPC Builder

4-2

Chapter 4: SOPC Builder Components
Component Hardware Structure

e

The GUI interfaces for classic components run slower in newer versions of SOPC
Builder when you add or modify your component settings. These components are
marked by a gray dot in the System Contents tab. You have better performance when
you upgrade to the Hardware Component Description File (_hw.tcl) component
format in newer versions of SOPC Builder. These components are marked by a green
dot.

For more information about the _hw.tcl file, refer to the Component Editor chapter in
volume 4 of the Quartus II Handbook.

Component Hardware Structure

There are the following types of components in an SOPC Builder system, based on
where the associated component logic resides:

m Components that include their associated logic inside the SOPC Builder system
m Components that interface to logic outside the SOPC Builder system

Figure 4-1 shows an example of both types of components.

Figure 4-1. Component Logic Inside and Outside the SOPC Builder System

Avalon Interface Conduit-Ports
(Automatically Connected (or Interface) for
by SOPC Builder) Exporting Signals

System Module

System,?

Interconnect
Fabric

COTg;r;em Exported Signals
(HDL Files) from Component
Rest of
the System

3]
g qé_g External Sianal
% 39 [« > Logic Ignals
I % £ or R Unrelated
= Off-Chip : to SOPC
Device Builder

Avalon Interface
(Manually Connected
by System Designer)

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii54005.pdf

Chapter 4: SOPC Builder Components 4-3
Component Hardware Structure

Components Inside the SOPC Builder System

For components that are instantiated inside the SOPC Builder system, the component
defines its logic in an associated HDL file. During system generation, SOPC Builder
instantiates the component and connects it to the rest of the system. The component
can include exported signals in conduit interfaces. Conduit interfaces become ports
on the system, so they can be connected to logic outside the SOPC Builder system in
the board-level schematic.

For more information about conduit interfaces, refer to the Conduit Interfaces chapter
in the Avalon Interface Specifications.

In general, components connect to the system interconnect fabric using the Avalon®
Memory-Mapped (Avalon-MM) interface or the Avalon Streaming (Avalon-ST)
interface. A single component can provide more than one Avalon port. For example, a
component might provide an Avalon-ST source port for high-throughput data, in
addition to an Avalon-MM slave for control.

Static HDL Components

You can define SOPC Builder components whose parameters are all assigned values
during the initial editing session. Examples of parameters whose values are typically
known at instantiation time are address and data widths and FIFO depths. If all of a
component’s parameters are assigned when it is instantiated, the HDL for the
component is static. SOPC Builder automatically generates the top-level HDL
wrapper file to apply parameter values to your component.

Dynamic HDL Components

You can also create SOPC Builder components whose parameters are defined by a
generation callback. Examples of parameters that might be assigned during
generation callback are baud rate and output directory. When you create components
that include parameters defined using a generation callback, you must provide a
custom generation callback routine to create the top-level wrapper for your
component.

For more information about defining your own generation program, refer to the
Generation Callback section in the Component Interface Icl Reference chapter in volume 4
of the Quartus 11 Handbook.

Components Outside the SOPC Builder System

For components that interface to external logic or off-chip devices with
Avalon-compatible signals outside the SOPC Builder system, the component files
describe only the interface to the external logic. During system generation, SOPC
Builder exports an interface for the component in the top-level SOPC Builder system.
You must manually connect the signals at the top-level of SOPC Builder to pins or
logic defined outside the system that already has Avalon-compatible signals.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/fs/fs_avalon_streaming.pdf
http://www.altera.com/literature/hb/qts/qts_qii54022.pdf

4-4 Chapter 4: SOPC Builder Components
Exported Connection Points—Conduit Interfaces

Exported Connection Points—Conduit Interfaces

Conduit interfaces are brought to the top level of the system as additional ports.
Exported signals are usually either application-specific signals or the Avalon interface
signals.

Application-specific signals are exported to the top level of the system by the conduit
interface(s) defined in the _hw.tdl file. These are I/O signals in a component’s HDL
logic that are not part of any Avalon interfaces and connect to an external device, for
example DDR SDRAM memory, or logic defined outside of the SOPC Builder system.
You use conduit interfaces to connect application-specific signals of the external
device and the SOPC Builder system.

You can also export the Avalon interfaces to manually connect them to external
devices or logic defined outside a system with Avalon-compatible signals. This
method allows a direct connection to the Avalon interface from any device that has
Avalon-compatible signals. You can also export the Avalon interface in either an HDL
file using conduit interfaces, or in the _hw.tcl file without an HDL file.

You export the Avalon interface signals as an HDL file with simple wire connections
in the HDL description. The Avalon interface port signals are directly connected to
external I/0 signals in the HDL description. The conduit interface in the _hw.tcl file
exports the external I/O signals to the top level of the system.

In the _hw.tcl file, no HDL files are specified and only the Avalon signals and
interface ports are declared in the file.

SOPC Builder Component Search Path

Each time SOPC Builder starts, it searches for component files. The components that
SOPC Builder finds are displayed in the list of available components on the SOPC
Builder System Contents tab. When you launch SOPC Builder certain directories are
searched for two kinds of files:

m _hw.tcl files. Each _hw.tcl file defines a single component.
m [P Index (.ipx) files. Each file indexes a collection of available components.

In general, .ipx files facilitate faster startup for SOPC Builder and other tools because
fewer files need to be read and analyzed.

Some directories are searched recursively; others only to a specific depth. In the
following list of search locations, a recursive descent is annotated by **. The * signifies
any file. When a directory is recursively searched, the search stops at any directory
containing a _hw.tcl or .ipx file; subdirectories are not searched.

m $$PRQIECT DI R/ *
m $$PROJECT DI R/ip/**/*
m $QUARTUS ROOTDI R/ .. /i pl**/*

In SOPC Builder, you can extend the default search path by including additional
directories by clicking Options, then clicking IP Search Path and Add. These
additional paths apply to all projects; that is, the paths are global to the current
version of SOPC Builder.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 4: SOPC Builder Components 4-5
SOPC Builder Component Search Path

Installing Additional Components
There are two additional ways to make your components available to SOPC Builder

projects. The following sections describe these methods.

Copy to the IP Root Directory

The simplest strategy is to copy your components into the standard IP directory
provided by Altera. Figure 4-2 illustrates this approach.

Figure 4-2. User Library Included In Subdirectory of $IP_ROOTDIR

<install_dir>

altera
library.ipx
<components>
[:I user_components

@] componentl

componentl_hw.tcl
componentl.v

@ —[:I component2

component2_hw.tcl
component2.v

In Figure 4-2, the circled numbers identify three steps of the algorithm that SOPC
follows during initialization. These steps are explained in the following paragraphs.

1. SOPC Builder recursively searches the <install_dir>/ip/ directory by default. It
finds the file in the al t er a subdirectory, which tells it about all of the Altera
components. library.ipx includes listings for all components found in its
subdirectories. The recursive search stops when SOPC Builder finds this .ipx file.

2. As part of its recursive search, SOPC Builder also looks in the adjacent
user_components directory. One level down SOPC Builder finds the component1
directory, which contains componentl_hw.tcl. SOPC Builder finds that
component stops the recursive descent.

3. SOPC Builder then searches in the adjacent component2 directory, which includes
component2_hw.tcl. If SOPC Builder finds that component, the recursive descent
stops.

L=~ If you save your .ipx file in the <install_dir>/ip/ directory, SOPC Builder finds your
.ipx file and stops. SOPC Builder does not conduct the search just described.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

4-6

Chapter 4: SOPC Builder Components
SOPC Builder Component Search Path

=

Reference Components in an .ipx File

A second approach is to specify your IP directory in a user_components.ipx file
under <install_dir>/ip path. Figure 4-3 illustrates this approach.

Figure 4-3. Specifying A User .ipx directory

<install_dir>

altera
library.ipx
<components>

user_components
user_components.ipx

The user_components.ipx file includes a single line of code redirecting SOPC Builder
to the location of the user library. Example 4-1 shows the code for this redirection.

Example 4-1. Redirect to User Library

<library>
<path path="c:/<user_install_dir>/user_ip/**/*" [>
<library>

For both of these approaches, if you install a new version of the Quartus II software,
you must also update the installation to include your libraries.

Understanding IPX File Syntax

An .ipx file is an XML file whose top-level element is <library> with a <path>
subelements are <path> and <component>. Altera recommends that you only add or
edit the <path> subelement.

A <path> element contains a single attribute, also called pat h and may reference a
directory with a wildcard, (*), or reference a single file. Two asterisks designate any
number of subdirectories. A single asterisk designates a match to a single file or
directory. In searching down the designated path, the following three types of files are
identified:

m .ipx—additional index files
B _hw.tcl—SOPC Builder component definitions
m _sw.tcl—Nios Il board support package (BSP) software component definitions

A <component> element contains several attributes to define a component. If you
provide all the required details for each component in an .ipx file, the start-up time for
SOPC Builder is less than if SOPC Builder must discover the files in a directory.
Example 4-2 shows two <component> elements. Note that the paths for file names are
specified relative to the .ipx file.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 4: SOPC Builder Components 4-7
Component Structure

Example 4-2. Component Elements

<library>
<conponent
name="An SOPC Conponent"
di spl ayNane="SOPC Conponent "
version="2.1"
file="./conmponents/sopc_conponent/sc_hw.tcl"
/>
<conponent
nanme="| egacy_conponent "
di spl ayNane="Legacy Conponent (Classic Edition!)"
ver si on="0. 9"
file="./components/|egacy/ol d_conponent/cl ass. ptf"
/>
<library>

Upgrading from Earlier Versions

If you specified a custom search path in SOPC Builder prior to v8.1 using the IP
Search Path option, or by adding it to the $SOPC_BUI LDER_PATH, SOPC Builder
automatically adds those directories to the user_components.ipx file in your home
directory. This file is saved in
<home_dir>/altera.quartus/ip/8.1/ip_search_path/user_components.ipx. Go to the IP
Search Path option in the Options dialog box to see the directories listed here.

Component Structure

Most components are defined with a _hw.tcl file, a text file written in the Tcl scripting
language that describes the components in to SOPC Builder. You can add a
component to SOPC Builder by either writing a Tcl description or you can use the
component editor to generate an automatic Tcl description of it. This section describes
the structure of Tcl components and how they are stored.

-o For details about the SOPC Builder component editor, refer to the Component Editor
chapter in volume 4 of the Quartus II Handbook. For details about the SOPC Builder Tcl
commands, refer to the Component Interface Tcl Reference chapter in volume 4 of the
Quartus I Handbook.

Component Description File (_hw.tcl)
A Tcl component consists of:

m A component description file, which is a Tcl file with file name of the form <entity
name>_hw.tcl.

m Verilog HDL or VHDL files that define the top-level module of the custom
component (optional).

The _hw.tcl file defines everything that SOPC Builder requires about the name and
location of component design files.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/hb/qts/qts_qii54005.pdf
http://www.altera.com/literature/hb/qts/qts_qii54022.pdf

4-8

Chapter 4: SOPC Builder Components
Classic Components in SOPC Builder

The SOPC Builder component editor saves components in the _hw.tcl format. You can
use these Tcl files as a template for editing components by hand. When you edit a
previously saved _hw.tcl file, SOPC Builder automatically saves the earlier version as
_hw.tcl~.

For more information about the information that you can include in the _hw.tdl file,
refer to the Component Interface Tcl Reference chapter in volume 4 of the Quartus I1
Handbook.

Component File Organization

A typical component uses the following directory structure. The precise names of the
directories are not significant.

m <component_directory>/

m <hdl>/— a directory that contains the component HDL design files and the
_hw.tcl file

m <component name>_hw.tcl—the component description file
m <component name>.v or .vhd—the HDL file that contains the top-level module

m <component_name>_sw.tck—the software driver configuration file. This file
specifies the paths for the .c and .h files associated with the component.

B You are not required to create a special sub-directory for component HDL files.
However, you are required to follow the naming conventions given here.

m <component_dir>/
m <name>_hw.tcl
m <name>.v or.vhd
m <name>_sw.tcl

m <software>/—a directory that contains software drivers or libraries related to the
component, if any. Altera recommends that the software directory be subdirectory
of the directory that contains the _hw.tcl file.

“ . For information on writing a device driver or software package suitable

for use with the Nios® II IDE design flow, refer to the Hardware Abstraction
Layer section of the Nios II Software Developer’s Handbook. The Nios II
Software Build Tool Reference chapter of the Nios II Software Developer’s
Handbook describes the commands you can use in the Tcl script.

Classic Components in SOPC Builder

If you use classic components created with an earlier version of SOPC Builder, read
through this section to familiarize yourself with the differences. This document uses
the term classic components to refer to class.ptf-based components created with a
previous version of the Quartus II software. If you do not use classic components, skip
this section.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii54022.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 4: SOPC Builder Components 4-9
Referenced Documents

Classic components are compatible with newer versions of SOPC Builder, but be
aware of the following caveats:

m Classic components configured with the More Options tab in SOPC Builder, such
as complex IP components provided by third-party IP developers, are not
supported in the Quartus II software in version 7.1 and beyond. If your
component has a bind program, you cannot use the component without recreating
it with the component editor or with Tel scripting.

m To make changes to a classic component with the component editor, you must first
upgrade the component by editing the classic component and saving it in the
_hw.tcl component format in the component editor.

Referenced Documents

This chapter references the following documents:

m Component Interface Tcl Reference chapter in volume 4 of the Quartus II Handbook
m Component Editor chapter in volume 4 of the Quartus IT Handbook

m Conduit Interfaces chapter in the Avalon Interface Specifications

m Embedded Peripherals section in volume 5 of the Quartus II Handbook

m Hardware Abstraction Layer section of the Nios II Software Developer’s Handbook

m Nios II Software Build Tools Reference chapter of the Nios II Software Developer’s
Handbook

Document Revision History

Table 4-1 shows the revision history for this chapter.

Table 4-1. Document Revision History

Date and Document Changes Made
Version Summary of Changes
March 2009, v9.0.0 m Added 2 paragraphs introducing custom Updated component descriptions.
generations for dynamic components.
November 2008, v8.1.0 m Revised section on component search paths. Revised to reflect changes to the

m Added meaning of green and gray dots next to component search path in 8.1.
components on the System Contents tab.
m Changed page size to 8.5 x 11 inches

May 2008, v8.0.0 m Added paragraph about IP Search Path. —

. For previous versions of the Quartus Il Handbook, refer to the Quartus Il Handbook
Archive.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/hb/qts/qts_qii54022.pdf
http://www.altera.com/literature/hb/qts/qts_qii54005.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

4-10 Chapter 4: SOPC Builder Components
Document Revision History

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

QA | I] 5 0)/) 5. Using SOPC Builder with the Quartus I
® Software

Q1154023-9.0.0

Introduction

This chapter describes the Quartus®lIl software tools that interface with SOPC Builder,
including the following;:

® “Quartus II IP File”
m “Quartus II Incremental Compilation” on page 5-1

m “TimeQuest Timing Analyzer” on page 5-2

Quartus Il IP File

The Quartus II IP File (.qip) generated by SOPC Builder provides the Quartus II
software with all required information about your SOPC Builder system. SOPC
Builder creates the .qip during system generation and adds a reference to it in the
Quartus II Settings File (.qsf).

The .qip file includes references to the following information:

m HDL files used in the SOPC Builder system

m TimeQuest Timing Analyzer Synopsys Design Constraint (.sdc) files
m Component definition files for archiving purposes

The .qip file is based on Tcl scripting syntax and is similar to the .qsf file. The
information required to process most components is included in the system's single
.qip file. Some complex components provide their own .qip file, in which case the
system's .qip file references the component .qip file.

L=~ The.qip file is normally added to your project automatically by SOPC Builder. If it
does not get added automatically you can add the file in the same way that you add
other source files to your project. You can also have a .qip file for each component in
your design. When you generate a design, each .qip is pulled into the main .qip file
for your system by reference.

Quartus Il Incremental Compilation

SOPC Builder supports the Quartus II incremental compilation feature, which allows
you to separately compile isolated portions, or partitions, of a design. From within the
Quartus II software, you can designate an entire SOPC Builder system as a design
partition, or you can designate individual SOPC Builder components as design
partitions.

[l=~ Changing the parameters of a component and regenerating your system only prompts
other partitions within the same system to recompile if the HDL in that partition
depends on the changed parameters. The HDL you generate for the Nios® II processor
is optimized as related to components to which the Nios II processor is connected.

© March 2009 Altera Corporation Quartus 11 Handbook Version 9.0 Volume 4: SOPC Builder

5-2

Chapter 5: Using SOPC Builder with the Quartus Il Software
TimeQuest Timing Analyzer

For more information about incremental compilation, refer to the Quartus II
Incremental Compilation for Hierarchical and Team-Based Design chapter in volume 1 of
the Quartus I1 Handbook.

TimeQuest Timing Analyzer

Analyzing PLLs

Altera recommends the TimeQuest Timing Analyzer in the Quartus II software for
analysis of all new designs. SOPC Builder automatically generates a TimeQuest .sdc
constraints file for SOPC Builder systems and components. In most cases, you use the
TimeQuest constraints to declare false paths for signals that cross clock domains
within a component, so that the TimeQuest Timing Analyzer does not perform
normal setup and hold analysis for them. You can add .sdc files for custom
components, using Add Files command on HDL Files tab in the Component Editor.
Turn on the Synth option and turn off the Synth option.

The Classic Timing Analyzer was primary in earlier versions of the Quartus I
software. However, Altera now recommends that you constrain designs before
compilation, because the TimeQuest Timing Analyzer reports any unconstrained
paths by default during the compilation process.

Refer to the Quartus Il TimeQuest Timing Analyzer chapter in volume 3 of the Quartus 11
Handbook for further description of the TimeQuest Timing Analyzer. Refer to the
Switching to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook for a description of the benefits of using the TimeQuest Timing
Analyzer rather than the Classic Timing Analyzer. Refer to TimeQuest Example: Basic
SDC Example on www.altera.com for a working example of using the TimeQuest
Timing Analyzer. Refer to TimeQuest Design Examples on www.altera.com for further
details about how to constrain different types of circuits for the TimeQuest Timing
Analyzer.

You must constrain PLL clocks for proper analysis by the TimeQuest Timing
Analyzer. You can define clocks generated by PLLs using one of the following
methods:

m Usethederive_pl | _cl ocks command to derive clocks for all PLL outputs in
the design. This is the best method.

m Usethe creat e_gener at ed_cl ock command to designate each clock output.

m Usethe-create_base_cl ocks option of thederi ve_pl | _cl ock assignments
to designate the base clock feeding the PLL.

The following example focuses on the use of the deri ve_pl | _cl ocks assignment,
because this method automatically defines clock frequencies and phase shifts.

derive_pl | _cl ocks generates clocks for all PLLs in the Quartus Il hardware
project, not just for the PLLs in the SOPC Builder system.

The SOPC system shown in Figure 5-1 illustrates the use of the
derive_pl | _cl ocks assignment in the case of a single clock input and one PLL
using a single output.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/support/examples/timequest/exm-tq-basic-sdc-template.html
http://www.altera.com/support/examples/timequest/exm-tq-basic-sdc-template.html
http://www.altera.com/support/examples/timequest/exm-timequest.html
http://www.altera.com/literature/hb/qts/qts_qii53019.pdf
http://www.altera.com
http://www.altera.com

Chapter 5: Using SOPC Builder with the Quartus Il Software 5-3

TimeQuest Timing Analyzer

Figure 5-1. Example SOPC System

Target Clock Seftings
Device Family:| Cyclone Il w | | Mame Soures MHz Pipeling Aol
ek External 50.0 O
|my_pll_c0 my_pll.co 12.5 O
Use Module Mame Descrigtion Clock Easze Endl
B my_master master
avalon_master_0 Avalon Master clk
E my_pll FLL |
=1 Avalon Slave clk 0300000000 |0x0000001F |
= pio FIC (Parallel 1107
=1 Avalon Slave my_pll_cl 0200000020 |0:x0000002 £
& |
Address Map..] ’ Filter ...

After running the following commands in the TimeQuest Timing Analyzer, two clocks
are generated:

create_cl ock -nane master_clk -period 20 [get_ports {cl k}]
derive_pl |l _cl ocks

The TimeQuest Timing Analyzer analyzes and reports performance of the constrained
clocks in the Clocks Summary report. This displays a report as shown in Figure 5-2.

Figure 5-2. Clocks Summary Report

Clack Mame Type Perind
1 Ernaster_clk Baze 20.000
2 | the_rny_pllithe_plllaltpl_compaonentiauto_generated|plll z2lk[0]| Generated| 30,000

mast er _cl k is defined by the cr eat e_cl ock command, andt he_ny_pl | clockis
derived from the deri ve_pl | _cl ocks command.

Analyzing Slow Asynchronous I/0 Paths

If you use slow asynchronous I/O in an SOPC Builder system, such as PIO and UART
peripherals, you do not have to analyze these paths because they are asynchronous to
the clock that is used to capture or output data. In this case you must designate false
paths to produce an accurate analysis.

For outputs, set a false path between the launch clock and the output. For inputs, a
false path should be set between the input and the latching clock. For bidirectional
signals, set a false path from the launching clock to the bidirectional pin and also from
the bidirectional pin to the latching clock. Launch and latch clocks are typically the
clocks associated with the SOPC Builder module that includes the I/0.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

54

Chapter 5: Using SOPC Builder with the Quartus Il Software
TimeQuest Timing Analyzer

For the system described in the PLL section, the following command sets false paths
for the PLL outputs:

set _false_path -to [get_ports {*_pio[*]}]

Because design contains a 4-bit PIO, fi | ter *_pi o[*] includes the following I/O
pins.

m out_port_fromthe_pio[0]
m out_port_fromthe_pio[1]
m out_port _fromthe_ pio[2]

m out _port fromthe_ pio[3]

Analyzing Single Data Rate SDRAM and SSRAM

Single data SDRAM interfaces in SOPC Builder typically use the type of circuit shown
in Figure 5-3. You can use a PLL to fine tune the phase shift to the external memory to
meet I/O timing requirements.

Figure 5-3. Typical Single Data Rate SDRAM Circuit

FPGA oLL SDRAM
SDRAM clk
Ll
Exernal Addr & CtrL
Clock SDRAM e
Controller P Data
- Ll

To constrain this interface, you must create a clock that is recognized by the external
SDRAM,; then you must set the I/O timing relative to that clock.

Example 5-1 shows how to constrain a PLL output clock and set a Tcl variable for that
clock.

Example 5-1. Constraining PLL Output Clock

create_cl ock -period 20.000 -nanme ext_clk [get_ports {clk}]
derive_pll _cl ocks
set sdramcl k\my_pl | _inst|altpll_conponent|auto_generated| pll 1] cl k[0]

You can then use the cr eat e_gener at ed_cl ock command to define a clock as
recognized by the external memory. This generated clock automatically adds delays
associated with routing to the clock output pin and the delay of the pin itself. You
must also account for some board delay due to the PCB trace between the FPGA and
SDRAM by using the of f set option.

The following command shows the creation of the sdr am cl k_pi n generated clock
derived from the output pin sdr am cl k clock. A 0.5 ns offset accounts for PCB
routing delay.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 5: Using SOPC Builder with the Quartus Il Software 5-5
TimeQuest Timing Analyzer

create_generated_cl ock -name sdramcl k_pin -source $sdramclk \

-offset 0.5 [get_ports {sdramcl k}]

There may be some uncertainty associated with the PCB delay not accounted for in
this command. The uncertainty can be included in the I/O constraints that are specific
to input or output and minimum or maximum delays.

The I/O constraints must be defined in relation to the data sheet for the external
memory. Figure 5-4 shows part of a data sheet for an SDRAM device with the worst
case input and output timing highlighted for a CAS latency of 3.

Figure 5-4. AC Characteristics from SDRAM Device Data sheet

AC Characteristics s !

Parameter Symbol Min Max Min Max Units | Notes

Access time from CLK (pos. edge) CL=3 TAC (3) 55 55 ns
CL=2 TAC (2) 15 3 ns
CL=1 TAC (1) 17 17 ns

Address hold time tAH 1 1 ns

Address setup time tas 1.5 2 ns

CLK high-level width CH 2.5 275 ns

CLK low-level width oL 2.5 275 ns

Clock cycle time CL=3 K (3) [7 ns 23
CL=2 oK (2) 10 10 ns 23
cL=1 LK (1) 20 20 ns 23

CKE hold time CKH 1 1 ns

CKE setup time kS 1.5 2 ns

C5#, RAS#, CAS#. WE#, DOM hold time TCMH 1 1 ns

C5#, RAS#, CAS#. WE#, DOM setup time CMS 1.5 2 ns

Data-in hold time 'DH 1 1 ns

Data-in setup time DS 1.5 2 ns

Data-out High-Z time CL=3 HZ (3) 55 55 ns 10
CL=2 THZ (2) 75 3 ns 10
CL=1 tHZ (1) 17 17 ns 10

Data-out Low-Z time Yz 1 1 ns

Data-out hold time tOH 2 25 ns

The mapping of external memory timing to FPGA 1/0 delays is shown in Table 5-1.
This also shows whether the minimum or maximum PCB routing delay should be
used, which must be added to the FPGA delay constraints.

Table 5-1. External Memory Timing

Memory Timing FPGA Timing PCB Routing
Max clock to out Max input delay Max
Min clock to out Min input delay Min
Min setup Max output delay Max
Min hold Min output delay (-ve) Min

Note to Table 5-1:
(1) The constraint for minimum output delay is actually 0 — Min hold.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

5-6

Chapter 5: Using SOPC Builder with the Quartus Il Software
TimeQuest Timing Analyzer

You can use the set _i nput _del ay and set _out put _del ay commands to set the
I/ O constraints. In the following examples, a common PCB routing delay of

0.5ns + 0.1 ns is used, which adds a 0.4 ns or 0.6 ns delay to the paths. Example 5-2
illustrates the use of these commands.

Example 5-2. set_input_delay and set_output_delay commands

set _i nput _delay -clock sdramclk_pin -nax [expr 5.5 + 0.6] <ports>

set _input_delay -clock sdramclk _pin -mn [expr 2.5 + 0.4] <ports>

set _out put _delay -clock sdramcl k_pin -max [expr 2.0 + 0.6] <ports>
set _out put _del ay -clock sdramclk_pin-mn [expr 1 — (1.0 + 0.4)] <ports>

In this example, <ports>represent a list of I/O ports for the relevant constraints as
shown in Example 5-3.

Example 5-3. <poris>

set _out put _delay -clock sdramcl k_pin -max [expr 2.0 + 1.2] \
[get _ports {cas_n ras_n cs_n we_n addr[*]}]

You can use multiple set _i nput _del ay and set _out put _del ay commands to set
different delays for different1/O.

Analyzing Tristate Bridges and Asynchronous Devices

This section discusses the timing constraints associated with the Avalon tristate
bridge and asynchronous external devices, such as the CFI Flash and user tristate
components. These components typically have slower performance requirements
compared with the FPGA, and SOPC Builder generates logic within the interface to
control timing across multiple clock cycles. You define the tristate component’s timing
parameters by entering data for setup, wait, and hold times.

For the interface types previously discussed, the timing is controlled by a state
machine that is generated based on setup, wait, and hold settings you specify in the
component editor. Because data sheet values for the FPGA are used in calculating the
timing, the constraints simply ensure the data sheet timing is met. Adding these
constraints ensures that issues associated with data sheet misinterpretation and fitting
problems that affect I/O timing are captured.

The TimeQuest Timing Analyzer uses constraints that are based upon the timing of
the external device.

For further information on how to convert older FPGA-centric constraints into
system-centric constraints, refer to Switching to the Quartus 1I TimeQuest Timing
Analyzer chapter in volume 3 of the Quartus II Handbook.

Analyzing DDR and DDR2 Memories

When using DDR, DDR2, or DDR3 memory with Cyclone® III, Stratix® III, and
Stratix IV families, you must use the corresponding High-Performance Controller
MegaCore® function. You can use the MegaWizard™ Plug-In Manager interface to
parameterize these functions and generate timing constraints in the form of .sdc files.
You must ensure that the constraints file associated with the MegaCore function is
included in the project for timing analysis. You can add an .sdc file to the project by
clicking Add/Remove Files in Project on the Project menu in the Quartus II software.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53019.pdf
http://www.altera.com/literature/hb/qts/qts_qii53019.pdf

Chapter 5: Using SOPC Builder with the Quartus Il Software 5-7

Referenced Documents

5

As these MegaCore functions make use of the deri ve_pl | _cl ocks command,
conflicts may occur if your .sdc file also uses these constraints.

For more design examples, refer to TimeQuest Design Examples on www.altera.com.
Also, AN: 433 Constraining and Analyzing Source-Synchronous Interfaces describes
source synchronous constraints for the TimeQuest Timing Analyzer.

Referenced Documents

This chapter references the following documents:

AN 433: Constraining and Analyzing Source-Synchronous Interfaces

Quartus Il Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook

Quartus Il TimeQuest Timing Analyzer chapter in volume 3 of the Quartus I1
Handbook

Switching to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus I Handbook

TimeQuest Design Examples

TimeQuest Example: Basic SDC Example

Document Revision History

Table 5-2 shows the revision history for this chapter.

Table 5-2. Document Revision History

Date and
Document
Version Changes Made Summary of Changes
March 2009, m No changes to content from previous release. —
v9.0.0
November 2008, | m No changes to content from previous release. —
v8.1.0 m Changed page size to 8.5 x 11 inches
May 2008, v8.0.0 | Initial release. Information moved from other
chapters and consolidated here.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/an/an433.pdf
http://www.altera.com/literature/an/an433.pdf
http://www/support/examples/timequest/exm-timequest.html

http://www.altera.com/literature/hb/qts/qts_qii53019.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/support/examples/timequest/exm-tq-basic-sdc-template.html
http://www.altera.com/support/examples/timequest/exm-timequest.html
http://www.altera.com/literature/hb/qts/qts_qii53019.pdf
http://www.altera.com

5-8 Chapter 5: Using SOPC Builder with the Quartus Il Software
Document Revision History

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

fgﬂ TERA 6. Component Editor

Q1154005-9.0.0

Introduction

This chapter describes the SOPC Builder component editor. The component editor
provides a GUI to support the creation and editing of the Hardware Component
Description File (_hw.tcl) file that describes a component to SOPC Builder. You use
the component editor to do the following;:

m Specify the Verilog HDL or VHDL files that describe the modules in your
component hardware.

m Conversely, create an HDL template for a component by first defining its interface
using the HDL Files tab of the component editor.

m Specify the signals for each of the component’s interfaces, and define the behavior
of each interface signal.

B Specify relationships between interfaces, such as determining which clock
interface is used by a slave interface.

m Declare any parameters that alter the component structure or functionality, and
define a user interface to let users parameterize instances of the component.

For information about using the component editor in a development flow, refer to the
following pages on the Altera® website: SOPC Builder Component Development Flow
Using the Component Editor Overview. For information about Avalon® component
interfaces, refer to Avalon Component Interfaces Supported in the Component Editor
Version 7.2 and Later. For examples of changes to typical Avalon interfaces, refer to
Examples of Changes to Typical Avalon Interfaces for the Component Editor Version 7.2 and
Later. For information about upgrading components, refer to Upgrading Your
Component with SOPC Builder Component Editor Version 7.2 and Later.

For information about the use of the component editor, see the following sections:

“Starting the Component Editor” on page 6-2.

m “HDL Files Tab” on page 6-2.

m “Signals Tab” on page 6-3.

m “Interfaces Tab” on page 6-6.

m “Component Wizard Tab” on page 6-6.

B “Saving a Component” on page 6-8.

m “Editing a Component” on page 6-8.

m “Component GUI” on page 6-8.

For more information about components, refer to the Component Interface Tcl Reference

chapter in volume 4 of the Quartus II Handbook, For more information about the
Avalon-MM interface, refer to the Avalon Interface Specifications.

© March 2009 Altera Corporation Quartus 11 Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www/literature/hb/qts/qts_qii54022.pdf
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-avalon-interfaces.html
http://www.altera.com/support/software/system/sopc/sof-sopc-avalon-interfaces.html
http://www.altera.com/support/software/system/sopc/sof-sopc-avalon-interface-changes.html
http://www.altera.com/support/software/system/sopc/sof-sopc-avalon-interface-changes.html
http://www.altera.com/support/software/system/sopc/sof-sopc-avalon-interface-changes.html
http://www.altera.com/support/software/system/sopc/sof-sopc-upgrading-component.html
http://www.altera.com/support/software/system/sopc/sof-sopc-upgrading-component.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html

6-2

Chapter 6: Component Editor
Component Hardware Structure

Component Hardware Structure

The component editor creates components with the following characteristics:

®m A component has one or more interfaces. Typically, an interface means an Avalon®
Memory-Mapped (Avalon-MM) master or slave or an Avalon Streaming
(Avalon-ST) source or sink. You can also specify exported component signals that
appear at the top-level of the SOPC Builder system, which can be connected to
logic outside the SOPC Builder system. The component editor lets you build a
component with any combination of Avalon interfaces, which include:

m Avalon-MM master and slave
m Avalon-ST source and sink
m Avalon-MM tristate slave
m Interrupt sender and receiver
m Clock input and output
m Nios II custom instruction master and slave interfaces
m Conduit (for exporting signals to the top level)
m Each interface is comprised of one or more signals.

m The component can represent logic that is instantiated inside the SOPC Builder
system, or can represent logic outside the system with an interface to it on the
generated system.

Starting the Component Editor

HDL Files Tab

To start the component editor in SOPC Builder, on the File menu, click New
Component. When the component editor starts, the Introduction tab displays, which
describes how to use the component editor.

The component editor presents several tabs that group related settings. A message
window at the bottom of the component editor displays warning and error messages.

Each tab in the component editor provides on-screen information that describes how

to use the tab. Click the triangle labeled About at the top-left of each tab to view these
instructions. You can also refer to Quartus® II online Help for additional information

about the component editor.

You navigate through the tabs from left to right as you progress through the
component creation process.

The HDL Files tab allows you to create an SOPC Builder component from existing
Verilog HDL or VHDL files, or to create an HDL template in either Verilog HDL or
VHDL for a SOPC Builder component by first specifying its interfaces. The following
sections describe both the bottom-up and top-down approaches to component design.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 6: Component Editor 6-3

Signals Tab

Bottom-Up Design

CAUTION

You can use the HDL Files tab to specify Verilog HDL or VHDL files that describe the
component logic. Files are provided to downstream tools such as the Quartus II
software and ModelSim®in the same order as they appear in the table.

You can also use the component editor to define the interface to components outside
the SOPC Builder system. In this case, you do not provide HDL files. Instead, you use
the component editor to interactively define the hardware interface.

After you specify an HDL file, the component editor analyzes the file by invoking the
Quartus I Analysis and Elaboration module. The component editor analyzes signals
and parameters declared for all modules in the top-level file. If the file is successfully
analyzed, the component editor’s Signals tab lists all design modules in the Top
Level Module list. If your HDL contains more than one module, you must select the
appropriate top-level module from the Top Level Module list.

All files are managed in a single table, with options for Synth and Sim. You can select
the Top option to select the top-level file for synthesis. When the top-level module is
changed, the component editor performs best-effort signal matching against the
existing port definitions. If a port is absent from the module, it is removed from the
port list. You can use the up and down arrows to specify the HDL file analysis order.

By default, all files are added with both Synth and Sim options turned on. To add a
simulation-only file, turn off the Synth option for that file. Files that turn on the Sim
option are passed to ModelSime® for simulation. To add a synthesis-only file, turn off
the Sim file option. You can add the .sdc file for your component using the Synth
option. Only files that you mark for Synth are added to the .qip file for your project.

The component editor determines the signals on the component when only the
top-level module or entity is added to the table, but all of the files required for the
component must be added for the component to compile in Quartus II software or
work in simulation.

Top-Down Design

Signals Tah

The Create HDL Template button on the HDL Files tab allows you to create an HDL
template for a component if you have not provided a HDL description for it. Clicking
the Create HDL Template button shows you the component HDL and lets you choose
between Verilog HDL and VHDL. Altera recommends that you define your signals,
interfaces, parameters and basic component information, including the component
name, before creating the HDL template by clicking Save. The component editor
writes <component_name>.v or <component_name>.vhd to your project directory.

After you have component the component’s HDL code, you can add other files that
are required to define your component, including the _hw.tcl file, and synthesis and
simulation files using the Add button on the HDL Files tab.

You use the Signals tab to specify the purpose of each signal on the top-level
component module. If you specified a file on the HDL Files tab, the signals on the
top-level module appear on the Signals tab.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

6-4 Chapter 6: Component Editor
Signals Tab

The Interface list also allows creation of a new interface so that you can assign a signal
to a different interface without first switching to the Interfaces tab. Each signal must
belong to an interface and be assigned a legal signal type for that interface. In addition
to Avalon Memory-Mapped and Streaming interfaces, components typically have
clock interfaces, interrupt interfaces, and perhaps a conduit interface for exported
signals.

Naming Signals for Automatic Type and Interface Recognition

The component editor recognizes signal types and interfaces based on the names of
signals in the source HDL file, if they conform to the following naming conventions:

Signal associated with a specific interface—<interface type>_<interface name>_<signal

type>[_n]

For any value of <inferface_name> the component editor automatically creates an
interface by that name, if necessary, and assigns the signal to it. The <signal_type>
must match one of the valid signal types for the type of interface. Refer to the Avalon
Interface Specifications for the signal types available for each interface type. You can
append _n to indicate an active-low signal. Table 6-1 lists the valid values for
<interface_type>.

Table 6-1. Valid Values for <Interface Type>

Value Meaning
avs Avalon-MM slave
avm Avalon-MM master
ats Avalon-MM tristate slave
aso Avalon-ST source
asi Avalon-ST sink
cso Clock output
CSi Clock input
coe Conduit
inr Interrupt receiver
ins Interrupt sender
ncm Nios II custom instruction master
ncs Nios II custom instruction slave

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 6: Component Editor 6-5
Signals Tab

Example 6-1 shows a Verilog HDL module declaration with signal names that infer
two Avalon-MM slaves.

Example 6-1. Verilog HDL Module With Automatically Recognized Signal Names

nodul e nmy_sl ave_i r g_conmponent (
/1 Signals for Aval on-MM sl ave port “s1” with irq

csi _clockreset _clk; //clockreset clock interface
csi _clockreset _reset_n;//clockreset clock interface

avs_sl address;//sl slave interface

avs_sl read; //sl slave interface

avs_sl write; //sl slave interface

avs_sl writedata; //sl slave interface

avs_sl readdata; //sl slave interface
ins_irq0_irq; //irq0 interrupt sender interface

)

nput csi_cl ockreset_cl k;
nput csi_cl ockreset_reset_n;
nput [7:0]avs_sl_address;
nput avs_sl read;

nput avs_sl _write;

nput [31:0]avs_sl witedata,;
out put [31:0] avs_sl readdat a;
output ins_irq0_irgq;

/* Insert your logic here */

endnodul e

Templates for Interfaces to External Logic

If the component does not use an HDL file to interface to external logic that is Avalon
compatible, you can manually add the signals that comprise the interface to the
external logic or use the Create HDL Template to generate an HDL template for the
component. You connect these signals outside of the SOPC Builder system. If your
component uses an Avalon interface to interface outside of SOPC Builder, you can use
the Templates menu in the component editor to add typical interface signals to your
signal list. There are templates for the following interfaces:

m Avalon-MM Slave

m Avalon-MM Slave with Interrupt
m Avalon-MM Master

m Avalon-MM Master with Interrupt
m Avalon-ST Source

m Avalon-ST Sink

After adding a typical Avalon interface using a template, you can add or delete
signals to customize the interface.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

6-6 Chapter 6: Component Editor
Interfaces Tab

Interfaces Tab

The Interfaces tab allows you to configure the interfaces on your component and
specify a name for each interface. The interface name identifies the interface and
appears in the SOPC Builder connection panel. The interface name is also used to
uniquely identify any signals that are ports on the top-level SOPC Builder system.

The Interfaces tab allows you to configure the type and properties of each interface.
For example, an Avalon-MM slave interface has timing parameters that you must set
appropriately. The Interfaces tab displays waveforms that illustrate the timing that
you specified. If you update the timing parameters, the waveforms automatically
update to illustrate the new timing. The waveforms are available for the following
interface types:

m Avalon Memory-Mapped

m Avalon Memory-Mapped tristate
m Avalon Streaming

m Interrupts

If you convert a component from a class.ptf to a _hw.tcl file, you may require three
interfaces: a clock input, the Avalon slave, and an interrupt sender. A parameter in the
interrupt sender must be set to reference the Avalon slave.

Component Wizard Tab

The Component Wizard tab provides options that affect the presentation of your new
component.

Identifying Information
You can specify information that identifies the component as follows:

m Folder—Specifies the location of the component, determined by the location of the
top-level HDL file.

m Class Name—Specifies the name used internally to store the component in the
component library. The class name is stored in the .sopc file. Use the class name
when saving a system that contains an instance of this component. It is also the
name you use for the component type when you create a system using a .tcl script.
If you change the class name of a component, existing .sopc files that use the
component may break.

L=~ SOPC builder uses the class name and version to find components. If two
components with the same class name and version are available to SOPC
builder at the same time, the behavior of SOPC builder is undefined.

m Display Name—Specifies the user-visible name for this component in SOPC
Builder.
m Version—Specifies the version number of the component.

m Group—Specifies which group in SOPC Builder displays your component in the
list of available components. If you enter a previously unused group name, SOPC
Builder creates a new group by that name.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 6: Component Editor 6-7
Component Wizard Tab

m Description—Allows you to describe the component.
m Created By—Allows you to specify the author of the component.

m Icon—Allows you to place an image in the title bar of your component, in place of
the MegaCore logo. The icon can be a .jpg, .gif, or .png file. The directory for the
icon is relative to the directory that contains the _hw.tcl file.

m Data sheet URL—Allows you to specify a URL for the datasheet. You can use this
property to specify a file on the internet or in your company’s file system. The
specified file can be in either .html or .pdf format. To specify an internet file, begin
your path with http:/, for example:
http://mydomain.com/datasheets/my_memory_controllerhtml. To specify a file
in your company’s file system, you begin you path with file:/// for Linux and
file://// for Windows, for example:
file:////company_server/datasheets/my_memory_controller.pdf. For handwritten
_hw.tcl files, you can specify a relative path using the following Tcl command:
set _nodul e_property DATASHEET _URL [get _nodul e_property
MODULE_DI RECTORY] / <rel ative_path_to_hw.tcl >

m Parameters—Allows you to specify the parameters for creating the component, as
described in the next section.

Parameters

The Parameters table allows you to specify the user-configurable parameters for the
component.

If the top-level module of the component HDL declares any parameters (parameters
for Verilog HD or generics for VHDL), those parameters appear in the Parameters
table. The parameters are presented to you when you create or edit an instance of
your component. Using the Parameters table, you can specify whether or not each
parameter is user-editable.

The following rules apply to HDL parameters exposed via the component GUI:
m Editable parameters cannot contain computed expressions.

m If a parameter <N> defines the width of a signal, the signal width must be of the
form <N-1>:0.

m Whena VHDL component is used in a Verilog HDL SOPC Builder system, or vice
versa, numeric parameters must be 32-bit decimal integers. When passing other
numeric parameter types, unpredictable results occur.

Click Preview the Wizard at any time to see how the component GUI appears.

«® Refer to Component Interface Tcl Reference chapter in the Quartus 1l Handbook for
detailed information about creating and displaying parameters using Tcl scripts.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/hb/qts/qts_qii54022.pdf

6-8 Chapter 6: Component Editor
Saving a Component

Saving a Component

You can save the component by clicking Finish on any of the tabs, or by clicking Save
on the File menu. Based on the settings you specify in the component editor, the
component editor creates a component description file with the file name
<class-name>_hw.tcl. The component editor saves the file in the same directory as the
HDL file that describes the component’s hardware interface. If you did not specify an
HDL file, you can save the component description file to any location you choose.

You can relocate component files later. For example, you could move component files
into a subdirectory and store it in a central network location so that other users can
instantiate the component in their systems. The _hw.tcl file contains relative paths to
the other files, so if you move the _hw.tcl file you should move all the HDL and other
files associated with it.

L=~ Altera recommends that you store _hw.tdl files for a project is in the
ip/<class-name> directory for the project. You should store the HDL and other files in
the same directory as the _hw.tcl file.

Editing a Component

After you save a component and exit the component editor, you can edit it in SOPC
Builder. To edit a component, right-click it in the list of available components on the
System Contents tab and click Edit Component.

I'=" You cannot edit components that were created outside of the component editor, such
as Altera-provided components.

If you edit the HDL for a component and change the interface to the top-level module,
you need to edit the component to reflect the changes you made to the HDL.

Software Assignments

You can use Tcl commands to create software assignments.You can register any
software assignment that you want, as arbitrary key-value pairs. Example 6-2 shows
a typical Tcl API script:

Example 6-2. Typical Software Assignment with Tcl API Scripting

set _nmodul e_assi gnnent nane val ue
set _i nterface_assi gnment nane val ue

The result is that the assignments go into the .sopcinfo file, available for use for
downstream components.

Component GUI

To edit component instance parameters, select a component in the System Contents
tab of the SOPC Builder window and click Edit.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 6: Component Editor
Referenced Documents

Referenced Documents

This chapter references the following documents:

Avalon Component Interfaces Supported in the Component Editor Version 7.2
Avalon Interface Specifications
Component Interface Tcl Reference chapter in volume 4 of the Quartus II Handbook

Examples of Changes to Typical Avalon Interfaces for the Component Editor Version 7.2
and Later

Nios II Software Developer’s Handbook

SOPC Builder Components chapter in volume 4 of the Quartus 11 Handbook

SOPC Builder Component Development Flow Using the Component Editor Overview
Upgrading Your Component with SOPC Builder Component Editor Version 7.2 and Later

Document Revision History

Table 6-2 shows the revision history for this chapter.

Table 6-2. Document Revision History

Date and Document

Version Changes Made Summary of Changes
March 2009, v9.0.0 m Revised description of the Create HDL Template Updated to reflect new
functionality and the Templates menu. functionality.
m Interfaces tab now includes waveforms that illustrate timing

parameters.

m Added reference to Component Interface Tcl Reference
chapter for detailed information about defining and
displaying GUI parameters.

m Added data sheet URL to Component Wizard tab.

November 2008, v8.1.0

m Added information about new HDL template feature
m Changed page size to 8.5 x 11 inches

May 2008, v8.0.0

Extensive edits to this chapter, including:
m Chapter renumbered. —
m Added new section on software assignments.

.o For previous versions of the Quartus Il Handbook, refer to the Quartus II Handbook

Archive.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www/literature/hb/qts/qts_qii54004.pdf
http://www/literature/hb/qts/qts_qii54022.pdf
http://www.altera.com/support/software/system/sopc/sof-sopc-avalon-interface-changes.html
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/support/software/system/sopc/sof-sopc-development-flow.html
http://www.altera.com/support/software/system/sopc/sof-sopc-avalon-interfaces.html
http://www.altera.com/support/software/system/sopc/sof-sopc-upgrading-component.html
http://www/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

6-10 Chapter 6: Component Editor
Document Revision History

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

fAN TSR 7. Component Interface Tcl Reference

Q1154022-9.0.0

Introduction

You define SOPC Builder components by declaring their properties and behaviors in a
Hardware Component Description File (_hw.tcl). Each _hw.tcl file represents one
component instance which you can add to an SOPC Builder system. You can also
share the components that you design with other designers. For your component to
have maximum flexibility, you should consider what aspects of its behavior can be
parameterized so that other users can change the default parameterization to address
different design requirements.

An SOPC Builder component is usually composed of the following four types of files:

m _hw.tcl file—describes the SOPC Builder related characteristics, such as interface
behaviors. This file is required.

m HDL files—define the component’s functionality as hardware. These files are
optional.

m _sw.tcl—used by the software build tools to compile the component driver code.
This file is optional.

m Component driver files—defines the component register map and driver software
to allow software to control the component. These files are optional.

This chapter discusses the following topics:

m “Information in a Hardware Component Description File” on page 7-1
m “Component Phases” on page 7-2

m “Writing a Hardware Component Description File” on page 7-2

m “Overriding Default Behaviors” on page 7-9

m “Hardware Tcl Command Reference” on page 7-12

Information in a Hardware Component Description File

A typical _hw.tcl file contains the following information:

B Basic component information—includes the component’s name, version, and
description, a link to its documentation, and pointers to HDL implementation files
for synthesis and simulation.

m Parameter Declarations—Parameters are values that the user of your component
can set that affect how the component is implemented, such as the size of a
memory. Properties of each parameter include the parameter’s name, whether or
not it is visible, and, if visible, the text to display when describing it. When the
SOPC Builder system is generated, the parameters can be applied to the
component as Verilog HDL parameters or VHDL generics.

© March 2009 Altera Corporation Quartus 11 Handbook Version 9.0 Volume 4: SOPC Builder

Chapter 7: Component Interface Tcl Reference
Component Phases

Interface Properties—The interfaces of a component define how to connect it to the
rest of the system and determine how other components in the system interact
with it. When you add interfaces to a component, you declare which signals make
up each interface. You also define interface properties, such as wait states for an
Avalon® Memory-Mapped (Avalon-MM) interface.

Component Phases

The following section describes the distinct phases in the development of an SOPC
Builder component.

Main Program—SOPC Builder first discovers a component and adds it to the
component library. The _hw.tcl file is executed and the Tcl statements provide
non-instance-specific information to SOPC Builder. During this phase, some
component interfaces may be incompletely described and ports may have a width
of 0 or -1 to indicate that they are variable.

Validation—Validation allows the component to generate error, warning, or
informational messages. Validation occurs when an instance of a component is
created, when its parameters are changed, or when some other property of the
system is changed.

Elaboration—Elaboration occurs as SOPC Builder queries a component for its
interface information. Elaboration typically occurs immediately after validation
and before generation. Interfaces defined in the main program can be enabled or
disabled during elaboration. Depending on the validation callback code,
elaboration and validation may alternate a few times. Elaboration and validation
always occur before generation. Once elaboration is complete, the component
must be completely described. For example, all port widths must have positive
values.

Generation—Generation creates all the information that the Quartus® II software
and HDL simulator require. The required files typically include VHDL or Verilog
HDL files, simulation models, timing constraints, and other information.

Editor—After an instance of your component has been added to an SOPC Builder
system, allows the user of your component to edit the GUI that displays the
parameterization. You can change the appearance of the default editor to make it
easier to use.

Writing a Hardware Component Description File

This section provides detailed information about _hw.tcl files and describes the
default behavior of a component in all five phases. The following example uses a
simple UART with some simple parameterization.

Providing Basic Information

A typical _hwtcl file first declares basic information, such as the name, location, and
the files it includes. Example 7-1 provides sample Tcl code for basic component
information.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 7: Component Interface Tcl Reference 7-3
Writing a Hardware Component Description File

L=~ The Tcl scripts shown in each example are each part of the single _hw.tcl that defines
a component. St ri ng arguments must only be enclosed in quotes if they include

embedded spaces.
" . An excellent source of information about Tcl syntax is the Tcl Developer Xchange
website.

Example 7-1. Basic Information for _hw.tcl File

The name and version of the component
set _nmodul e_property NAME exanpl e_uart
set _nmodul e_property VERSION 1.0

The nane of the conponent to display in the library
set _modul e_property DI SPLAY_NAME " Exanpl e Conponent”

The conponent’s description.
set _nmodul e_property DESCR PTI ON " An Exanpl e Conponent”

The conponent |ibrary group that conponent belongs to
set _nmodul e_property GROUP Exanpl es

Declaring Parameters

By including configuration parameters in your _hw.tcl file, you allow other users of
your component to parameterize it differently. Component users can enter integer
parameters as decimal, binary, or hexadecimal values. You can specify binary values
using the b’ notation, for example: b’ 1111. You can specify hexadecimal values with
either the Ox or ‘ h prefix, for example: 0x100 or * h100. Example 7-2 illustrates the
use of parameters that can be configured by other users of your component.

Example 7-2. Declaring Parameters

Decl are Baud Rate paranmeter as an integer with a default val ue of 9600.
add_paraneter BAUD_RATE int 9600

Display this parameter as "Baud Rate" in the Parameter Editor.

set _paraneter_property BAUD _RATE D SPLAY_NAME "Baud Rate (bps)”

We only support three baud rates

set _paraneter_property BAUD RATE ALLOWED RANGES {9600 19200 38400}

You can use the SYSTEM | NFO parameter property in conjunction with the

set _par anmet er _pr oper t y command to introduce custom parameters that are part
of your component definition. SYSTEM | NFOrequires the <i nf 0-t ype> argument
that can take on many different values. In some cases, SYSTEM | NFOrequires more
than one argument. For example, when the <i nf o- t ype> is ADDRESS_NAP, you
must specify the Avalon-MM master whose address map you need. Example 7-3
illustrates the use of the SYSTEM | NFOparameter.

Example 7-3. Syntax of Tcl Command using the SYSTEM_INFO Parameter

set _paraneter _property ny_paranmeter SYSTEM | NFO {<i nfo-type> [<arg>]}

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.tcl.tk/

-4

Chapter 7: Component Interface Tcl Reference
Writing a Hardware Component Description File

The following types of system information are defined:

Figure 7-1. SOPC Builder

CLOCK_RATE (I nt eger or St ri ng)—Assigns a positive number which is the
clock frequency in Hz to the clock input interface you specify. Assigns 0 if the
clock rate is not known.

set _paraneter_property <ny_paraneter> SYSTEM | NFO { CLOCK_RATE
<ny_cl k>}

CLOCK_DQOVAI N(I nt eger)—Assigns an integer representing the clock domain to
the parameter you specify. You can use this command to determine whether
multiple interfaces in your module are on the same clock domain. The absolute
value of the integer value is arbitrary, but if two interfaces are on the same clock
domain, the CLOCK_DOVAI Nvalue is guaranteed to be the same and greater than
Zero.

set _paranmeter _property <ny_paraneter> SYSTEM | NFO { CLOCK_DOVAI N
<ny_cl k>}

RESET_DOMAI N (I nt eger)—Assigns an integer representing the reset domain to
the parameter you specify. You can use this command to determine whether
multiple interfaces in your module are on the same reset domain. The absolute
value of the integer value is arbitrary, but if two interfaces are on the same reset
domain, the RESET_DOMAI Nvalue is guaranteed to be the same and greater than
Zero.

set _paraneter_property <ny_paranmeter> SYSTEM | NFO { RESET_DOVAI N
<ny_reset >}

ADDRESS W DTH (I nt eger)—Assigns an integer to the parameter that you
specify that is the number of bits an Avalon-MM master must drive to address all
of its slaves, using byte addresses.

set _paraneter_property <ny_paranmeter> SYSTEM | NFO (ADDRESS W DTH
<ny_aval on- mm_nast er >)

ADDRESS_MAP (St ri ng)—Assigns an XML formatted string describing the
address map to the parameter you specify.

set _parameter _property <ny_paraneter> SYSTEM | NFO { ADDRESS_MAP
<ny_aval on- nm mast er >}

The XML code describing each slave includes, its name, start address, and end
address + 1. Figure 7-1 shows a portion of an SOPC Builder system with three
Avalon-MM slave devices.

System with Three Avalon-MM Slaves

E ext_ssram Cypress CYTC13580C SSRAM

=1 Avalon Memory Mapped Tristate Slave |pll_c 0x01000000 (OxOLLfffff
= sys_clk_timer Interval Timer

=1 Avalon Memory Mapped Slave pll_c0 0x02120800 0x0Z1Z081f
= sysid System ID Peripheral

control_slave Avalon Memory Mapped Slave pll_c0 0x021208b% (0x0Z1Z08hbf

Example 7—4 shows the XML that describes the address map for the Avalon-MM
master that accesses these slaves. The format of the XML string provided may
differ from that described here, it may have different white space between the
elements and could include additional attributes or elements.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 7: Component Interface Tcl Reference 7-5
Writing a Hardware Component Description File

=~ Altera recommends that you use the code provided in the description of
“decode_address_map” on page 7-24 to enumerate over the components
within an address map, rather than writing your own parser.

Example 7-4. Address Map for an Avalon-MM Master

<addr ess- map>
<sl ave nane='ext_ssram start='0x01000000' end='0x01200000' />
<sl ave nane='sys_clk_timer' start="0x02120800' end='0x02120820" />
<sl ave nane='sysid start='0x021208B8' end='0x021208C0"' />

</ address- map>

m MAX_SLAVE _DATA W DTH (I nt eger)—Assigns an integer to the parameter you
specify that is the data width of the widest slave connected to the specified
Avalon-MM master.

set _paraneter_property <ny_parameter> SYSTEM | NFO
{ MAX_SLAVE_DATA W DTH <mny_aval on_nm nast er >}

m | NTERRUPTS_USED(I nt eger or St r i ng)—Creates a mask indicating which bits
of the interrupt receiver vector are connected to an interrupt sender. This mask is
assigned to the parameter you specify. You can use this interrupt mask to optimize
logic that handles interrupts.
set _parameter _property <ny_parameter> SYSTEM | NFO (| NTERRUPTS_USED
<ny_interrupt_receiver>}

m DEVI CE_FAM LY (St ri ng)—Assigns the family name (not the specific device
part number) of the currently selected device to the parameter you specify.

set _paraneter_property <ny_paranmeter> SYSTEM | NFO { DEVI CE_FAM LY}

m DEVI CE_FEATURES (St r i ng)—Creates a list of key/value pairs delineated by
spaces indicating whether a particular device feature is available in the currently
selected device family. The format of the list is suitable for passing to the Tcl
array set command. This list is assigned to the parameter you specify. The
following features are supported: M512_ MEMORY, M4K_MEMORY,
M9K_MEMORY, M144K_MEMORY, MRAM_MEMORY, MLAB_MEMORY, ESB,
DSP, and EMUL

set _paraneter_property <ny_paraneter> SYSTEM | NFO { DEVI CE_FEATURES}

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

7-6 Chapter 7: Component Interface Tcl Reference
Adding Files and Guiding Generation

Declaring Interfaces

Most components require a clock input interface. To declare an interface, declare its
properties and indicate which signals belong to it. For components with HDL files,
quart us_map determines each port’s direction and width. The interface declaration
statement includes the name of the interface, the interface direction, and the clock
interface with which it is associated. For interfaces that aren't associated with clocks
(such as clock interfaces themselves), omit the associated clock interface, or use the
word asynchronous.Example 7-5 illustrates interface declaration.

Example 7-5. Declare Interfaces

Declare the clock sink interface, "clock_sink", type=clock, direction=sink
add_i nterface clock_sink clock sink
The cl ock i nterface has two signals, naned "cl k" and "reset_n" of types "cl k" "reset_n"

add_i nterface_port clock_sink clk clk input 1
add_interface_port clock_sink reset_n reset_n input 1

Decl are the Aval on sl ave interface, name=aval on_sl ave_0, type=aval on, directon=slave,
associated with the clock_sink clock interface.

add_i nterface aval on_sl ave_0 aval on sl ave clock_sink
Set a nunber of properties about the Aval on Slave interface

set _interface_property avalon_slave 0 witeVaitTime 0

set _interface_property aval on_sl ave_0 addressAlignnent DYNAM C
set _interface_property avalon_slave 0 readWaitTine 1

set _interface_property aval on_sl ave_0 readLatency O

Declare all the signals that belong to ny Avalon Slave interface

add_i nterface_port aval on_slave_0 ny_readdata readdata out put 8

add_i nterface_port avalon_slave_0O ny_read read input 1
add_interface_port avalon_slave 0 ny_wite wite input 1

add_i nterface_port aval on_slave_0 ny_wai trequest waitrequest output 1
add_i nterface_port aval on_slave_0O ny_address address input 24
add_interface_port avalon_slave 0 ny_witedata witedata i nput 8

Adding Files and Guiding Generation

Component description files typically provide all of the information required for
generation and downstream tools, identifying the files used by the component such as
HDL files and .sdc constraint files. You also identify which of the added files is the
top-level HDL file and specify which verilog module or VHDL entity within that file
is the top-level module for the component. Example 7-6 illustrates the files that are
typically required for generation and downstream tools.

Example 7-6. Add Files
Add the HDL file to the conponent,to be used for synthesis and sinulation.

add_file sinple_uart.v {SYNTHESI S SI MULATI O\t

Add the Tinequest file with Quartus timng constraints.

add_file sinple_uart.sdc SDC
Add top-level HOL file that describes t he conponent, nane of the top-level nodule/entity

set _nmodul e_property TOP_LEVEL_HDL_FI LE sinple_uart.v
set _nodul e_property TOP_LEVEL_HDL_MODULE si npl e_uart

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 7: Component Interface Tcl Reference 7-71
Default Behaviors

Default Behaviors

The _hw.tcl file described in the previous section has default behaviors during the
validation, elaboration, generation, and editor phases. These default behaviors apply
to instances of a component. This section describes the default SOPC Builder
behaviors for each of these phases. To override these default behaviors, refer to
“Overriding Default Behaviors” on page 7-9.

Validation Phase Behavior

SOPC Builder’s default validation checks each parameter value against its
ALLONED_RANGES property. If the values specified are outside the allowed ranges, an
error message displays.

The ALLOAED_RANGES property of each parameter is a list of ranges that the
parameter can take on, where each range is a single value, or a range of values defined
by a start and end value separated by a colon. Table 7-1 shows some examples of
values the ALLONED RANGES property can take.

Table 7-1. ALLOWED_RANGES Property

ALLOWED_RANGES Meaning
{a b c} aorborc
{1 2 4 8 16} 1,2, 4,8, or16.
1:3 1 through 3, inclusive
{12 3 7:10} 1,2, 3, or 7 through 10 inclusive

Elabhoration Phase Behavior

SOPC Builder’s default elaboration process calls quar t us_map to determine the
correct port widths. Because calling quar t us_map can be slow, you can set the
AFFECTS_ELABORATI ON property to f al se for parameters which do not affect port
widths, this will prevent re-elaboration when one of these parameters changes.

Generation Phase Behavior
SOPC Builder’s default generation does one of the following:

m If the component defines the TOP_LEVEL _HDL_ MODULE property, SOPC Builder
creates a Verilog HDL or VHDL wrapper module to instantiate the top-level
module and applies the parameters as selected by the user of your component.
SOPC Builder does not apply parameters in the wrapper if they are not declared in
the underlying HDL file.

or

If the component does not define the TOP_LEVEL_HDL_MODULE property, but
instead sets the | NSTANTI ATE_| N_SYSTEM MODULE nodul e property to fal se,
the nodul e is not instanti ated i nsi de t he SOPC Buil der systemand a
wrapper file is not created. Rather, the interface to the nodule is
exported to the top-level of the SOPC Builder system and the
nodul e nust be connected outside the system

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

7-8 Chapter 7: Component Interface Tcl Reference
Default Behaviors

Editor Phase Behavior

SOPC Builder’s default editor phase behavior is to use all of the parameter definitions
to display the parameterization GUI. The properties of the parameters guide SOPC
Builder when it builds the default GUI. Table 7-4 on page 7-20 lists the properties of
parameters.

You can place parameters in logical groups and provide images to create a custom
GUI for your component. Example 7-7 defines four parameters and illustrates the use
of the add_di spl ay_i t emcommand and the DI SPLAY_HI NT and
ALLONED_RANGES parameters.

Example 7-7. Defining and Customizing GUI Parameters

provide an icon for the sound group
add_display_itemicon Speaker speaker-image speaker. png
add_paraneter sound string 0 O

add_par ameter vol une_control boolean 0 0

add_paraneter separate_control string 00

Setup DI SPLAY_NAMES for the paraneters

set _paranmeter _property sound D SPLAY_NAME Audi o

set _parameter_property vol une_control D SPLAY_NAME "Include Vol une Control Interface"
set _paraneter_property separate_control DI SPLAY_NAME "Trebl e/ Bass Control s"

Display all paraneters in the Speaker group
add_di spl ay_i tem paraneter Speaker sound

add_di spl ay_i tem paraneter Speaker vol ume_contr ol
add_di spl ay_i tem paranet er Speaker separate_control

There are 4 choices for the sound paraneter.

Strings with internal spaces require double quotes

set _paranmeter_property sound al |l owed_ranges {"0:No Audi 0" 1: Monophonic 2: Stereo

4: Quadr aphoni c}

set _paranmeter_property separate_control allowed_ranges {"No Control" "Single Control"
"Dual Controls"}

#Specify how paraneters shoul d be displayed
set _paranmeter_property vol une_control D SPLAY_HI NT bool ean
set _paranmeter _property separate_control DI SPLAY_HI NT radio

Figure 7-2 shows the GUI that the Tcl commands in Example 7—4 produces.

Figure 7-2. Parameter GUI for Audio Component

<)

Audio Guadraphonic

~ Speaker

Include YWolume Control Interface |:|
Treble/Baszs Contrals () Mo Cortral

() Single Cortrol

(%) Dual Cortrals

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 7: Component Interface Tcl Reference 7-9
Overriding Default Behaviors

Overriding Default Behaviors

You can override each of the default behaviors by using callbacks. This section
explains how to write callback procedures for each phase of component development.

Validation Callback

You can use the validation callback to provide validation that extends beyond the
default range checking. A validation callback is defined by setting the

VAL| DATI ON_CALLBACK module property to be the name of the validation callback
procedure, as shown in Example 7-8. This validation procedure displays an error if
you select a baud rate of 38400 and odd parity.

You can also use the validation callback to set the value of derived parameters.
Derived parameters are parameters that are derived from other parameters; their
values are not editable and are not saved in the system-on-a-programmable-chip
(.sopd) file. You indicate that a parameter is derived by setting the parameter's
DERI VED property to t r ue. In Example 7-8 BAUDRATE_PRESCALE is a derived
parameter whose value is 1/16 of the value of the BAUDRATE parameter.

Example 7-8. Custom Validation Callback Function

Declare the validation call back.

Declare the validation call back.
set _modul e_property VALI DATI ON_CALLBACK my_val i dati on_cal | back

Add t he BAUDRATE_PRESCALE par anet er
add_par aneter BAUDRATE_PRESCALE int 600
set _paraneter_property BAUDRATE PRESCALE DERI VED true

Add the PARITY paraneter
add_parameter PARITYd string CDD
set _paraneter _property PARI TY ALLONED_RANGES { EVEN ODD}

The validation call back
proc ny_validation_callback {} {
Get the current value of paraneters we care about
set br [get_paraneter_val ue BAUD RATE]
set p [get_paraneter_val ue PAR TVY]
Display an error for invalid conbinations.
i f {($br==38400) && ($p=="0DD")}
send_nessage war ni ng "Qdd parity at 38400 bps i s not supported."

Set the val ue of our derived paraneter
set bp [expr $br / 16]
set _paranet er _val ue BAUDRATE_PRESCALE $bp

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

7-10

Chapter 7: Component Interface Tcl Reference
Overriding Default Behaviors

Elahoration Callback

s

You can use an elaboration callback to change interface properties or add new
interfaces as a function of parameter values. You define an elaboration callback by
setting the ELABORATI ON_CALLBACK module property to the name of the
elaboration callback function, as shown in Example 7-9. You can enable and disable
interfaces from the elaboration callback if they are only needed for some
parameterizations of the component. Example 7-9 shows how an Avalon-MM slave
interface can be included in an instance of the component, based on the
USE_STATUS_| NTERFACE parameter.

The elaboration callback is not allowed to use parameters marked as
AFFECTS_ELABCRATI ON=f al se. It will not be called if such a parameter is changed.

Example 7-9. Elaboration Callback

Declare the

cal | back.

set _nmodul e_property ELABORATI ON_CALLBACK mny_el abor ati on_cal | back

Add the USE_

add_par anmeter
Declare the
add_interface

set __interface_

STATUS | NTERFACE par anet er
USE_STATUS_| NTERFACE bool ean

status slave interface

stat us_sl ave aval on sl ave cl ock_sink
property status_sl ave enabl ed fal se

The el aboration cal |l back
proc ny_el aborati on_cal | back {} {

Get the
set

current value of paraneters we care about

use_status [get_paraneter_val ue USE_STATUS | NTERFACE]

Optionally add an interface

if { $use_

status } {

set _interface_property status_slave enabl ed fal se

Set

i nterface properties

set _interface_property status_slave witeWaitTime O

set _interface_property status_sl

ave readWaitTine 1

Declare signals

add_i

add_i

add_i

add_i

add_i

add_i
}

nt er f ace_port
nt erface_port
nt er f ace_port
nt er f ace_port
nterface_port
nt erface_port

st at us_sl ave
st at us_sl ave
st at us_sl ave
st at us_sl ave
st at us_sl ave
st at us_sl ave

st_readdat a readdata output 16
st_read read input 1

st_wite wite input 1

st_wai trequest waitrequest output 1
st _address address input 24
st_witedata witedata input 16

Generation Callback

If you define a generation callback, SOPC Builder does not generate an HDL wrapper
file to apply parameter values to your component. Instead, it calls the generation
callback you defined during the generation phase, allowing the component to
programmatically generate its HDL. A generation callback is defined by setting the
GENERATI ON_CALLBACK module property to be the name of the generation callback
function, as Example 7-10 illustrates.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

© March 2009 Altera Corporation

Chapter 7: Component Interface Tcl Reference 7-11
Overriding Default Behaviors

Generation callbacks typically retrieve the current value of the component’s
parameters and the generation properties that guide the generation process, and then
generate the HDL files and supporting files in Tcl or by calling an external program.
The callback procedure also reports the required files to SOPC Builder with the
add_f i | es command. Any files added in the generation callback are in addition to
the files added in the main body of the _hw.tcl file.

The generation callback must write <output_name.v> for Verilog or <output_name.vhd>
for VHDL to the specified <output_directory>. This file is a parameterized instance of
the component. Other supporting files, such as .hex files to initialize memory, may be
written to <output_directory>. These file names must begin with <output_name>. If the
supporting files are the same for all parameterizations of the component, you add
them from the main program rather than the generation callback. If your system
includes multiple instantiations of a component with different parameterizations, you
must add the supporting files from the main program to prevent failures.

Example 7-10. Generation Callback Example

set _nmodul e_property GENERATI ON_CALLBACK my_generate
My generation nethod

proc ny_generate {} {
send_nessage info "Starting Generation"

get generation settings

set | anguage [get_generation_property HDL_LANGUAGE]
set outdir [get_generati on_property QUTPUT_DI RECTORY]
set out put nane [get_generation_property OUTPUT_NAME]

get paraneter val ues

set pl [get_paraneter_val ue PARAVETER ONE]
set csr [get_paraneter_val ue CSR_ENABLED]

Do HDL generation w th perl

add_file creates files relative to the _hwtcl directory; therefore specify $outdir
for synthesis and simulation files

exec perl ny_generate.pl |ang=$language dir=%outdir nanme=$out put nane pl=$pl csr=$csr
add_file ${outdir}${outputnane}.v SYNTHESIS
add_file ${outdir}${outputname}_simv S| MLATI ON

Editor Callback

You can use the editor callback procedure to override the parameterization GUL An
editor callback is defined by setting the EDI TOR_CALLBACK module property to the
name of your editor callback procedure, as shown in the Example 7-11. If the editor
callback is defined, SOPC Builder calls the editor callback any time the
parameterization GUI is displayed, typically when the component is added to a
system or updated after it is in the system.

To display your custom GUI, the editor callback must call another program.
Typically, an editor callback provides the current parameter values to your program
via the command line and collects the new parameter values via st dout . The editor
callback then uses the set _par anet er _val ue command to update SOPC Builder
with the new parameter values.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

7-12 Chapter 7: Component Interface Tcl Reference
Hardware Tcl Command Reference

The editor callback returns one of the following three values:
m OK—indicates that the results of the edit should be applied.

m CANCEL—indicates that the system should revert to the state it was in before the
editor callback was called.

m ERROR—indicates that the GUI was unable to launch. An appropriate error
message should be displayed.

If no value is returned, OK is assumed.

Example 7-11. Editor Callback
set _nmodul e_property EDI TOR _CALLBACK ny_edi tor

Def ine Modul e paraneters.

add_par anmeter PARAMETER ONE i nt eger 32 "A paraneter”
add_paraneter CSR_ENABLED bool ean true "Enable CSR interface"

My editor nethod
proc ny_editor {} {
get paraneter val ues

set pl [get_paraneter_val ue PARAMETER_ONE]
set csr [get_parameter_val ue CSR_ENABLE]

Display U, populated with current paraneter val ues.
The stdout returned by the U programincl udes the new paranter values.

set result = [exec ny_conponent _ui.exe pl=$pl csr=%csr]

Use the fictional "parse_for_new val ue" procedure to parse the returned text for the
new paraneter val ues.

set pl [parse_for_new val ue $result pl]
set csr [parse_for_new value $result csr]

Return the new parameter values to SCPC Bui |l der

set _par anet er _val ue PARAMETER ONE $pl
set _paraneter_val ue CSR ENABLED $csr
return K

Hardware Tcl Command Reference

This section provides a reference for all hardware Tcl commands, as follows:
m “Module Definition” on page 7-14

m “Parameters” on page 7-19

m “Interfaces and Ports” on page 7-25

m “get_interface_assignment” on page 7-30

The description of each command indicates during which phases it is available: in the
main body of the program (main), or during the validation, elaboration, generation,
and editor callback phases, or any combination. Table 7-2 summarizes the commands
and provides a reference to the full description.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 7: Component Interface Tcl Reference
Hardware Tcl Command Reference

7-13

Table 7-2. Command Summary (Note 1) (Part 1 of 2)

Command

Full Description

Module Definition

get _nodul e_pr operties page 7-14
get _nodul e_pr operty <propert yNanme> page 7-15
set _nodul e_property <propertyName> <propertyVal ue> page 7-16
get _nodul e_ports page 7-16
get _nodul e_assi gnment <nodul eNane> page 7-16
set _nmodul e_assi gnment <nodul eNane> [val ue] page 7-17
add_file filename [<fil eProperties> . . .] page 7-17
get _files page 7-18
get file_property <filename> <propertyName> page 7-18
set _file_property <filename> <propertyName> <propertyVal ue> page 7-18
send_nmessage <nessagelevel > <nessageText > page 7-19
Parameters

add_paraneter <par anet er Nane> <par anet er Type> [<def aul t Val ue> page 7-22
<descri pti on>]

get _paraneters page 7-22
get _paraneter _properties page 7-19
get _paraneter _property <paranet er Name> <propertyNane> page 7-23
set _paraneter _property <paranet er Nanme> <propertyNane> <val ue> page 7-23
get _paraneter _val ue <paranet er Nane> page 7-23
set _paraneter _val ue <paranet er Name> <val ue> page 7-24
decode_address_map <address_map_XM__string> page 7-24
add_di splay_i tem <groupName> <i d> <t ype> [<additi onal | nf 0>] page 7-24
Interfaces and Ports

add_i nterface <interfaceName> <i nterfaceType> <direction> page 7-26
[<associ at edCl ock>]

get _interfaces page 7-26
get _interface_properties <interfaceNane> page 7-27
get _interface_property <interfaceName> <propertyName> page 7-27
set _interface_property <interfaceNanme> <propertyNane> <val ue> page 7-27
add_i nterface_port <interfaceName> <portNane> <port Rol e> page 728
[<direction> <wi dt h>]

get _interface_ports]|<interfaceNane>] page 7-28
get _port_properties page 7-29
get _port _property <portNane> <propert yNane> page 7-29
set _port _property <portNanme> <propertyNane> [<val ue>] page 7-30
get i nterface_assi gnment <i nterfaceNane> <nane> page 7-30
set _i nterface_assi gnnent <i nterfaceNane> <nanme> [<val ue>] page 7-31

Generation

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

7-14

Chapter 7: Component Interface Tcl Reference
Module Definition

Table 7-2. Command Summary (Note 1) (Part 2 of 2)

Command Full Description
get _generation_property <propertyName> page 7-32
get _generation_properties page 7-31
get _proj ect_property <propertyName> page 7-32

Note to Table 7-2:
(1) Arguments enclosed in []'s are optional

Module Definition

This section provides information about the commands that you use to define and

query a module.

get_module_properties

This command returns the names of all the available module properties as a list of
strings. You can use the get _nodul e_property and set _nodul e_property
commands to get and set values of individual properties. The value returned by this
command is always the same for a particular version of SOPC Builder.

get_module_properties

Callback Main, validation, elaboration, generation, and editor
availability

Usage get _nodul e_properties

Returns list of strings

Arguments None

Example get _nodul e_properties

Table 7-3 lists the available module properties, their use, and the phases in which they

can be set.

Table 7-3. Module Properties (Part 1 of 2)

Property
Property Name Type Can Be Set Description

NANVE String Main program | The name of the module, such as
nmy_sopc_conponent .

DI SPLAY_NAME String Main program | The name to display when referencing the
module, such as “My SOPC Component.”

VERSI ON String Main program | The module’s version, such as 8.0.

AUTHOR String Main program | The module’s author.

DESCRI PTI ON String Main program | The description of the module, such as
“Example SOPC Builder Module.”

GROUP String Main program | The component group that the module belongs
to, such as “Example Components.”

I CON_PATH String Main program | A path to an icon to display in the module’s
parameter editor.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

© March 2009 Altera Corporation

Chapter 7: Component Interface Tcl Reference
Module Definition

7-15

Table 7-3. Module Properties (Part 2 of 2)

Property
Property Name Type Can Be Set Description

DATASHEET URL String Main program | A path to the module’s data sheet, for example:
http://www.mydomain.com/my_memory_
controller.html.

EDI TABLE Bool ean | Main program | Indicates if the component is editable in the
component editor.

MODULE TCL _FI LE String Can only be The path to the _hw.tcl file. When possible, all

read, not set other files should be specified relative to the
_hw.tcl file.

MODULE_DI RECTORY String Can only be The directory containing the _hw.tel file.

read, not set

TOP_LEVEL_HDL_FILE String Main program | Indicates which of the files added by the
add_fil e command contains the module’s
top-level HDL.

TOP_LEVEL_HDL_MCDULE String Main program | Indicates the name of the top-level module
which must be defined in the module’s top-
level HDL file.

| NSTANTI ATE | N_SYSTEM MODULE | Bool ean | Main program | When f al se the instances of the module are
not included in the generated system
interconnect fabric. Instead, interfaces to the
module are exported out of the top-level of the
SOPC Builder system.

VALI DATI ON_CALLBACK String Main program | The name of the validation callback. The
default validation is used if this property is not
set.

EDI TOR_CALLBACK String Main program | The name of the editor callback. The default
parameterization Ul is called if this property is
not set.

EL ABORATI ON_CAL LBACK String Main program | The name of the elaboration callback. The
default elaborations used if this property is not
set.

GENERATI ON_CALLBACK String Main program | The name of the generation callback. The

default generation is used if this property is not
set.

get_module_property

This command returns the value of a single module property.

get_module_property

Callback Main, validation, elaboration, generation, and editor

availability

Usage get _nodul e_property <propertyName>

Returns Stringorbool ean

Arguments propertyName | One of the properties listed in Table 7-3 on page 7-14
Example set ny_nane [get_nodul e_property NAVE]

© March 2009 Altera Corporation

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

7-16

Chapter 7: Component Interface Tcl Reference
Module Definition

set_module_property

This command allows you to set the values for module properties.

set_module_property

Callback Main program

availability

Usage set _nodul e_property <propertyName> <propertyVal ue>

Returns None

Arguments propertyNane One of the properties listed in Table 7-3 on page 7-14
propertyVal ue The new value of the property

Example set _nodul e_property VERSION 8.0

get_module_ports

This command returns a list of the names of all the ports which are currently defined.

get_module_ports

Callback Main, validation, elaboration, generation, and editor

availability

Usage get _nodul e_ports

Returns List of strings

Arguments none | (The ports are implicitly those for the current module.)
Example get _nodul e_ports

get_module_assignment

This command returns the value of the specified argument. You can use the

get _nodul e_assi gnnent and set _nodul e_assi gnnent and the

get _interface_assi gnnent and set i nterface_assi gnnment commands to
transfer information about hardware components to embedded software tools and
applications.

For more information about specifying information for software tools, refer to
Publishing Component Information to Embedded Software in the Nios I Software
Developer’s Handbook - Studio Edition.

get_module_assignment

Callback Main and validation

availability

Usage get _nodul e_assi gnnent <name>

Returns String

Arguments nane The name whose value is being retrieved

Example get _nodul e_assi gnment enbedded. sw. CMacro. col or Space

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

© March 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/nii_sw_handbook.pdf
http://www.altera.com/literature/hb/nios2/nii_sw_handbook.pdf

Chapter 7: Component Interface Tcl Reference 7-17
Module Definition

set_module_assignment

This command sets the value of the specified argument.

set_module_assignment

Callback Main and validation

availability

Usage set _nodul e_assi gnment <nane> [<val ue>]

Returns None

Arguments namne The name whose value is being set

val ue The value of the <name> argument

Example set _nodul e_assi gnnment enbedded. sw. CMacro. col or Space CWMYK
add_file

This command adds a synthesis, simulation, or TimeQuest constraints file to the
module. Files added in the main program cannot be removed. Adding files in the
generation callback allows the included files to be a function of the parameter set or to
be a result of generation. Files added in callbacks are in addition to any files added in
the main program.

add_file
Callback Main, elaboration, and generation
availability (7)
Usage add_file filename [<fileProperties> . . .]
Returns None
Arguments filename The file name to be added, relative to the directory containing the _hw.tel file
fileProperties |Filessupportthe following 4 properties:
m S| MULATI ON—File for simulation
m SYNTHESI S—File for synthesis
m SDC—TimeQuest constraints
Example add_fil e nmy_conmponent.v {SI MULATI ON SYNTHESI S}
Note:

(1) Beginning in version 9.1 of SOPC Builder, the add_f i | e command will be restricted to main and generation callbacks.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

7-18

Chapter 7: Component Interface Tcl Reference
Module Definition

get_files
This command returns a list of all the files that have been added to the module.

get_files

Callback Main, validation, elaboration, generation, and editor

availability

Usage get_files

Returns List of strings

Arguments None

Example set list_of files [get files]

get_file_property

This command returns the value of a single file property. The file name passed as an
argument can be a partial as long as it is unique. For example, if the full file name is
/components/my_file.v, my_file.v is sufficient.

get_file_property

Callback Main, validation, elaboration, generation, and editor
availability
Usage get _file_property <fil ename> <propert yNane>
Returns None
Arguments filename The file name whose properties are being retrieved
proper t yName The filename property whose value is being retrieved
Example set forSynthesis [get _file property ny file.v SYNTHESI S]

set_file_property

This command sets the value of a single file property. The file name passed to the
function can be a partial file name as long as it is unique. For example, if the full file
name is /components/my_file.v, my_file.v is sufficient. The available properties are
described in the add_fi | es command.

set_file_property

Callback Main, elaboration, and generation

availability

Usage set _file_property <filename> <propertyName> <propertyVal ue>

Returns None

Arguments fil enane The file name whose properties are being retrieved
proper tyNanme Name of the file property whose value is being retrieved
propertyVal ue | Value to setfor the file property

Example set _file_property my_file.v SYNTHESI S true

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 7: Component Interface Tcl Reference

Parameters

7-19

send_message

This command sends a message to the user of the component.

send_message
Callback Main, validation, elaboration, generation, and editor
availability
Usage send_nessage <nessagelevel > <nessageText >
Returns None
Arguments nmessagelevel The following 4 message levels are supported:
m Er r or —provides an error message. The SOPC Builder system cannot be
generated while there are error messages.
m V\Ar ni ng—provides a warning message.
m | nf o—provides an informational message.
m Debug—provides messages when debug mode is enabled.
nessageText The text of the message
Example send_nessage Error "paranl nust be greater than parang.”
Parameters

Parameters allow users of your component to affect its operation in the same manner
as Verilog HDL parameters or VHDL generics.

get_parameter_properties

This command returns a list of all the available parameter properties as a list of
strings. The get _par amet er _property and set _par amet er _property
commands are used to get and set the values of these properties, respectively.

get_parameter_properties

Callback Main, validation, elaboration, generation, and editor

availability

Usage get _par amet er _properties

Returns List of parameter property names

Arguments None

Example set property_summary [get_paramet er _properties]

© March 2009 Altera Corporation

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

7-20

Chapter 7: Component Interface Tcl Reference
Parameters

Table 7—4 describes the properties available to describe the behaviors of each of the
parameters you can specify, their use, and when they can be set.

Table 7-4. Parameter Properties

(Part 1 of 2)

Property Name

Property
Type

Can Be Set

Description

DI SPLAY_NAME

String

Main program

The text string to use when displaying the parameter.

ALLOAED_RANGES

String

Main program

Indicates the range or ranges that the parameter value
can have. For integers, The ALLOVNED RANGES
property is a list of ranges that the parameter can take
on, where each range is a single value, or a range of
values defined by a start and end value separated by a
colon, such as 11:15. This property can also specify
legal values and display strings for integers, such as
{0:None 1:Monophonic 2:Stereo 4:Quadrophonic}
meaning 0,1,2,4 are the legal values. Refer to
Example 7—7 and Figure 7-2 for examples illustrating
the use of this property.

GRAUP

String

Main program

The group in which to display the parameter. This
property is deprecated. Use add_di spl ay_item
instead.

I S_HDL_PARAMETER

Bool ean

Main program

When t r ue, the parameter must be passed to the HDL
component description. The default value is f al se
false if there is a generation callback. Or, its value is
calculated by analyzing the HDL if you have specified a
top-level HDL file.

AFFECTS_ELABORATI ON
(1)

Bool ean

Main program

Set AFFECTS ELABCRATI ONto f al se for
parameters that do not affect the external interface of the
module. An example of a parameter that does not affect
the external interface is i sNonVol at i | eSt or age.
An example of a parameter that does affect the external
interface is wi dt h. When the value of a parameter
changes, if that parameter has set
AFFECTS_ELABORATI ON=f al se, the elaboration
phase (calling the callback or hardware analysis) is not
repeated, improving performance. Because the default
value of AFFECTS ELABORATI ONist r ue, the
provided HDL file is normally re-analyzed to determine
the new port widths and configuration every time a
parameter changes.

VI SI BLE

Bool ean

Main program,

validation
callback

Indicates whether or not to display the parameter in the
parameterization GUI.

ENABLED

Bool ean

Main program,

validation
callback

Whenf al se, the parameter is disabled, meaning that it
is displayed, but greyed out indicating that it is not
editable, on the parameterization GUI.

DERI VED

Bool ean

Main program

Whent r ue, indicates that the parameter value does not
need to be stored, typically because it is set from the
validation callback. The default value is f al se.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

© March 2009 Altera Corporation

Chapter 7: Component Interface Tcl Reference

Parameters

7-21

Tahle 7-4. Parameter Properties

(Part 2 of 2)

Property Name

Property
Type

Can Be Set

Description

DI SPLAY_H NT

String

Main program

Provides a hint about how to display a property. The
following values are possible:

m bool ean—for integer parameters whose value can
be 0 or 1. The parameter displays as a checkbox.

m radi o—displays a parameter with a list of values as
radio buttons instead of a drop-down list.

m hexadecimal—for integer parameters, display and
interpret the value as a hexadecimal number, for
example: 0x00000010 instead of 16.

Refer to Example 7—7 and Figure 7-2 for examples
illustrating the use of this property.

SYSTEM | NFO

String

Main program

Allows you to assign information about your system to a
parameter that you define. SYSTEM | NFOrequires an
argument specifying the type of information requested,
<i nf o-t ype>.<i nf o-t ype> may also take an
argument. The syntax of the Tcl command is:

set_parameter_property ny_paraneter
SYSTEM | NFO {<i nfo-type> [<arg>]}

The following values for <i nf o- t ype> are
predefined:

m CLOCK_RATE
= CLOCK_DOMAI N

= RESET_DOMAI N
ADDRESS_W DTH
ADDRESS MAP
MAX_SLAVE_DATA W DTH
| NTERRUPTS_USED

DEVI CE_FAM LY

DEVI CE_FEATURES

For more information about the SYSTEM | NFOand the
<i nf o_t ype> argument refer to “Declaring
Parameters” on page 7-3.

Note to Table 7-4:

(1) The AFFECTS_EL ABCRATI ONproperty was called AFFECTS PORT_W DTHS before version 9.0 of the Quartus Il software.

© March 2009 Altera Corporation

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

7-22

Chapter 7: Component Interface Tcl Reference
Parameters

add_parameter

This command adds a parameter to your component.

add_parameter
Callback Main program
availability
Usage add_par anet er <par anet er Nane> <par anet er Type> [<def aul t Val ue>
<descri ption>]
Returns None
Arguments par anet er Namre | A name that you, the component author, choose for your parameter
par aret er Type | The following 7 types are supported:
m | nteger
= Natural
m Positive
m Bool ean
m Std_I| ogic (VHDL based components only)
m Std_l ogic_vector (VHDL based components only)
m String
def aul t Val ue The default length of the parameter is derived from its range.
descri ption Explains the use of the parameter
Example add_paraneter seed integer 17 "The seed to use for data generation."”

get_parameters

This command returns the names of all parameters that have been previously defined
by add_par anet er as a space separated list.

get_parameters

Callback Main, validation, elaboration, generation, and editor
availability

Usage get _par aneters

Returns list of strings

Arguments None

Example set paraneter_summary [get_paraneters]

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 7: Component Interface Tcl Reference

Parameters

7-23

get_parameter_property

This command returns a single parameter property.

get_parameter_property

Callback Main, validation, elaboration, generation, and editor

availability

Usage get _paramet er _property <paranet er Name> <pr opert yNanme>

Returns string or bool ean, depending on property refer to Table 7—4

Arguments par arret er Nane | The name of the parameter whose property value is being retrieved
propertyName One of the properties listed in Table 7-4

Example get _paranet er _property paranmeterl GROUP

set_parameter_property

This command sets a single parameter property.

set_parameter_property
Callback Main and validation
availability
Usage set _paranet er _property <paranet er Name> <pr opert yNane> <val ue>
Returns None
Arguments par arret er Nane | Specifies the parameter that is being set
propertyNanme Specifies the property of par anet er Name that is being set, refer to Table 74
for a list of properties
val ue Provides the values
Example set _paranet er _property BAUD RATE ALLOMNED RANGES {9600 19200 38400}

get_parameter_value

This command returns the current value of a parameter defined previously with the
add_par anet er command.

get_parameter_value

Callback Validation, elaboration (7), generation, and editor

availability

Usage get _paranet er_val ue <par anet er Nane>

Returns Depends on type of the parameter

Arguments par anet er Name | Specifies the parameter that is being retrieved
Example set fifo_ width [get_paranmeter _value fifo_wi dth]
Note:

(1) If AFFECTS_ELABCRATI ON=f al se for a given parameter, get _par anet er _val ue is not available for that parameter from the
elaboration callback.

© March 2009 Altera Corporation

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

7-24

Chapter 7: Component Interface Tcl Reference
Parameters

set_parameter_value

This command sets a parameter value. Typically, the value of derived parameters is
set during the validation callback based on the value of other parameters.

set_parameter_value

Callback Validation and editor

availability

Usage set _paranet er_val ue <par anet er Nane> <val ue>

Returns None

Arguments par anet er Nane | Specifies the parameter that is being set
val ue Specifies the value of par amet er Nane

Example set _paranet er _val ue BAUD RATE 19200

decode_address_map

This is a utility function to convertan XML—-formatted address map into a list of Tcl
lists. Each inner list is in the correct format for conversion to an array. Using this
command to decode the XML representing an Avalon-MM master’s address map is
easier and ensures that your code will work with future versions of the XML address

map.

decode_address_map

Callback Validation, elaboration, and generation

availability

Usage decode_addr ess_map <address_map_XM__string>

Returns List of Tcl lists, each one suitable for passing to array set

Arguments address_nmap_ An XML string describing the address map of an Avalon-MM master (refer to the
XM__string ADDRESS NMAPtype in the “Declaring Parameters” on page 7-3 for more

information.
Example set address_map_xm [get_paraneter_val ue ny_map_parani

set address_map_dec [decode_address_nmap $address_map_xm]

foreach i $address_map_dec {
array set info $i
send_nessage info "Connected to sl ave $info(nanme)"

add_display_item

You can use this command to specify the following two aspects of component display:

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

® You can create logical groups for a component’s parameters. For example, you
might want to create separate groups for the component’s timing, size, and
simulation parameters. A component displays the groups and parameters in the
order that you specify them in the _hw.tcl file.

B You can specify an image to provide a pictorial representation of a parameter or
parameter group.

© March 2009 Altera Corporation

Chapter 7: Component Interface Tcl Reference 7-25
Interfaces and Ports

You create a display group by adding display items to it. You do not need to explicitly
create groups before using them.

add_display_item

Callback Main
availability
Usage add_di spl ay_i t em <groupNanme> <i d> <type> [<addi tional | nfo>]
Returns None
Arguments gr oupNarre Specifies the group to which a display item belongs.
id Specifies the parameter or icon to be displayed in a group. Each display item
associated with a component must have a different ID.
type Specifies the category of the display item. There are currently 2 types:

par anet er andi con.

addi ti onal I nf o | Provides extra information required for some display items. For icons, it
provides the filename of the icon. You can use GIF, JPEG, and PNG file formats.

Examples add_di splay_itemtimng read_| at ency paraneter

add_di spl ay_item sound speaker icon speaker.jpg

Interfaces and Ports

You can use the interface and port commands to define interfaces and ports and
retrieve their properties.

add_interface

This command adds an interface to your module. As the component author, you
choose the name of the interface. By default, interfaces are enabled. You can set the
interface property ENABLED to f al se, to disable a component interface. If an
interface is disabled, it is hidden and its ports are automatically terminated to their
default values. Signals that you designate as active low by appending a _n are
terminated to 1. All other signals are terminated to 0.

«e The properties available for each interface type are different for every interface type.
Refer to the Avalon Interface Specifications.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

7-26 Chapter 7: Component Interface Tcl Reference
Interfaces and Ports

add_interface

Callback Main program and elaboration #
availability
Usage add_i nterface <interfaceNane> <interfaceType> <directi on>
[<associ at edd ock>] (1)
Returns None
Arguments i nterfaceName A name that you choose to identify an interface.
interfaceType Thereare 7i nt er f aceTypes. The following directions are possible for
anddi recti on thesei nterf aceTypes:
Interface Type Direction
aval on master, slave (2)
avalon_tristate sl ave
aval on_stream ng source, sink
i nterrupt sender, receiver
condui t start
clock source, sink
ni os_custom.instructi on slave
associ at edd ock | This defines the clock associated with the interface. It is required for all
interfaces except clock interfaces.
Example add_i nterface nmslave aval on slave cl ockO
Notes:

(1) Forinterfaces that are not associated with clocks, such as clock interfaces themselves, the associ at edd ock is omitted. Another option
is to specify the associ at edd ock argument as asynchronous.

(2) The terms master, source and start are interchangeable. The terms slave, sinkand end are interchangeable.

get_interfaces

This command returns the names of all interfaces that have been previously defined
by add_i nt er f ace as space separated list.

get_interfaces

Callback Main, validation, elaboration, generation, and editor
availability

Usage get _interfaces

Returns list of strings

Arguments None

Example set all_interfaces [get_interfaces]

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 7: Component Interface Tcl Reference

Interfaces and Ports

1-271

get_interface_properties

This command returns the names of all the available interface properties for the
specified interface as a space separated list.

get_interface_properties

Callback Main program and elaboration

availability

Usage get _interface_properti es <interfaceNanme>
Returns list of strings

Arguments interfaceName | The name of an interface that you defined
Example get _interface_properties nmslave

.o The properties available for each interface type are different for every interface type.

Refer to the Avalon Interface Specifications.

get_interface_property

This command returns the value of a single interface property from the specified

interface.

get_interface_property

Callback Main program and elaboration

availability

Usage get _interface_property <interfaceName> <propert yNanme>

Returns Depends upon the type of the property being returned

Arguments i nterfaceNanme | The name of an interface from which you want to retrieve information
propertyNanme The name of the property whose value you want to retrieve

Example get _interface_property mmslave readWit Ti me

set_interface_property

This command sets a single interface property for an interface.

set_interface_property
Callback Main, validation, elaboration, generation, and editor
availability
Usage set_interface_property <interfaceNane> <propertyNane> <val ue>
Returns Depends upon the type of the property being returned
Arguments i nterfaceNanme | The name of an interface that includes this property
propert yNane The name of the property whose value you want to set
val ue The value to set for the specified property
Example set_interface_property mmslave |inewapBursts fal se

© March 2009 Altera Corporation

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

7-28

Chapter 7: Component Interface Tcl Reference
Interfaces and Ports

add_interface_port

This command adds a port to an interface on your module. As the component author,
you determine the name of the port. The port roles that you can set depend on the
interface. The port direction and width may be omitted if either:

m If you have defined the direction and width of the port in the top-level HDL file

m If you define the direction and width by setting port properties in the elaboration

callback

For ports added in the main program you can pass in a width of -1 to indicate
explicitly that the port width will be defined later.

add_interface_port

Callback Main program and elaboration
availability
Usage add_interface_port <interfaceNanme> <port Name> <port Rol e>
[<di recti on> <w dt h>]
Returns None
Arguments i nterfaceNane | The name of the interface to which the port belongs.
port Nanme The name of the port that you, the component author, have chosen.
port Rol e The role of this port within the interfaces. Port roles are referred to as si gnal
t ypes in the Avalon Specification. Refer to the Avalon Interface Specifications
for the si gnal t ypes available for each interface type.
direction The direction can be input, output, bidir, and for VHDL, buffer.
wi dt h The width of the port in bits.
Example add_interface_port nmslave sO rdata readdata output 32

get_interface_ports

This command returns the names of all of the ports that have been added to a given
interface. If the interface name is omitted, all ports for all interfaces are returned.

get_interface_ports

Callback Main, validation, elaboration, generation, and editor

availability

Usage get _interface_ports [<interfaceNanme>]

Returns list of strings

Arguments i nter f aceNanme | The name of the interface whose ports you want to list. (Optional)
Example get __interface_ports mmslave

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 7: Component Interface Tcl Reference 7-29
Interfaces and Ports

get_port_properties

This command returns a list of all available port properties.

get_port_properties

Callback Main, validation, elaboration, generation, and editor
availability
Usage get _port_properties <portNane>
Returns list of strings
Arguments port Name The name of the port whose properties are required. The following 4 port properties are
supported:
Property Type Description
DI RECTI ON I NPUT, QUTPUT The direction of the port from the component’s perspective.
Bl DI R, BUFFER
W DTH I nteger The width of the port in bits.
TERM NATI ON Bool ean When true, instead of connecting the port to the SOPC
Builder system, it is left unconnected (QUTPUT, BI DI R,
and BUFFER) or set to a fixed value (I NPUT). Has no
effect for components thatimplement a generation
callback instead of using the default wrapper generation.
TERM NATI ON_W DE up to 63 bits The constant value to drive an input port.
Example get _port_properties nmslave

get_port_property

This command returns the value of single port property for the specified port.

get_port_property<

Callback Main, validation, elaboration, generation, and editor
availability
Usage get _port_property <portNanme> <propertyNanme>
Returns Depends on the type of the property
Arguments port Name The name of the port
propert yName One of the 4 supported properties:
m DI RECTI ON
m WDTH

= TERM NATI ON
m TERM NATI ON_VALUE
Example get _port_property rdata WDTH

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

7-30 Chapter 7: Component Interface Tcl Reference
Interfaces and Ports

set_port_property

This command sets a single port property.

set_port_property

Callback Main program, elaboration, and custom generation
availability
Usage set_port_property <portNane> <propertyNane> [<val ue>]
Returns None
Arguments port Narme The name of the port
proper t yNanme m One of the 4 supported properties:
m DI RECTI ON
s WDTH
m TERM NATI ON
m TERM NATI ON_VALUE
val ue The value to set
Example set _port_property rdata WDTH 32

get_interface_assignment

This command returns the value of the specified name for the specified interface.

get_interface_assignment

Callback Main and validation

availability

Usage get _interface_assignment <interfaceName> <nanme>

Returns String

Arguments i nterfaceNane | The name of the Avalon interface whose assignment is being retrieved
nane The assignment whose value is being retrieved.

Example get _interface_assignment sl enbeddedsw configuration.isFlash 1

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 7: Component Interface Tcl Reference

Generation

7-31

set_interface_assignment

This command sets the value of the specified assignment for the specified interface.

set_interface_assignment
Callback Main and validation
availability
Usage set _interface_assignment <interfaceNanme> <nane> [<val ue>]
Returns None
Arguments i nterfaceNanme | The name of the Avalon interface whose assignment is being set
nane The assignment whose value is being set.
val ue The value to assign
Example set _interface_assignment sl enbeddedsw configuration.isFlash 1
Generation

This section covers the commands that set and get generation properties.

get_generation_properties

This command returns the names of all the available generation properties as a space
separated list. These properties cannot be changed by the module.

get_generation_properties

HDL_LANGUAGE

Callback Main, validation, elaboration, generation, and editor

availability

Usage get _generati on_properties

Returns list of strings. The following generation properties are supported:
Property Type Description

OUTPUT_DI RECTORY File The location in which files must be generated. The filename

ENUM The HDL language to generate. Is either veri | og or
vhdl (lowercase). If the module cannot generate the
specified language, generating in the other language is
acceptable.

components in the directory name are separated with
forward slashes.

OUTPUT_NAME String The top-level file name and entity to be generated. If the
OUTPUT_NAME is nodul e_0 and the HDL_LANGUAGE
is ver il og, the file module_0.v must be generated
and must contain the module, nodul e_0.
Arguments None
Example get _generati on_properties

© March 2009 Altera Corporation

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

7-32

Chapter 7: Component Interface Tcl Reference
Generation

get_generation_property

This command returns the value of a single generation property.

get_generation_property

Callback Generation
availability
Usage get _generation_property <propertyName>
Returns St ri ng or bool ean, depending on the type
Arguments pr opertyNane One of the 3 generation properties:
m HDL_LANGUAGE
m OUTPUT_DI RECTORY
= OUTPUT_NAME
Example get _generation_property OUTPUT_DI RECTORY

get_project_property

This command returns the value of a single project property.

get_project_property

Availability | Validation, elaboration, generation, and editor
Usage get _project_property <propertyName>
Returns St ri ng orbool ean, depending on the property
Argument pr opert yNane
The following properties are supported:
Property Type Description
QUARTUS_ROOTDI R DI RECTORY Value of the SQUARTUS_RCOTDI Renv variable
QUARTUS PRQIECT DI RECTCORY DI RECTORY Pathto the current project directory
QUARTUS_PRQJECT_NAME String Name of the current Quartus Il project
DEVI CE_FAM LY_NAME Enum One of the following current device families:
STRATIX, STRATIXII, STRATIXIIGX, ARRIAGX,
STRATIXGX, STRATIXII, STRATIXIV, CYCLONE,
CYCLONEII, CYCLONEII, HARDCOPY,
HARDCOPYII,HARDCOPY I, MAXII, APEX20KE,
APEX20KC, APEXII, ACEX1K
DEVI CE_FAM LY_FEATURES Enum The device family supports the following features:
M512_MEMORY, M4K_MEMORY, M9K_MEMORY,
M144K_MEMORY, MRAM_MEMORY,
MLAB_MEMORY, ESB, EPCS, DSP, EMUL,
HARDCOPY, LVDS_I0, ADDRESS_STALL,
TRANSCEIVER_3G_BLOCK
TRANSCEIVER_6G_BLOCK,DSP_SHIFTER_BLOCK
Example get _project_property DEVI CE_FAM LY_NAVE

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

© March 2009 Altera Corporation

Chapter 7: Component Interface Tcl Reference 7-33
Referenced Document
Referenced Document
This chapter references the following document:
m Awvalon Interface Specifications
Document Revision History
Table 7-6 shows the revision history for this chapter.
Table 7-6. Document Revision History
Date and Document
Version Changes Made Summary of Changes

March 2009, v9.0.0

Added add_di spl ay_i t emcommands.

Added DI SPLAY_H NT, | S HDL_PARAMETER,
DERI VED, and SYSTEM | NFO parameters to Table 74

on page 7-20. Described SYSTEM | NFO parameter in detalil.

Added ENABLED interface property to enable or disable an
interface.

The AFFECTS_PORT_W DTHS parameter has been
renamed AFFECTS_EL ABORATI ONto better reflect its
function.

Added note saying that the add_f i | e command will be
restricted to the main and generation callbacks starting in
version 9.1 of the Quartus Il software.

Explained that before the elaboration phase, parameters may
have values of 0 or -1 that are determined during HDL
analysis.

Added several new commands
to increase functionality,
clarified a few others, and
corrected typographic errors.\

November 2008, v8.1

Added get _nodul e_ports,

get _i nterface_assi gnment,

set _i nterface_assi gnment,

get _nodul e_assi gnment, and

set _nodul e_assi gnment commands

Corrected availability to include more callbacks for several
commands

Added two additional types foradd_par amet er command:
nat ur al andposi tive

Added brackets for some optional parameters

Changed add_f i | e command for simulation and synthesis
in Example 7-10 to write to $out di r

get _proj ect _property is available in validation
callback

Changed page size to 8.5 x 11 inches

Added 5 new commands and
corrected commands that did
not define optional arguments
or omitted some callback
availability.

June 2008, v8.0.1

Reformatted command information in tables.

May 2008, v 8.0.0

Added new Editing _hw.tcl commands and
debug commands sections.

Changed chapter title from Building a Component Interface
with Tel Scripting Commands to Component Interface Tcl
Reference.

© March 2009 Altera Corporation

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

7-34 Chapter 7: Component Interface Tcl Reference
Document Revision History

“.e For previous versions of the Quartus Il Handbook, refer to the Quartus IT Handbook
Archive.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

fAN =R 8. Archiving SOPC Builder Projects

Q1154017-9.0.0

Introduction

This chapter identifies the files you must include when archiving an SOPC Builder
project. With this information, you can archive the SOPC Builder system. You may
want to archive your SOPC Builder system for one of the following reasons:

m To place an SOPC Builder design under source control
m To create a backup
m To bundle a design for transfer to another location

To use this information, you must decide what source control or archiving tool to use,
and you must know how to use it. This chapter describes how to find and identify the
files that you must include in an archived SOPC Builder design. Refer to “Required
Files” on page 8-2.

Limitations

This chapter provides information about archiving SOPC Builder systems, including
Nios®1I software applications, if any. If your SOPC Builder system does not contain a
Nios II processor, you can disregard information about archiving Nios Il software
applications.

This chapter does not cover archiving SOPC Builder components, for two reasons:

m SOPC Builder components can be recovered, if necessary, from the original
Quartus®Il and Nios II installations.

m If your SOPC Builder system was developed with an earlier version of the
Quartus II software and Nios Il Embedded Design Suite (EDS), when you restore
it for use with the current version, you normally use the current, installed
components.

If your SOPC Builder system was developed with an earlier version of the Quartus II
Complete Design Suite and you restore it for use with the current version, the
regenerated system is functionally identical to the original system. However, there
might be differences in details such as timing performance, component
implementation, or HAL implementation.

«o For details of version changes, refer to the Quartus II Reference Documentation.
To ensure that you can regenerate your exact original design, maintain a record of the

tool and IP version(s) originally used to develop the design. Retain the original
installation files or media in a safe place.

© March 2009 Altera Corporation Quartus 11 Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/quartus2/lit-qts-related.jsp
http://www.altera.com/literature/quartus2/lit-qts-related.jsp

8-2

Chapter 8: Archiving SOPC Builder Projects
Required Files

The archival process addressed by this chapter is different than Quartus II project
archiving. A Quartus II project archive contains the complete Quartus II project,
including the SOPC Builder module. The Quartus II software adds all HDL files to the
archive, including HDL files generated by SOPC Builder, although these files are not
strictly necessary, if you regenerate the design files afterwards. A Quartus II project
archive also archives the Quartus II IP (.qip) file.

This chapter is only concerned with archiving the SOPC Builder system, without the
generated HDL files.

For more details about archiving Quartus II projects, refer to the Managing Quartus II

Projects chapter in volume 2 of the Quartus II Handbook.

Required Files

This section describes the files required to archive an SOPC Builder system and its
associated Nios II software projects (if any). This is the minimum set of files needed to
completely recompile an archived system, both the SRAM Object File (.sof) and the
executable software (.elf).

ey

If you have Nios II software projects, archive them together with the SOPC Builder

system on which they are based. For more details about archiving Nios II designs,
refer to the Using the Nios 11 Software Build Tools chapter of the Nios II Software
Developer’s Handbook.

The files listed in Table 8-1 are located in the Quartus II project directory.

Table 8-1. Files Required for an SOPC Builder System

File Description File Name Write Permission Required? (7)

SOPC Builder system description <sopc_builder_system>.sopc Yes
SOPC Builder classic system description for | <sopc_builder_system>.ptf Yes
generation (7)

SOPC Builder report file <sopc_builder_system>.sopcinfo Yes
All non-generated HDL source files (2) for example: top_level_schematic.bdf, No

customlogic.v

Quartus Il project file <project_name>.qpf No
Quartus Il settings file <project_name>.qsf Yes

Notes to Table 8-1:

(1) The <sopc_builder_system>.ptf file is only required if you intend to edit or view the system in a version of SOPC Builder prior to version 7.1

and must also be writable to generate a system.

Include all HDL source files not generated by SOPC Builder, including HDL source files you create or copy from elsewhere. To identify a file
generated by SOPC Builder, open the file and look for the following header: Legal

@)

Al rights reserved.

Not i ce:

(O <year> Altera Corporation.

Many source control tools mark local files r ead- onl y by default. In this case, you
must override this behavior. You do not have to check the files out of source control
unless you are modifying the SOPC Builder design or Nios II software project.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

© March 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 8: Archiving SOPC Builder Projects 8-3
Referenced Documents

Referenced Documents

This chapter references the following documents:
B Managing Quartus II Projects chapter in volume 2 of the Quartus II Handbook

m Using the Nios 11 Software Build Tools chapter of the Nios II Software Developer’s
Handbook

m Quartus Il Reference Documentation

Document Revision History

Table 8-2 shows the revision history for this chapter.

Tahle 8-2. Document Revision History

Date and Document Version Changes Made Summary of Changes
March 2009, v9.0.0 No change from previous release. —
November 2008, v8.1.0 Changed page size to 8.5” x 11”. —
May 2008, v8.0.0 Renumbering from Chapter 7 to 8. —

. For previous versions of the Quartus Il Handbook, refer to the Quartus Il Handbook
Archive.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://www.altera.com/literature/quartus2/lit-qts-related.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

8-4 Chapter 8: Archiving SOPC Builder Projects
Document Revision History

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

fAEI iERA Section Il. Building Systems with SOPC
= . Builder

This section uses example designs to show you how to build a system or component.
Chapters in this section serve to answer the question, “How do I define systems in
SOPC Builder.” This chapter refers to design examples that you can download free
from www.altera.com. Design file hyperlinks are located with individual chapters
linked from the Altera website.

This section includes the following chapters:
m Chapter 9, SOPC Builder Memory Subsystem Development Walkthrough
m Chapter 10, SOPC Builder Component Development Walkthrough

"=~ For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.

© March 2009 Altera Corporation Quartus 11 Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/

-2 Section Il: Building Systems with SOPC Builder

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

fAN |:| —Ig D)/A 9. SOPC Builder Memory Subsystem

® Development Walkthrough

Q1154006-9.0.0

Introduction

Example Design

Most systems generated with SOPC Builder require memory. For example, embedded
processor systems require memory for software, while digital signal processing (DSP)
systems require memory for data buffers. Many systems use multiple types of
memories. For example, a processor-based DSP system can use off-chip SDRAM to
store software, and on-chip RAM for fast access to data buffers. You can use SOPC
Builder to integrate almost any type of memory into your system.

This chapter uses design examples to describe how to build a memory subsystem as
part of a larger system created with SOPC Builder. This chapter focuses on the
following kinds of memory most commonly used in SOPC Builder systems:

B “On-Chip RAM and ROM” on page 9-6

“EPCS Serial Configuration Device” on page 9-9
“SDR SDRAM” on page 9-11

“DDR SDRAM” on page 9-14

“DDR2 SDRAM” on page 9-14

m “Off-Chip SRAM and Flash Memory” on page 9-15

This chapter assumes that you are familiar with the following task and concepts:

m Creating FPGA designs and making pin assignments with the Quartus®Il
software. For details, refer to the Introduction to the Quartus Il Software manual.

m Building simple systems with SOPC Builder. For details, refer to the Introduction to
SOPC Builder chapter in volume 4 of the Quartus II Handbook.

m SOPC Builder components. For details, refer to the SOPC Builder Components
chapter in volume 4 of the Quartus II Handbook.

m Basic concepts of the Avalon® interfaces. You do not need extensive knowledge of
the Avalon interfaces, such as transfer types or signal timing. However, to create
your own custom memory subsystem with external memories, you need to
understand the Avalon Memory-Mapped (Avalon-MM) interface. For details,
refer to the System Interconnect Fabric for Memory-Mapped Interfaces chapter in
volume 4 of the Quartus II Handbook and the Avalon Interface Specifications.

Refer to the Memory System Design chapter in the Embedded Design Handbook for
additional information on the efficient use of memories in SOPC Builder systems.

This chapter demonstrates the process for building a system that contains one of each
type of memory as shown in Figure 9-1. Each section of the chapter builds on
previous sections, culminating in a complete system.

© March 2009 Altera Corporation Quartus 11 Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/hb/qts/qts_qii54001.pdf
http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/qts/qts_qii54004.pdf
http://www.altera.com/literature/hb/nios2/edh_ed_handbook.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/qts/qts_qii54001.pdf
http://www.altera.com/literature/hb/qts/qts_qii54001.pdf
http://www.altera.com/literature/hb/nios2/edh_ed_handbook.pdf

9-2 Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough
Introduction

By following the example design in this chapter, you learn how to create a complete
customized memory subsystem for your system or design. The memory components
in the example design are independent. For a custom system, you only need to
instantiate the memories you need. You can also create multiple instantiations of the
same type of memory, limited only by on-chip memory resources or FPGA pins to
interface with off-chip memory devices.

Example Design Structure
Figure 9-1 shows a block diagram of the example system.

Figure 9-1. Example Design Block Diagram

JTAG Interface
A

Altera FPGA v

JTAG
Controller

SOPC Builder System

A [}
Nios Il =]
20 JTAG
Processor L
o3 UART
Data Instr. g =
M M - s

System Interconnect Fabric

Lo

s] s] s] s]

Avalon-MM SDRAM 1K x 32 bit EP(':S
Tristate Bridge Controller On-chip Device
RAM Controller

m Core

A A A

SDRAM EPCS
Interface Interface
\ 4 \ 4 \ 4
S S
8M x 8 bit 256K x 32 bit 4M x 32 bit EP(.:S
Serial
CFI SRAM SDRAM . .
] Configuration
Flash Memory Memory Chip .
.) Device
Memory Chip Chip

E Avalon-MM Master Port

Avalon-MM Slave Port

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough 9-3

Introduction

In Figure 9-1, all blocks shown below the system interconnect fabric comprise the
memory subsystem. For demonstration purposes, this system uses a Nios® II
processor core to master the memory devices, and a JTAG UART core to communicate
with the host PC. However, the memory subsystem could be connected to any master
component, located either on-chip or off-chip.

Example Design Starting Point

The example design consists of the following elements:

B A Quartus II project named quartus2_project. A Block Design File (.bdf) named
toplevel_design. toplevel_design is the top-level design file for quartus2_project.
toplevel_design instantiates the SOPC Builder system, as well as other pins and
modules required to complete the design.

m An SOPC Builder system named sopc_memory_system. sopc_memory_system is
a subdesign of toplevel_design. sopc_memory_system instantiates the memory
components and other SOPC Builder components required for a functioning SOPC
Builder system.

This discussion assumes that the quartus2_project already exists,
sopc_memory_system has been started in SOPC Builder, and the Nios II core and the
JTAG UART core are already instantiated. This example design uses the default
settings for the Nios II core and the JTAG UART core; these settings do not affect the
rest of the memory subsystem.

Hardware and Software Requirements

s

To build a memory subsystem similar to the example design in this chapter, you need
the following tools:

B Quartus II software version 5.0 or higher—Both Quartus II Web Edition and the
fully licensed version support this design flow.

m Nios I Embedded Design Suite (EDS) version 5.0 or higher—Both the evaluation
edition and the fully licensed version support this design flow. The Nios I EDS
provides the SOPC Builder memory components described in this chapter. It also
provides several complete example designs which demonstrate a variety of
memory components instantiated in working systems.

The Quartus II Web Edition software and the Nios II EDS, Evaluation Edition are
available free for download from the Altera® website. Visit
www.altera.com/download. Also, for further reference, see the Design Examples.

This chapter does not describe downloading and verifying a working system in
hardware. Therefore, there are no hardware requirements for the completion of this
chapter. However, the example memory subsystem has been tested in hardware.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/download
http://www.altera.com/support/examples/nios2/exm-nios2.html

9-4 Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough
Design Flow

Design Flow

This section describes the design flow for building memory subsystems with SOPC
Builder, which is similar to other SOPC Builder designs. After starting a Quartus II
project and an SOPC Builder system, there are five steps to completing the system, as
shown in Figure 9-2:

1. Component-level design in SOPC Builder
2. SOPC Builder system-level design

3. Simulation

4. Quartus II project-level design

5

Board-level design

Figure 9-2. Design Flow

R

Add memory
component 1

! ! !
! ! !
I I I
! ! !
I I I
I I I
! ! !
I I I
I I I
! ! !
I I I
! ! !
| i | |
! ! !
' ' Simulation '
! ! !
I I I
! ! !
! ! !
I I I
! ! !
I I I
I I I
! ! !
I 1 1

component 2

|

Add memory T

Connect
Starta Sslgr;gn . compgnents Connect SOPC Assign FPGA Connect
Quartus Il > o . > » Builder system p Pins & compile FPGA pins
project U|l er . generate module to Quartus Il to memory
system Add memory E?LSi)IEgr Quartus Il project project chips
component N system

Add other
components

I

i

Component-Level SOPC Builder Quartus Il Project
Design Sysézg;svel Level Design Board-Level Design

Component-Level Design in SOPC Builder

In this step, you specify which memory components to use and configure each
component to meet the needs of the system. All memory components are available
from the Memory and Memory Controllers category in the list of available
components in SOPC Builder.

SOPC Builder System-Level Design

In this step, you connect components together and configure the SOPC Builder system
as a whole. Like the process of adding non-memory SOPC Builder components, you
use the System Contents tab to do the following:

B Rename the component instance (optional).

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough 9-5

Design Flow
m Connect the memory component to masters in the system. Each memory
component must be connected to at least one master.
m Assign a base address.
m Assign aclock domain. A memory component can operate on the same or different
clock domain as the master(s) that access it.
Simulation

In this step, you verify the functionality of the SOPC Builder system. For systems with
memories, this step depends on simulation models for each of the memory
components, in addition to the system testbench generated by SOPC Builder. Refer to
“Simulation Considerations” for more information.

Quartus Il Project-Level Design

]
s
&5

In this step, you integrate the SOPC Builder system with the rest of the Quartus II
project, which includes connecting the SOPC Builder system to FPGA pins,
connecting wiring the SOPC Builder system to other design blocks (such as other
HDL modules) in the Quartus II project.

In the example design in this chapter, the SOPC Builder system comprises the entire
FPGA design. There are no other design blocks in the Quartus II project.

Board-Level Design

In this step, you connect the physical FPGA pins to memory devices on the board. If
the SOPC Builder system interfaces with off-chip memory devices, you must make
board-level design choices.

Simulation Considerations

I =
L&

SOPC Builder can automatically generate a testbench for RTL simulation of the system
using ModelSim®. This testbench instantiates the SOPC Builder system and can also
instantiate memory models for external memory components. The testbench is plain
text HDL, located at the bottom of the top-level SOPC Builder system HDL design file.
To explore the contents of the auto-generated testbench, open the top-level HDL file
and search on keyword t est _bench.

Beginning in ModelSim SE 6.2, design optimization is on by default. Optimization
may eliminate design nodes which are referenced in your wave display file. In this
case, the you cannot display the waveforms. You can ignore this failure if you want to
run an optimized simulation. However, if you want to see the simulation signals, you
can disable the optimized compile by setting Vopt Fl ow = 0 in your modelsim.ini
file. The modelsim.ini is stored in the top-level directory of the ModelSim installation.

Generic Memory Models

The memory components described in this chapter, except for the SRAM, provide
generic simulation models. Therefore, it is very easy to simulate an SOPC Builder
system with memory components immediately after generating the system.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough
On-Chip RAM and ROM

=

The generic memory models store memory initialization files, such as Data (.dat) and
Hexadecimal (.hex) files, in a directory named <Quartus II project directory>/<SOPC
Builder system name>_sim. When generating a new system, SOPC Builder creates
empty initialization files. You can manually edit these files to provide custom
memory initialization contents for simulation.

For designs that include a Nios II processor, you can create memory initialization files
using the Nios II software build tools. For more information, refer to Creating Memory
Initialization Files in the Nios II Software Developer’s Handbook — Studio Edition.

Vendor-Specific Memory Models

You can also manually connect vendor-specific memory models to the SOPC Builder
system. In this case, you must manually edit the testbench and connect the vendor
memory model. You might also need to edit the vendor memory model slightly for
time delays. The SOPC Builder testbench assumes zero delay.

On-Chip RAM and ROM

Altera FPGAs include on-chip memory blocks that can be used as RAM or ROM in
SOPC Builder systems. On-chip memory has the following benefits for SOPC Builder
systems:

B On-chip memory has fast access time, compared to off-chip memory.

m SOPC Builder automatically instantiates on-chip memory inside the SOPC Builder
system, so you do not have to make any manual connections.

m Certain memory blocks can have initialized contents when the FPGA powers up.
This feature is useful, for example, for storing data constants or processor boot
code.

m On-chip memories support dual port accesses, allowing two master to access the
same memory concurrently.

Component-Level Design for On-Chip Memory

In SOPC Builder you instantiate on-chip memory by clicking On-chip Memory (RAM
or ROM) from the list of available components. The configuration wizard for the
On-chip Memory (RAM or ROM) component has the following options: Memory
type, Size, and Read latency.

Memory Type
The Memory type options define the structure of the on-chip memory:

B RAM (writable)—This setting creates a readable and writable memory.

® ROM (read only)—This setting creates a read-only memory.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/nii_sw_handbook.pdf

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough 9-7
On-Chip RAM and ROM

®m Dual-port access—This setting creates a memory component with two slaves,
which allows two masters to access the memory simultaneously.

If two masters access the same address simultaneously in a dual-port

CAUTION . .
memory undefined results will occur. (Concurrent accesses are only a
problem for two writes. A read and write to the same location will read out

the old data and store the new data.)

m Block type—This setting directs the Quartus II software to use a specific type of
memory block when fitting the on-chip memory in the FPGA.

CAUAON The MRAM blocks do not allow the contents to be initialized during power

up. The M512s memory type does not support dual-port mode where both
ports support both reads and writes.

Because of the constraints on some memory types, it is frequently best to use the
Auto setting. Auto allows the Quartus II software to choose a type and the other
settings direct the Quartus II software to select a particular type.

Size
The Size options define the size and width of the memory.

m Data width—This setting determines the data width of the memory. The available
choices are 8, 16, 32, 64, 128, 256, 512, or 1024 bits. Assign Data width to match the
width of the master that accesses this memory the most frequently or has the most
critical throughput requirements. For example, if you are connecting the on-chip
memory to the data master of a Nios II processor, you should set the data width of
the on-chip memory to 32 bits, the same as the data-width of the Nios II data
master. Otherwise, the access latency could be longer than one cycle because the
Avalon interconnect fabric performs width translation.

m Total memory size—This setting determines the total size of the on-chip memory
block. The total memory size must be less than the available memory in the target
FPGA.

Read Latency

On-chip memory components use synchronous, pipelined Avalon-MM slaves.
Pipelined access improves £, performance, but also adds latency cycles when
reading the memory. The Read latency option allows you to specify either one or two
cycles of read latency required to access data. If the Dual-port access setting is turned
on, you can specify a different read latency for each slave. When you have dual-port
memory in your system you can specify different clock frequencies for the ports. You
specify this on the System Contents tab in SOPC Builder.

Non-Default Memory Initialization

For ROM memories, you can specify your own initialization file by selecting Enable
non-default initialization file. This option allows the file you specify to be used to
initialize the ROM in place of the default initialization file created by SOPC Builder.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough
On-Chip RAM and ROM

Enable In-System Memory Content Editor Feature

Enables a JTAG interface used to read and write to the RAM while it is operating. You
can use this interface to update or read the contents of the memory from your host PC.

For more information refer to In-System Updating of Memory and Constants in volume 3
of the Quartus II Handbook.

SOPC Builder System-Level Design for On-Chip Memory

There are few SOPC Builder system-level design considerations for on-chip
memories. See “SOPC Builder System-Level Design” on page 9—4.

When generating a new system, SOPC Builder creates a blank initialization file in the
Quartus II project directory for each on-chip memory that can power up with
initialized contents. The name of this file is <name of memory component>.hex.

Simulation for On-Chip Memory

At system generation time, SOPC Builder generates a simulation model for the
on-chip memory. This model is embedded inside the SOPC Builder system, and there
are no user-configurable options for the simulation testbench.

You can provide memory initialization contents for simulation in the file <Quartus II
project directory>/ <SOPC Builder system name>_sim/<Memory component name>.dat.

Quartus Il Project-Level Design for On-Chip Memory

The on-chip memory is embedded inside the SOPC Builder system, and there are no
signals to connect to the Quartus II project.

To provide memory initialization contents, you must fill in the file <name of memory
component>.hex. The Quartus II software recognizes this file during design
compilation and incorporates the contents into the configuration files for the FPGA.

If your design includes a Nios II processor, you can create memory initialization files
using the Nios II software build tools. For more information, refer to Creating Memory
Initialization Files in the Nios II Software Developer’s Handbook — Studio. For the memory
to be initialized, you then must compile the hardware in the Quartus II software for
the SRAM Obiject File (.sof) to pick up the memory initialization files. All memory
types with the exception of MRAMSs support this feature.

Board-Level Design for On-Chip Memory

The on-chip memory is embedded inside the SOPC Builder system, and there is
nothing to connect at the board level.

Example Design with On-Chip Memory

This section demonstrates adding a 4 KByte on-chip RAM to the example design. This
memory uses a single slave interface with a read latency of one cycle.

For demonstration purposes, Figure 9-3 shows the result of generating the SOPC
Builder system at this stage. (In a normal design flow, you generate the system only
after adding all system components.)

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
http://www.altera.com/literature/hb/nios2/nii_sw_handbook.pdf

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough 9-9
EPCS Serial Configuration Device

Figure 9-3. SOPC Builder System with On-Chip Memory

sopc_mermory_system

—{clk
—reset_n

finstd

Because the on-chip memory is contained entirely within the SOPC Builder system,
sopc_memory_system has no I/0O signals associated with onchip_ram. Therefore,
you do not need to make any Quartus II project connections or assignments for the
on-chip RAM, and there are no board-level considerations.

EPCS Serial Configuration Device

Many systems use an Altera EPCS serial configuration device to configure the FPGA.
Altera provides the EPCS device controller core, which allows SOPC Builder systems
to access the memory contents of the EPCS device.

This feature provides flexible design options:

m The FPGA design can reprogram its own configuration memory, providing a
mechanism for remote upgrades.

m The FPGA design can use leftover space in the EPCS as nonvolatile storage.

Physically, the EPCS device is a serial flash memory device, which has slow access
time. Altera provides software drivers to control the EPCS core for the Nios II
processor only.

“.e For further details about the features and usage of the EPCS device controller core,

refer to the EPCS Device Controller Core chapter in volume 5 of the Quartus IT Handbook.

Component-Level Design for an EPCS Device

In SOPC Builder you instantiate an EPCS controller core by adding an EPCS Serial
Flash Controller component. There are no settings for this component.

. & For details, refer to the Nios II Flash Programmer User Guide.

SOPC Builder System-Level Design for an EPCS Device
There are two SOPC Builder system-level design considerations for EPCS devices:
m Assign a base address.

B Set the IRQ connection to NC (no connect). The EPCS controller hardware is
capable of generating an IRQ. However, the Nios II driver software does not use
this IRQ, and therefore you can leave the IRQ signal disconnected.

There can only be one EPCS controller core per FPGA, and the instance of the core is
always named epcs_control | er.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/hb/nios2/n2cpu_nii51012.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf

9-10 Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough
EPCS Serial Configuration Device

If you want to store Nios II code in the EPCS memory, point the Nios II reset address
at the EPCS controller. Inside the EPCS controller is a bootloader, which Nios II runs
after it leaves reset, that copies the code from the EPCS flash into main memory.

Simulation for an EPCS Device
The EPCS controller core provides a limited simulation model:

m Functional simulation does not include the FPGA configuration process, and
therefore the EPCS controller does not model the configuration features.

m The simulation model does not support read and write operations to the flash
region of the EPCS device.

m A Nios II processor can boot from the EPCS device in simulation. However, the
boot loader code is different during simulation. The EPCS controller boot loader
code assumes that all other memory simulation models are initialized, and
therefore the boot load process is unnecessary. During simulation, the boot loader
simply forces the Nios II processor to jump to start, skipping the boot load process.

Verification in the hardware is the best way to test features related to the EPCS device.

Quartus Il Project-Level Design for an EPCS Device

If you use a device from Cyclone III, Stratix III, or Stratix IV families, you must
connect the EPCS pins manually.

For earlier device families, however, the Quartus Il software automatically connects
the EPCS controller core in the SOPC Builder system to the dedicated configuration
pins on the FPGA. This connection is invisible to you. Therefore, there are no
EPCS-related signals to connect in the Quartus II project.

Board-Level Design for an EPCS Device

You must connect the EPCS device to the FPGA as described in the Altera
Configuration Handbook. No other connections are necessary.

Example Design with an EPCS Device

This section demonstrates adding an EPCS device controller core to the example
design.

For demonstration purposes only, Figure 9-4 shows the result of generating the SOPC
Builder system at this stage.

Figure 9-4. SOPC Builder System with EPCS Device

‘sopc_memory_system

—{clk
—reset_n

{inst3

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

http://www.altera.com/literature/hb/cfg/config_handbook.pdf

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough 9-11

SDR SDRAM

SDR SDRAM

Because the Quartus II software automatically connects the EPCS controller core to
the FPGA pins, the SOPC Builder system has no I/O signals associated with
epcs_controller. Therefore, you do not need to make any connections or assignments
between the Quartus II project and the EPCS controller core.

This chapter does not cover the details of configuration using the EPCS device. For
further information, refer to the Altera Configuration Handbook.

Altera provides a free SDR SDRAM controller core, which allows you to use
inexpensive SDRAM as bulk RAM in your FPGA designs. The SDR SDRAM
controller core is necessary, because Avalon-MM signals cannot describe the complex
interface on an SDRAM device. The SDR SDRAM controller acts as a bridge between
the system interconnect fabric and the pins on an SDRAM device. The SDR SDRAM
controller can operate in excess of 100 MHz.

SDR SDRAM is a single data rate SDR SDRAM. Synchronous design allows precise
cycle control. With the use of system clock, I/O transactions are possible on every
clock cycle. Operating over a range of frequencies, programmable latencies allow the
same device to be useful for a variety of high bandwidth, high performance memory
system applications.

For further details about the features and usage of the SDR SDRAM controller core,
refer to the SDR-SDRAM Controller Core with Avalon Interface chapter in volume 5 of
the Quartus I1 Handbook.

Component-Level Design for SORAM

The choice of SDRAM device(s) and the configuration of the device(s) on the board
heavily influence the component-level design for the SDRAM controller. Typically,
the component-level design task involves parameterizing the SDRAM controller core
to match the SDRAM device(s) on the board. You must specify the structure (address
width, data width, number of devices, number of banks, and so on) and the timing
specifications of the device(s) on the board.

For complete details about configuration options for the SDRAM controller core, refer
to the SDRAM Controller Core chapter in volume 5 of the Quartus II Handbook.

SOPC Builder System-Level Design for SDRAM

You can select the SDRAM controller in the SOPC Builder System Contents tab. Like
the on-chip memory, there are few SOPC Builder system-level design considerations
for SDRAM. Refer to “SOPC Builder System-Level Design” on page 9—4.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/lit-config.jsp?GSA_pos=1&WT.oss_r=1&WT.oss=Configuration%20Handbook
http://www.altera.com/literature/hb/nios2/n2cpu_nii51005.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51005.pdf

9-12 Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough
SDR SDRAM

Simulation for SDRAM

At system generation time, SOPC Builder can generate a generic SDRAM simulation
model and include the model in the system testbench. To use the generic SDRAM
simulation model, you must turn on a setting in the SDRAM controller configuration
wizard. You can provide memory initialization contents for simulation in the file
<Quartus II project directory>/<SOPC Builder system name>_sim/<Memory component
name>.dat.

Alternatively, you can provide a specific vendor memory model for the SDRAM. In
this case, you must manually wire up the vendor memory model in the system
testbench.

«o For further details, refer to “Simulation Considerations” on page 9-5 and the SDRAM
Controller Core chapter in volume 5 of the Quartus 11 Handbook.

Quartus Il Project-Level Design for SDRAM

SOPC Builder generates a SOPC Builder system with top-level I/O signals associated
with the SDRAM controller. In the Quartus II project, you must connect these I/O
signals to FPGA pins, which connect to the SDRAM device on the board. In addition,
you might have to accommodate clock skew issues.

Connecting and Assigning the SDRAM-Related Pins

After generating the system with SOPC Builder, you can find the names and
directions of the I/O signals in the top-level HDL file for the SOPC Builder system.
The file has the name

<Quartus II project directory>/<SOPC Builder system name>.v or <Quartus II project
directory>/<SOPC Builder system name>.vhd. You must connect these signals in the
top-level Quartus II design file.

You must assign a pin location for each I/O signal in the top-level Quartus II design
to match the target board. Depending on the performance requirements for the
design, you might have to assign FPGA pins carefully to achieve the required
performance.

Accommodating Clock Skew

As SDRAM frequency increases, so does the possibility that you must accommodate
skew between the SDRAM clock and I/O signals. This issue affects all synchronous
memory devices, including SDRAM. To accommodate clock skew, you can instantiate
an ALTPLL megafunction in the top-level Quartus II design to create a phase-locked
loop (PLL) clock output. You use a phase-shifted PLL output to drive the SDRAM
clock and reduce clock-skew issues. The exact settings for the ALTPLL megafunction
depend on your target hardware. You must experiment to tune the phase shift to
match the board.

“®.e For details, refer to the ALTPLL Megafunction User Guide.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2cpu_nii51005.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51005.pdf
http://www.altera.com/literature/ug/ug_altpll.pdf

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough 9-13
SDR SDRAM

Board-Level Design for SDRAM

Memory requirements largely dictate the board-level configuration of the SDRAM
device or devices. The SDRAM controller core can accommodate various
configurations of SDRAM on the board, including multiple banks and multiple
devices.

Example Design with SDR SDRAM

This section demonstrates adding a 16-Mbyte SDRAM device to the example design,
using the SDRAM Controller configuration wizard. This SDRAM is a single device
with 32-bit data.

For demonstration purposes, Figure 9-5 shows the result of generating the SOPC
Builder system at this stage, and connecting it in toplevel_design.bdf.

Figure 9-5. toplevel_design.bdf with SDRAM

sdram_pll SDRAM PLL

This PLL introduces a phass-shift which compensatss
for board-level delays in the clock network. Cther boards
"t g NGO | frequency: 50,000 tH: =11 E— mey require different settings.

: Operation Mode: Hormal Lt}

AT X e
En
[eo [11 [-ezon | 5000 |

inst2 Stratin

S0pc_memary_systerm

deiay_rezel_biock

clk |
—|clock_in delaysd_resst_n reset_n
reset_n

z=_addr_irom_the_sdram[11..0]

zs_ba_from_the_sdram(1_0]

z5_cas_n_from_the_sdram LA
Zs_cke_from_the_sdram DUTRUT [, SDRAW CKE

inst
Reset Delay: Allows PLL to stabilize (Iock) after

reset o device-configuration e e S .
=5_do_to_snd_from_ths_scram[31_0] T SRR BT
23 _dgm_from_the_sdram(3..0] AUTHIT = "SRR BERE 0

23 _ras_n_from_the_sdram AT SRR AR

z5_we_n_trom_the_sdram SR R RAR

in=t3

After generating the system, the top-level SOPC Builder system file
sopc_memory_system.v contains the list of SDRAM-related I/O signals that must be
connected to FPGA pins. Example 9-1 shows these pins.

Example 9-1. /0 Signals Connected to FPGA Pins

output [11: O] zs_addr_fromthe_sdram
output [1: 0] zs_ba_fromthe_sdram

out put zs_cas_n_fromthe_sdram
out put zs_cke_from the_sdram
out put zs_cs_n_fromthe_sdram

i nout [31: 0] zs_dg_to_and_fromthe_sdram
output [3: 0] zs_dgm from the_sdram

out put zs_ras_n_fromthe_sdram

out put zs_we_n_fromthe_sdram

As shown in Figure 9-5, toplevel_design.bdf uses an instance of sdr am pl | to
phase shift the SDRAM clock by —63 degrees. (Degrees are relative to clock frequency.
If you change the clock speed you must change the phase shift. You should
parameterize the PLL with -3.5 ns, because the compensation is for the round-trip
delays and clock to I/O delays.)

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

9-14

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough
DDR SDRAM

toplevel_design.bdf also uses a subdesigndel ay_r eset _bl ock to insert a delay on
the r eset _n signal for the SOPC Builder system. This delay is necessary to allow the
PLL output to stabilize before the SOPC Builder system begins operating.

Figure 9-6 shows pin assignments in the Quartus II Assignment Editor for some of
the SDRAM pins. The correct pin assignments depend on the target board.

Figure 9-6. Pin Assignments for SDRAM

To Location 10 Bank 1o Standard General Function Special Function Reservet
PIN_AE4 7 Column IO
189 € sDRAM_a[10] PIN_Y11 7 LYTTL Column IjO
190 € soram_a[11] PIN_AET 7 LYTTL Calurnn IjO
191 € soraM_a[1] PIN_W1Z 7 LYTTL Calurnn IjO PEMO
192 € soram_az] PIN_AC11 7 LYTTL Calumn O RS
193 € soraM_A[3] PIN_W10 7 LYTTL Calumn Ij0 RUALU
194 € sDRAM_A[4] PIN_&A11 7 LYTTL Calumn Ij0 Piah1
195 € soRAM_A[S] PIN_AC10 7 LYTTL Calurnn IjO RONT
195 € soraM_A6] PIN_AB11 7 LYTTL Calurnn IjO RUP7
197 € sDRAM_A[7] PIN_ACE 7 LYTTL Colurnn 10 FCLES
195 € soram_als] PIN_ABL0 7 LYTTL Calurnn IjO FOLK4
199 € sDRAM_a[9] PIM_W11 7 LYTTL Colurnn I/
200 € soraM_BA[0] PIN_fG19 & LYTTL Colurnn Ij0 DOEE4
Z01 € soraM_BA[1] PIN_AF19 & LYTTL Colurnn IjO DOEES
202 € sDRAM_CAS N |PIN_ADLS 5 LYTTL Colurnn 1O DOBEZ
203 € SDRAM_CKE PIN_AELS & LYTTL Colurnn IjO DOEBL
204 € soRAM_C5_N PIN_AG1E & LYTTL Colurnn IjO DOEE0
205 € soram_DoMI0] |PIN_AEL4 7 LYTTL Colurnn IjO CLKBR
206 € soram_DOMI1] [PIN_v13 7 LYTTL Calurnn IjO CLK7n
207 € soram_DoMz] |PIN_aE? 7 LYTTL Column IjO DOS1E
205 € sorRaM_DOM[3] |PIN_AGIO 7 LYTTL Calurnn IjO DQS3E

DDR SDRAM

DDR2 SDRAM

You can use double-data rate (DDR) SDRAM devices for a broad range of
applications, such as embedded processor systems, image processing, storage,
communications, and networking. In addition, the universal adoption of DDR
SDRAM in PCs makes DDR SDRAM memory a solution for high-bandwidth
applications. DDR SDRAM is a <2n> prefetch architecture where the internal data bus
is twice the width of the external data bus and data transfers occur on both clock
edges. It uses a strobe, DQS, which is associated with a group of data pins (DQ) for read
and write operations. Both the DQS and DQports are bidirectional. Address ports are
shared for write and read operations.

Refer to the DDR SDRAM literature on the Altera website for further details on the
use of DDR SDRAM memory, including AN 517: Using High-Performance DDR, DDR2,
and DDR3 SDRAM With SOPC Builder.

Double-data rate DDR2 SDRAM is the second generation of double-data rate DDR
SDRAM technology, with features such as lower power consumption, higher data
bandwidth, enhanced signal quality, and on-die termination. DDR2 SDRAM brings
higher memory performance to a broad range of applications, such as PCs, embedded
processor systems, image processing, storage, communications, and networking. It is
a <4n> pre-fetch architecture with two data transfers per clock cycle. The memory
uses a strobe (DQS) associated with a group of data pins (DQ) for read and write
operations. Both the DQand DQS ports are bidirectional. Address ports are shared for
write and read operations.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

http://www.altera.com/literature/an/an517.pdf
http://www.altera.com/literature/an/an517.pdf

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough 9-15
0Off-Chip SRAM and Flash Memory

“ . For more information refer to the DDR and DDR2 SDRAM Controller Compiler User
Guide, the DDR2 SDRAM High-Performance Controller User Guide, and AN 517: Using
High-Performance DDR, DDR2, and DDR3 SDRAM With SOPC Builder.

0ff-Chip SRAM and Flash Memory

SOPC Builder systems can directly access many off-chip RAM and ROM devices,
without a controller core to drive the off-chip memory. Avalon-MM signals can
describe the interfaces on many standard memories, such as SRAM and flash
memory. I/O signals on the SOPC Builder system can connect directly to the memory
device.

While off-chip memory usually has slower access time than on-chip memory, off-chip
memory provides the following benefits:

m Off-chip memory cost-per-bit is less expensive than on-chip memory resources.

m The size of off-chip memory is bounded only by the 32-bit Avalon-MM address
space.

m Off-chip ROM, such as flash memory, can be used for bulk storage of nonvolatile
data.

m Multiple off-chip RAM and ROM memories can share address and data pins to
conserve FPGA I/0 resources at the expense of throughput.

Adding off-chip memories to an SOPC Builder system also requires the Avalon-MM
Tristate Bridge component.

Component-Level Design for SRAM and Flash Memory
There are several ways to instantiate an interface to an off-chip memory device:

m For common flash interface (CFI) flash memory devices, add the Flash Memory
(Common Flash Interface) component in SOPC Builder.

m For Altera development boards, Altera provides SOPC Builder components that
interface to the specific devices on each development board. For example, the
Nios I EDS includes the components Cypress CY7C1380C SSRAM and
IDT71V416 SRAM, which appear on Nios II development boards.
“®.e For further details about the features and usage of the SSRAM controller core, refer to
the Nios Development Board Cyclone II Edition Reference Manual or Nios Development
Board Stratix 1I Edition.

- For further details about the features and usage of the SDRAM controller core, refer to
the Building Memory Subsystems Using SOPC Builder chapter in volume 4 of the
Quartus I Handbook.

These components make it easy for you to create memory systems targeting Altera
development boards. However, these components target only the specific memory
device on the board; they do not work for different devices.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/an/an517.pdf
http://www.altera.com/literature/manual/mnl_nios2_board_stratixII_2s60_rohs.pdf?GSA_pos=9&WT.oss_r=1&WT.oss=ssram%20controller%20core
http://www.altera.com/literature/manual/mnl_nios2_board_stratixII_2s60_rohs.pdf?GSA_pos=9&WT.oss_r=1&WT.oss=ssram%20controller%20core
http://www.altera.com/literature/an/an517.pdf
http://www.altera.com/literature/an/an517.pdf
http://www.altera.com/literature/manual/mnl_nios2_board_cycloneII_2c35.pdf?GSA_pos=10&WT.oss_r=1&WT.oss=ssram%20controller%20core
http://www.altera.com/literature/ug/ug_ddr_sdram.pdf
http://www.altera.com/literature/ug/ug_ddr_sdram.pdf
http://www.altera.com/literature/hb/qts/qts_qii54006.pdf
http://www.altera.com/literature/ug/ug_ddr3_sdram.pdf

9-16

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough
0ff-Chip SRAM and Flash Memory

m For general memory devices, RAM or ROM, you can create a custom interface to
the device with the SOPC Builder component editor. Using the component editor,
you define the I/O pins on the memory device and the timing requirements of the
pins.

In all cases, you must also instantiate the Avalon-MM Tristate Bridge component.
Multiple off-chip memories can connect to a single tristate bridge, in order to share
pins such as the off-chip address bus.

Avalon-MM Tristate Bridge

A tristate bridge connects off-chip devices to the system interconnect fabric. The
tristate bridge creates I/O signals for the SOPC Builder system, which you must
connect to FPGA pins in the top-level Quartus II project.

The tristate bridge creates address and data pins that can be shared by multiple
off-chip devices. This feature lets you conserve FPGA pins when connecting the
FPGA to multiple devices with mutually exclusive access.

You must use a tristate bridge in either of the following cases:
m The off-chip device has bidirectional data pins.
m Multiple off-chip devices share the address, data, or both address and data buses.

In SOPC Builder, you instantiate a tristate bridge by instantiating the Avalon-MM
Tristate Bridge component. The Avalon-MM Tristate Bridge configuration wizard
has a single option: To register incoming (to the FPGA) signals or not.

m Registered—This setting adds registers to all FPGA input pins associated with the
tristate bridge (outputs from the memory device).

m Not Registered—This setting does not add registers between the memory device
output pins and the system interconnect fabric.

The Avalon-MM tristate bridge automatically adds registers to output signals from
the tristate bridge to off-chip devices.

Registering the input and output signals shortens the register-to-register delay from
the memory device to the FPGA, resulting in higher system f,,, performance.
However, the registers add one additional cycle of latency for Avalon-MM masters
accessing memory connected to the tristate bridge in each direction. The registers do
not affect the timing (setup, hold, and wait) of the transfers from the perspective of the
memory device.

For details about the Avalon-MM tristate interface, refer to the Avalon Interface
Specifications.

Flash Memory

In SOPC Builder, you instantiate an interface to CFI flash memory by adding a Flash
Memory (Common Flash Interface) component. If the flash memory is not CFI
compliant, you must create a custom interface to the device with the SOPC Builder
component editor.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough 9-17
0Off-Chip SRAM and Flash Memory

The choice of flash devices and the configuration of the devices on the board help
determine the component-level design for the flash memory configuration wizard.
Typically, the component-level design task involves parameterizing the flash memory
interface to match the devices on the board. Using the Flash Memory (Common Flash
Interface) configuration wizard, you must specify the structure (address width and
data width) and the timing specifications of the flash memory devices.

For details about features and usage, refer to the Common Flash Interface Controller Core
chapter in volume 5 of the Quartus II Handbook.

For an example of instantiating the Flash Memory (Common Flash Interface)
component in an SOPC Builder system, see “Example Design with SRAM and Flash
Memory” on page 9-21.

SRAM
To instantiate an interface to off-chip SRAM:

1. Create a new component with the SOPC Builder component editor that defines the
interface.

2. Instantiate the new interface component in the SOPC Builder system.

The choice of RAM devices and the configuration of the devices on the board
determine how you create the interface component. The component-level design task
involves entering parameters into the component editor to match the devices on the
board.

For details about using the component editor, refer to the Component Editor chapter in
volume 4 of the Quartus II Handbook.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/hb/qts/qts_qii54005.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51013.pdf

9-18 Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough
0ff-Chip SRAM and Flash Memory

SOPC Builder System-Level Design for SRAM and Flash Memory

In the SOPC Builder System Contents tab, the Avalon-MM tristate bridge has two
ports:

B Avalon-MM slave—This port faces the on-chip logic in the SOPC Builder system.
You connect this slave to on-chip masters in the system.

m Avalon-MM tristate master—This port faces the off-chip memory devices. You
connect this master to the Avalon-MM tristate slaves on the interface components
for off-chip memories.

You assign a clock to the Avalon-MM tristate bridge that determines the Avalon-MM
clock cycle time for off-chip devices connected to the tristate bridge.

You must assign base addresses to each off-chip memory. The Avalon-MM tristate
bridge does not have an address; it passes unmodified addresses from on-chip
masters to off-chip slaves.

Simulation for SRAM and Flash Memory

The SOPC Builder output for simulation depends on the type of memory components
in the system:

m Flash Memory (Common Flash Interface) component—This component provides
a generic simulation model. You can provide memory initialization contents for
simulation in the file <Quartus II project directory>/<SOPC Builder system
name>_sim/<Flash memory component name>.dat.

m Custom memory interface created with the component editor—In this case, you
must manually connect the vendor simulation model to the system testbench.
SOPC Builder does not automatically connect simulation models for custom
memory components to the SOPC Builder system.

m Altera-provided interfaces to memory devices—Altera provides simulation
models for these interface components. You can provide memory initialization
contents for simulation in the file <Quartus II project directory>/<SOPC Builder
system name>_sim/<Memory component name>.dat. Alternately, you can provide a
specific vendor simulation model for the memory. In this case, you must manually
wire up the vendor memory model in the system testbench.

For further details, see “Simulation Considerations” on page 9-5.

Quartus Il Project-Level Design for SRAM and Flash Memory

SOPC Builder generates an SOPC Builder system with top-level I/O signals
associated with the tristate bridge and the memory interface components. In the
Quartus II project, you must connect the I/O signals to FPGA pins, which connect to
the memory devices on the board.

After generating the system with SOPC Builder, you can find the names and
directions of the I/O signals in the top-level HDL file for the SOPC Builder system.
The file has the name <Quartus II project directory>/<SOPC Builder system name>.v or
<Quartus 1I project directory>/<SOPC Builder system name>.vhd. You must connect
these signals in the top-level Quartus II design file.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough

9-19

0Off-Chip SRAM and Flash Memory

You must assign a pin location for each I/O signal in the top-level Quartus II design
to match the target board. Depending on the performance requirements for the
design, you might have to assign FPGA pins carefully to achieve timing.

SOPC Builder inserts synthesis directives in the top-level SOPC Builder system HDL
to assist the Quartus II fitter with signals that interface with off-chip devices.
Example 9-2 illustrates a directive. Using FAST_OUTPUT_REG STER=CN places the
output register in the IO block, reducing the off-chip delay.

For more information about improving IO timing refer to the I/O Specifications
section in The Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus 11 Handbook and the Assignment Editor chapter in volume 2 of the Quartus I1
Handbook.

Example 9-2. Synthesis Directive

reg [22: 0] tri_state_bridge_address /* synthesis
ALTERA ATTRI BUTE = "FAST_OUTPUT REG STER=ON' */;

Board-Level Design for SRAM and Flash Memory

CAUTION

Memory requirements determine the board-level configuration of the SRAM and
flash memory device or devices. You can lay out memory devices in any
configuration, as long as the resulting interface can be described with Avalon-MM
signals.

Special consideration is required when connecting the Avalon-MM addr ess signal to
the address pins on the memory devices.

The SOPC Builder system presents the smallest number of address lines required to
access the largest off-chip memory, which is usually less than 32 address bits. Not all
memory devices connect to all address lines.

Aligning the Least-Significant Address Bits

The Avalon-MM tristate addr ess signal always presents a byte address. Each
address location in many memory devices contains more than one byte of data. In this
case, the memory device must ignore one or more of the least-significant Avalon-MM
addr ess lines. For example, a 16-bit memory device must ignore Avalon-MM

addr ess[0] (which is a byte address), and connect Avalon-MM addr ess|[1] to the
least-significant address line.

Table 9-1 shows the relationship between Avalon-MM addr ess lines and off-chip
address pins for all possible Avalon-MM data widths.

Table 9-1. Connecting the Least-Significant Avalon-MM Address Line (Part 1 of 2)

Address Line Connecting to Memory Device
Avalon-MM Address Line | 8-hit Memory | 16-bit Memory | 32-bhit Memory | 64-bit Memory | 128-bhit Memory
addr ess[0] A0 No connect No connect No connect No connect
address[1] Al A0 No connect No connect No connect
address|[2] A2 Al A0 No connect No connect

© March 2009 Altera Corporation

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii52001.pdf

9-20

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough

0ff-Chip SRAM and Flash Memory

Table 9-1. Connecting the Least-Significant Avalon-MM Address Line (Part 2 of 2)

Address Line Connecting to Memory Device

Avalon-MM Address Line | 8-hit Memory | 16-bit Memory | 32-hit Memory | 64-hit Memory | 128-hit Memory
addr ess| 3] A3 A2 A1 A0 No connect
address|[4] A4 A3 A2 Al A0
addr ess|[5] A5 A4 A3 A2 A1
address|[6] A6 A5 A4 A3 A2
address[7] A7 A6 A5 A4 A3
addr ess| 8] A8 A7 A6 A5 A4
addr ess[9] A9 A8 A7 A6 A5
addr ess[10] A10 A9 A8 A7 A6

A You must ensure that the address bits are properly assigned when mixed width
components are connecting to the tristate bridge. Failing to ensure that the
components are properly aligned may result in a board respin.

CAUTION

Aligning the Most-Significant Address Bits

The Avalon-MM addr ess signal contains enough address lines for the largest
memory connected to the tristate bridge. Smaller off-chip memories might not use all
of the most-significant address lines as Figure 9-7 illustrates.

Figure 9-7. Connecting a Tristate Bridge to Components with Address Widths and Different Word Sizes

PCB

Nios Il Processor

A[31:0]
D[31:0]

CEn

DMA Controller

A[26:0]
D[31:0]
CEn

Tristate Bridge

A[26:0]
D[31:0]
CEn

Parallel Flash
(8-bit word)
addr{19:0] A[19:0]
data [15:0] D[15:0]
CEn p CEn
Ethernet
(16-bit word)
addr[20:1] A[19:0]
data [15:0] D[15:0]
CEn »| CEn
SSRAM
(32-bit word)
addr26:2] A[24:0]
data [31:0] | D[31:0]
CEn CEn

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

© March 2009 Altera Corporation

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough 9-21
0Off-Chip SRAM and Flash Memory

Example Design with SRAM and Flash Memory

This section demonstrates adding a 1-MByte SRAM and an 8-MByte flash memory to
the example design. These memory devices connect to the system interconnect fabric
through an Avalon-MM tristate bridge.

Adding the Avalon-MM Tristate Bridge

In the Avalon-MM Tristate Bridge configuration wizard, turn on the Registered
inputs and outputs option to maximize system f,;,,, which increases the read latency
by two for both the SRAM and flash memory.

Adding the Flash Memory Interface

The flash memory is 8M x 8-bit, which requires 23 address bits and 8 data bits.
Table 9-2 gives the Flash Memory (Common Flash Interface) settings for the example
design.

Table 9-2. Fash Memory Interface (CFl)

Parameter Value
Attributes
Presets AMD29LV065D12R
Address Width (bits) 23
Data Width (bits) 8
Timing
Setup 40
Wait 160
Hold 40
Units ns

Adding the SRAM Interface

The SRAM device is 256K x 32-bit, which requires 18 word address bits and 32 data
bits. The example design uses a custom memory interface created with the SOPC
Builder component editor.

SOPC Builder System Contents Tah

Figure 9-8 shows the SOPC Builder system after adding the Tristate bridge and
memory interface components, and configuring them appropriately on the System
Contents tab. Figure 9-8 represents the complete example design in SOPC Builder.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

9-22

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough

0ff-Chip SRAM and Flash Memory

Figure 9-8. SOPC Builder System with SRAM and Flash Memory

|7 [tristate_bridge Avalon-MM Tristate Brldge

a

Avalon Slave
tristate_master JAvalon Tristate Master
F B ext_ram ‘sram_256K_c_320k

svalon_fristate_slave_0 |Avalon Tristate Slave

Targel Clock Settings
Device Fanly[statix1GX = Nt Souce | M (I
ek External 500
sys_clk pil.c 500 o
Use [Cornectio..| Modula Name Descriptin Clock Base End
instruction_haster Avalon Master sys clk ﬂ
— data_master Avalon Master IRQ O IRQ:
am fag_debug_module Myalon Slave 000000000 Dx000007£F
19 B jtag_vart JTAG UART
4| aveonjiagsave Avalon Siave sys_ck 000000800 0x00000807
¥ © onchip_ram On-Chip Memory (RAM or ROM)
— i Ayalon Slave sys_clk 0300001000 0x00001££¢
F B epes_controller EPCS Serial Flash Cortraller
T epes_control_port Avalon Slave sys_clk 000002000 0x000027££

0x00000000 030

000100000 0x001ffE£E

3

9 B ext_flash Flash Mermary (CF)
& Avalon Tristate Slave sys_clk 0x08000000 0x0271££88
[E] PLL -
- st Myalon Slave clk 0x00000820 0x0000083£ hd
]
reove | e, | awwets | 7 oo | Adkess Wep.. Frer |

After generating the system, the top-level SOPC Builder system file
sopc_memory_system.v contains the list of I/O signals for SRAM and flash memory
that must be connected to FPGA pins, as shown in Example 9-3.

Example 9-3. 1/0 Signals for SRAM and Flash Memory

- 0]

out put address_to_the_ext _flash[23.
out put address to_the_ext _ran{ 19..0];
out put be n to_ the_ext_ranf 3..0];
out put read n to the ext flash;

out put read_n_to_the_ext_ram

out put read_n_t o_t he_ext _ram

out put select_n to the ext flash;

out put sel ect_n_to_the_ext_ram

bi di recti onal tristate_bridge _data [31..0]
out put wite n to the ext flash;

out put wite n_to_the_ext_ram

The Avalon-MM tristate bridge signals that can be shared are named after the

instance of the tristate bridge component, such as
tri_state_bridge data[31:0].

Connecting and Assigning Pins in the Quartus Il Project

Figure 9-9 shows the result of generating the SOPC Builder system for the complete

example design.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

© March 2009 Altera Corporation

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough 9-23
0Off-Chip SRAM and Flash Memory

Figure 9-9. Top Level System with SRAM and Flash Memory

SOpPC_Memory _system

— clk
— reszet_n

address_to_the_ext_flash[23..0]
address_to_the_ext_ram[19..0]
be_n_to_the_ext_ram[3..0]
read_n_to_the_ext_flash
read_n_to_the_ext_ram
zelect_n_to_the_ext flazh
zelect_n_to_the_ext_ram
triztate_hridge_data[31..0]
write_n_ta_the_ext_flazh
write_n_to_the_ext_ram

inst

Figure 9-10 shows the pin assignments in the Quartus II Assignment Editor for some
of the SRAM and flash memory pins. The correct pin assignments depend on the
target board.

Figure 9-10. Pin Assignments for SRAM and Flash Memory

To Location Ij0Bank |IfO Standard | General Function | Special Function Reset

743 & sram_BE_N[0] PIN_M18 3 LYTTL Calumn I/0

Zad & sraM_BE_N[1] PIN_F17 3 LYTTL Calumn I/0

745 & sraM_BE_N[Z] PIN_118 3 LYTTL Calumn Ij0 RUP3

Z46 & sraM_BE_N[3] PIN_L17 3 LYTTL Calumn I/0 CLK15n

247 € sram_cs N PIN_Ez4 3 LYTTL Calumn I/0 DQaT4

745 & sraM_oE_N PIN_EZ6 3 LYTTL Calumn I/0 DQAT?

z49 € SRAM_WE_N PIN_C24 3 LYTTL Calumn 1/0 DQEaT

Connecting FPGA Pins to Devices on the Board

Table 9-3 shows the mapping between the Avalon-MM address lines and the address
pins on the SRAM and flash memory devices.

Table 9-3. FPGA Connections to SRAM and Flash Memory (Part 1 of 2)

Flash Address SRAM Address
Avalon-MM Address Line (8M x 8-hit Data) (256K x 32-hit data)
tri_state_bridge_address|[0] A0 No connect
tri_state_bridge _address[1] Al No connect
tri_state_bridge_address[2] A2 A0
tri_state_bridge_address[3] A3 A1
tri_state_bridge_address[4] A4 A2
tri_state_bridge_address[5] A5 A3
tri_state_bridge_address[6] A6 A4
tri_state_bridge_address[7] A7 A5

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

9-24 Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough
0ff-Chip SRAM and Flash Memory

Table 9-3. FPGA Connections to SRAM and Flash Memory (Part 2 of 2)

Flash Address SRAM Address
Avalon-MM Address Line (8M x 8-hit Data) (256K x 32-hit data)
tri_state_bridge _address[8] A8 A6
tri_state_ bridge_address[9] A9 A7
tri_state_bridge_address[10] A10 A8
tri_state_bridge _address[11] A1 A9
tri_state_bridge_address[12] A12 A10
tri_state_bridge _address[13] A13 A1
tri_state bridge_address[14] A14 A12
tri_state_bridge_address[15] A15 A13
tri_state_bridge_address[16] A16 A16
tri_state_bridge_address[17] A7 A15
tri_state_bridge _address[18] A18 A16
tri_state bridge_address[19] A19 Al7
tri_state_bridge_address|[20] A20 No connect
tri_state_bridge_address[21] A21 No connect
tri_state_bridge_address[22] A22 No connect

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough 9-25

Referenced Documents

Referenced Documents

This chapter references the following documents:

Altera Configuration Handbook
ALTPLL Megafunction User Guide

AN 517: Using High-Performance DDR, DDR2, and DDR3 SDRAM With SOPC
Builder

Assignment Editor chapter in volume 2 of the Quartus II Handbook
Avalon Interface Specifications
Component Editor chapter in volume 4 of the Quartus 1I Handbook

Common Flash Interface Controller Core chapter in volume 5 of the Quartus II
Handbook

Configuration Handbook

DDR and DDR2 SDRAM Controller Compiler User Guide

DDR2 SDRAM High-Performance Controller User Guide

EPCS Device Controller Core chapter in volume 5 of the Quartus II Handbook
In-System Updating of Memory and Constants in volume 3 of the Quartus 11 Handbook
Introduction to the Quartus Il Software manual

Introduction to SOPC Builder chapter in volume 4 of the Quartus II Handbook
Memory System Design chapter in the Embedded Design Handbook

Nios II Embedded Processor Design Examples

Nios II Flash Programmer User Guide

SDRAM Controller Core chapter in volume 5 of the Quartus II Handbook
SOPC Builder Components chapter in volume 4 of the Quartus II Handbook

System Interconnect Fabric for Memory-Mapped Interfaces chapter in volume 4 of the
Quartus I Handbook

The Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/hb/qts/qts_qii54001.pdf
www.altera.com/support/examples/nios2/exm-nios2.html
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/lit-config.jsp
http://www.altera.com/literature/hb/nios2/n2cpu_nii51005.pdf
http://www.altera.com/literature/ug/ug_altpll.pdf
http://www.altera.com/literature/hb/qts/qts_qii54005.pdf
http://www.altera.com/literature/hb/nios2/edh_ed_handbook.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51012.pdf
http://www.altera.com/literature/ug/ug_ddr_sdram.pdf
http://www.altera.com/literature/an/an386.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51013.pdf
http://www.altera.com/literature/hb/qts/qts_qii54004.pdf
http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
http://www.altera.com/literature/ug/ug_ddr3_sdram.pdf
http://www.altera.com/literature/an/an517.pdf
http://www.altera.com/literature/an/an517.pdf
http://www.altera.com/literature/an/an517.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii52001.pdf

9-26

Chapter 9: SOPC Builder Memory Subsystem Development Walkthrough

Document Revision History

Document Revision History

Table 94 shows the revision history for this chapter.

Table 9-4. Document Revision History

Date and

Document

Version Changes Made Summary of Changes
March 2009, Minor updates to clarify text. —
v9.0.0
November 2008, | m Removed private comments —
v8.1.1
November 2008, |m= Added text explaining that starting in 6.2, ModelSim turns the —
v8.1.0 VoptFlow option on by default which may optimize away nodes

included in preset wave file.
m Changed page size to 8.5 x 11 inches

May 2008, v8.0.0

m Chapter renumbered from 80 9.

m Added brief new sections referencing DDR-2 and PFLs.

m Updated references to Avalon Interface Specifications.

m Updated Figures 9-1, 9-14, 9-15, 9-16, and 9-19 with new art.

Archive.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

.o For previous versions of the Quartus Il Handbook, refer to the Quartus II Handbook

© March 2009 Altera Corporation

http://www.altera.com/literature/an/an517.pdf
http://www.altera.com/literature/an/an517.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

fAEI TERA 10. SOPC Builder Component

® Development Walkthrough

Q1154007-9.0.0

Introduction

This chapter describes the parts of a custom SOPC Builder component and guides you
through the process of creating an example custom component, integrating it into a
system, and testing it in hardware.

This chapter is divided into the following sections:
m “Component Development Flow” on page 10-2.

m “Design Example: Checksum Hardware Accelerator” on page 10—4. This design
example shows you how to develop a component with both Avalon®
Memory-Mapped (Avalon-MM) master and slaves.

m “Sharing Components” on page 10-7. This section shows you how to use
components in other systems, or share them with other designers.

m “.sopcinfo Files” on page 10-7.

SOPC Builder Components and the Component Editor

Prerequisites

An SOPC Builder component is usually composed of the following four types of files:
m HDL files—define the component’s functionality as hardware.

m Hardware Component Description File (_hw.tcl) —describes the SOPC Builder
related characteristics, such as interface behaviors. This file is created by the
component editor.

m C-language files—define the component register map and driver software to allow
programs to control the component.

m Software Component Description File (_sw.tcl) file—used by the software build
tools to use and compile the component driver code.

The component editor guides you through the creation of your component. You can
then instantiate the component in an SOPC Builder system and make connections in
the same manner as other SOPC Builder components. You can also share your
component with other designers.

For information about creating the _sw.tcl file, see the Developing Device Drivers for the
Hardware Abstraction Layer chapter in the Nios II Software Developer’s Handbook.

This chapter assumes that you are familiar with the following:

m Building systems with SOPC Builder. For details, refer to the Introduction to SOPC
Builder chapter in volume 4 of the Quartus II Handbook.

m SOPC Builder components. For details, refer to the SOPC Builder Components
chapter in volume 4 of the Quartus II Handbook.

m Basic concepts of the Avalon-MM interface.

© March 2009 Altera Corporation Quartus 11 Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii54001.pdf
http://www.altera.com/literature/hb/qts/qts_qii54001.pdf

10-2 Chapter 10: SOPC Builder Component Development Walkthrough
Component Development Flow

Hardware and Software Requirements

To use the design example in this chapter, in addition to the current version of the
Quartus II software and Nios II Embedded Design Suite, you must have the
following:

m Design files for the example design—A hyperlink to the design files appears next
to the chapter, SOPC Builder Component Development Walkthrough, on the SOPC
Builder literature page.

m Nios development board and an Altera® USB-Blaster™ download cable—You can
use either of the following Nios development boards:

m Stratix® II Edition, RoHS compliant version
m Cyclone® II Edition

If you do not have a development board, you can follow the hardware development
steps. You cannot download the complete system without a working board, but you
can simulate the system.

“®.e Youcan download the Quartus IT Web Edition software and the Nios I EDS,
Evaluation Edition for free from the Altera Download Center at www.altera.com.

Component Development Flow

This section provides an overview of the development process for SOPC Builder
components.

Typical Design Steps

A typical development sequence for an SOPC Builder component includes the
following items:

1. Specification and definition.
a. Define the functionality of the component.

b. Determine component interfaces, such as Avalon Memory-Mapped
(Avalon-MM), Avalon Streaming (Avalon-ST), interrupt, or other interfaces.

c. Determine the component clocking requirements; what interfaces are
synchronous to what clock inputs.

d. If you want a microprocessor to control the component, determine the interface
to software, such as the register map.

2. Implement the component in VHDL or Verilog HDL.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

http://www.altera.com/literature/lit-sop.jsp
http://www.altera.com/literature/lit-sop.jsp
http://www.altera.com

Chapter 10: SOPC Builder Component Development Walkthrough 10-3
Component Development Flow

3. Import the component into SOPC Builder.
a. Use the component editor to create a _hw.tcl file that describes the component.
b. Instantiate the component into an SOPC Builder system.

When importing an HDL file using the component editor, any parameter
definitions that are dependent upon other defined parameters cause an error.
Example 10-1 illustrates the declaration of a DEPTH parameter which is legal
Verilog HDL syntax in the Quartus II software, but causes an error in the
component editor syntax checker.

Example 10-1. DEPTH Parameter

32,
((WDTH == 32) ? 8 : 16);

par ameter W DTH
par anet er DEPTH

To avoid this error, use a | ocal par amfor the dependent parameter instead, as
shown in Example 10-2.

Example 10-2. localparam Parameter

paraneter WDTH = 32;
| ocal param DEPTH = ((W DTH == 32) ?8: 16);

4. Develop the software driver, which can occur in parallel with the hardware
implementation. Create the component’s driver, including a C header file that
defines the hardware-level register map for software.

o For further details, see the Nios II Software Developer’s Handbook.

5. Perform in-system testing, such as the following:

a. Testregister-level accesses to the component in hardware or simulation using a
microprocessor, such as the Nios II processor.

b. Performance benchmarking.

Hardware Design

As with any logic design process, the development of SOPC Builder component
hardware begins after the specification phase. Creating the HDL design is often an
iterative process, as you write and verify the HDL logic against the specification.

The architecture of a typical component consists of the following functional blocks:

m Task logic—Implements the component's fundamental function. The task logic is
design dependent.

m Interface logic—Provides a standard way of providing data to or getting data from
the components and of controlling the functioning of the components.

.o For further details, refer to the Avalon Interface Specifications.

Figure 10-1 shows the top-level blocks of a checksum component, which includes
both Avalon-MM master and slaves.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

10-4

Chapter 10: SOPC Builder Component Development Walkthrough
Design Example: Checksum Hardware Accelerator

The work flow for developing SOPC Builder hardware, including how to decide upon
and implement the register map, is described in the Using the Nios II Software Build
Tools chapter in the Nios 1I Software Developer’s Handbook. Also, guidelines for
developing device drivers is described in the Developing Device Drivers for the
Hardware Abstraction Layer chapter of the Nios II Software Developer’s Handbook.

Design Example: Checksum Hardware Accelerator

Altera has provided a checksum hardware accelerator design example to demonstrate
the steps to create a component and instantiate it in a system. This design example is
available for download from the Altera literature website. Included in the compressed
download file is a readme.pdf that describes how to create and compile the hardware
design, and describes how to use the checksum hardware accelerator in your design.

You can use the checksum algorithm in network applications where data integrity
must be inspected by the receiving device. The checksum algorithm accumulates data
with end-round-carry summation, which means that the carry bit from the
accumulator is added to the least significant bit of the next input. After the data is
accumulated, you can use the result to verify the data integrity of the data buffer.
Because the checksum algorithm operates over a data buffer, you can implement it
more efficiently with a pipelined read master. A pipelined read master continuously
posts read transactions minimizing the effects of the memory read latency. The
checksum accelerator can read data and calculate the checksum result every clock
cycle, which you cannot do with a general purpose processor.

The checksum hardware accelerator requires information from a host processor such
as the buffer base address, buffer length, and various control signals. As a result, the
hardware accelerator exposes an Avalon-MM slave interface so that a host processor
can control the read master operation. The host processor also accesses the checksum
result from the slave interface. Each piece of information sent or read by the host
processor is accessed separately in the register file implemented with the slave
interface. For example, the status and control signals are implemented as separate
registers because they contain information used for different purposes and have
different access capabilities.

Hardware accelerators can operate in parallel with a host processor; consequently,
adding an interrupt sender interface to the hardware accelerator increases system
performance. While the accelerator is operating on a buffer, the host processor can
perform other tasks such as preparing another buffer for transmission. The interrupt
is asserted after the buffer checksum is calculated. The host processor can be
interrupted by the hardware accelerator to notify it that a checksum result has been
calculated. The host processor can then read the checksum value and clear the
interrupt by writing to the status register via the accelerator slave interface.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

Chapter 10: SOPC Builder Component Development Walkthrough 10-5
Design Example: Checksum Hardware Accelerator

Figure 10-1. Checksum Component with Avalon-MM Master and Slaves

ok P clk —
Clock Input
reset Interface | g reset
<
> master_address[31..0]
Ll
| .
g ~_ master_readdata([31..0]
° transform_readdata[31..0] master_read -
Checksum P> Avalon-MM >
Master
Transform transform read Interface master_byteenable[3..0]
_| » >
Ll
transform_data_available & aster_waitrequest
master_readdatavalid
transform_byte_lanes
Ll
A A A
A A S| T
o 2| 3
Qo [=
s g %
“ =}
(I <1 K]
2 ml _cl
- ©
I o
3 2
_ slave_address[2..0]
| - -
_ slave_writedata[31..0]
_ <
L
__ slave_write
Avalon-MM |
checksum_result[15..0]
Slave slave_readdata[31..0]
Interface >
checksum_invert
_ slave_read
-
checksum_clear
_ slave_byteenable[3..0]
ey
I
e
=
o
o
\ 4
Interrupt
Slave irg
Interface >
Checksum Accelerator L

Software Design

If you want a microprocessor to control your component, you must provide software
files that define the software view of the component. At a minimum, you must define
the register map for each Avalon-MM slave that is accessible to a processor.

Typically, the header file declares macros to read and write each register in the
component, relative to a symbolic base address assigned to the component. Table 10-1
shows the register map of the checksum component for use by the Nios II processor.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

10-6

Chapter 10: SOPC Builder Component Development Walkthrough
Design Example: Checksum Hardware Accelerator

Table 10-1. Avalon-MM Slave Port Register Map (Control)

Offset Name Rd/Wr/clr Bits
31 10| 9 8 7 6 5 4 3 2 1 0
Status Rd/Welr Busy | Done
Read Rd/Wr Read Address (32-bit word aligned)
Address (7)
8 N/A — Reserved ()
12 Length Rd/Wr Length in Bytes (must be a multiple of 4 for word aligned)
(Bytes)
16 N/A — Reserved ()
20 N/A — Reserved ()
24 Control Rd/Wr | [rcon| | | [ILEN[GO| [v | Cr
28 Checksum Rd 16-Bit Checksum Result (upper 16 bits are zeros)
Results

Note to Table 10-1:
(1) Wr=Writable; Rd=Readable; Wclr=Write 1 to clear

=

In the example checksum project, you can view an example of a software driver in the
directory <projectdir>/ip/checksum_accelerator, which is the top level folder of the
hardware and software for the custom checksum block.

Software drivers abstract hardware details of the component so that software can
access the component at a high level. The driver functions provide the software an
API to access the hardware. The software requirements vary according to the needs of
the component. The most common types of routines initialize the hardware, read
data, and write data.

When developing software drivers, you should review the software files provided for
other ready-made components. The IP installer provides many components you can
use as reference. You can also view the <Nios II EDS install path>/components/
directory for examples.

For details about writing drivers for the Nios II hardware abstraction layer (HAL),
refer to the Developing Device Drivers for the Hardware Abstraction Layer chapter of the
Nios 1I Software Developer’s Handbook.

Verifying the Component

You can verify the component in incremental stages, as you complete more of the
design. You should first verify the hardware logic as a unit (which might consist of
multiple smaller stages of verification) and later verify the component in a system.

System Console

The system console is an interactive Tcl console available from within SOPC Builder
that provides you with read and write access to the debugging capabilities that are
available in your FPGA logic. You can use the system console to control and query the
state of the Nios II processor, issue Avalon transactions, board bring-up, and access
either JTAG UARTSs or system level debug (SLD) nodes.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

Chapter 10: SOPC Builder Component Development Walkthrough 10-7
Sharing Components

“.e For further details, refer to the System Console User Guide.

System-Level Verification

After you package a _hw.tcl file with the component editor, you can instantiate the
component in a system and verify the functionality of the overall SOPC Builder
system.

SOPC Builder provides support for system-level verification for HDL simulators such
as ModelSim®. SOPC Builder automatically produces a test bench for system-level
verification.

I'=" You can include a Nios II processor in your system to enhance simulation capabilities
during the verification phase. Even if your component has no relationship to the
Nios II processor, the auto-generated ModelSim simulation environment provides an
easy-to-use starting point.

Sharing Components

When you create a component, component editor saves the _hw.tcl file in the same
directory as the top-level HDL file. Where appropriate, files referenced by the _hw.tcl
file are specified relative to the _hw.tcl file itself, so the files can easily be moved and
copied. To share a component, include it in your IP library.

For more information about including components in an IP library refer to Finding
Components in SOPC Builder in Chapter 4: SOPC Builder Components in volume 4 of the
Quartus II Handbook.

.sopcinfo Files

Every time SOPC Builder generates a system, a <mysystem>.sopcinfo file is also
generated, which contains the following information:

m SOPC Builder project, including:
m Name and tool version
m HDL language

m Each module instantiated in the system, including;:
m Name and version

m Where interface information was found on the disk, such as signal names and
types, interface properties, and clock domain mapping

m Parameter names and values
m Each connection, including:
m Component and interface connections
m Base address, Avalon-MM interfaces, IRQ number interfaces

m Memory map as seen by each master in the system

L=~ The .sopcinfo file is a report file only, and cannot be edited with SOPC Builder.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/ug/ug_system_console.pdf
http://www.altera.com/literature/hb/qts/qts_qii54004.pdf

10-8 Chapter 10: SOPC Builder Component Development Walkthrough
Referenced Documents

Referenced Documents

This chapter references the following documents:

m Developing Device Drivers for the Hardware Abstraction Layer chapter of the Nios II
Software Developer’s Handbook

m Introduction to SOPC Builder chapter in volume 4 of the Quartus II Handbook
m SOPC Builder Components chapter in volume 4 of the Quartus II Handbook
m System Console User Guide

m Using the Nios II Software Build Tools chapter in the Nios II Software Developer’s
Handbook

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/ug/ug_system_console.pdf
http://www.altera.com/literature/hb/qts/qts_qii54004.pdf
http://www.altera.com/literature/hb/qts/qts_qii54001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 10: SOPC Builder Component Development Walkthrough

Document Revision History

10-9

Document Revision History
Table 10-2 shows the revision history for this chapter.

Table 10-2. Document Revision History

Date and Document Version

Changes Made

Summary of Changes

March 2009, v9.0.0

Corrected direction of transform_data_available and
transform_byte_lanes signals in Figure 10-1 on
page 10-5.

One correction.

November 2008, v8.1.0

m Added reference to new search path for IP chapter 4
of this volume.

m Correction direction of signals in Figure 10-1.
m Changed page size to 8.5 x 11 inches.

One correction and one change
to reflect changes in underlying
software.

May 2008, v8.0.0

m Chapter renumbered from 9 to 10.

m Removed discussion of the Checksum Design
example, which will now be in a readme.pdf file and
zipped with the rest of the design files.

m Deleted references to Avalon Memory-Mapped and
Streaming Interface Specifications and changed to
Avalon Interface Specifications.

m New Figure 9-1 and Table 9-1.
m New section on .sopcinfo file.

Deleted example procedure.

Archive.

© March 2009 Altera Corporation

. For previous versions of the Quartus Il Handbook, refer to the Quartus II Handbook

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

10-10 Chapter 10: SOPC Builder Component Development Walkthrough
Document Revision History

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

fAEl |:| ==/ Section Ill. Interconnect Components

This section provides information on Avalon® Memory-Mapped (Avalon-MM) and
Avalon Streaming (Avalon-ST) components that can be added to SOPC Builder
systems. The components described in these chapters help you to create and optimize
your SOPC Builder system. They are provided for free and can be used without a
license in any design targeting an Altera device.

This section includes the following chapters:
m Chapter 11, Avalon Memory-Mapped Bridges
m Chapter 12, Avalon Streaming Interconnect Components

"=~ For information about the revision history for chapters in this section, refer to each
individual chapter for that chapter’s revision history.

© March 2009 Altera Corporation Quartus 11 Handbook Version 9.0 Volume 4: SOPC Builder

-2 Section lll: Interconnect Components

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

QA | I:l =0/ 11. Avalon Memory-Mapped Bridges

Q1154020-9.0.0

Introduction to Bridges

This chapter introduces Avalon® Memory-Mapped (Avalon-MM) bridges, and
describes the Avalon-MM bridge components provided by Altera® for use in SOPC
Builder systems.

You use bridges to control the topology of the generated SOPC Builder system.
Bridges are not end-points for data, but rather affect the way data is transported
between components. By inserting Avalon-MM bridges between masters and slaves,
you control system topology, which in turn affects the interconnect that SOPC Builder
generates. You can also use bridges to separate components in different clock
domains and to implement clock domain crossing logic. Manual control of the
interconnect can result in higher performance or lower logic utilization or both. Altera
provides the following Avalon-MM bridges:

m “Avalon-MM Pipeline Bridge” on page 11-7
m “Clock Crossing Bridge” on page 11-10
m “Avalon-MM DDR Memory Half-Rate Bridge” on page 11-18
«e For additional information on using bridges to optimize and control the topology of

SOPC Builder systems, refer to Avalon Memory-Mapped Design Optimizations in the
Embedded Design Handbook.

Structure of a Bridge

A bridge has one Avalon-MM slave and one Avalon-MM master, as shown in
Figure 11-1. In an SOPC Builder system, one or more masters connect to the bridge
slave; in turn, the Avalon-MM bridge master connects to one or more slaves. In
Figure 11-1, all three masters have logical connections to all three slaves, although
physically each master only connects to the bridge.

© March 2009 Altera Corporation Quartus 11 Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf

11-2 Chapter 11: Avalon Memory-Mapped Bridges
Structure of a Bridge

Figure 11-1. Example of an Avalon-MM Bridge in an SOPC Builder System

M1
A A4

Arbiter & Write Data Control
Signal Multiplexing
s]

Avalon-MM Bridge

[v]

ChipSelect & Read Data
Multiplexing

1t

5] 5]

S1 S2 S3

[]

Avalon-MM Master
Avalon-MM Slave

Transfers initiated to the bridge’s slave propagate to the master in the same order in
which they are initiated on the slave.

“.e For details on the Avalon-MM interface, refer to the Avalon Interface Specifications.

Reasons for Using a Bridge

When you have no bridges between master-slave pairs, SOPC Builder generates a
system interconnect fabric with maximum parallelism, such that all masters can drive
transactions to all slaves concurrently, as long as each master accesses a different
slave. For systems that do not require a large degree of concurrency, the default
behavior might not provide optimal performance. With knowledge of the system and
application, you can optimize the system interconnect fabric by inserting bridges to
control the system topology.

Figure 11-2 and Figure 11-3 show an SOPC system without bridges. This system
includes three CPUs, a DDR SDRAM controller, a message buffer RAM, a message
buffer mutex, and a tristate bridge to an external SRAM.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 11: Avalon Memory-Mapped Bridges

Structure of a Bridge

11-3

Figure 11-2. Example System Without Bridges—SOPC Builder View

Uze Connections Module Mame Description Ease
ol E cpul Mios Il Processor
— instruction_master Avalon Master
gr— data_master Avalon Master IRQ O
fag_debug_module Avalon Slave 002002800
ol E cpu2 Mios Il Processor
r— instruction_master Avalon Master
data_master Avalon Master IRQ 0
jtan_debug_module Avalon Slave 0x00000200
ol E cpu3 Mios Il Processor
1 instruction_master Avalon Master
g, data_master Avalon Master IRQ O
jtan_debug_module Avalon Slave 0x00001000
ol = DDR_SDRAM_controller DOR SDRAM High Performance Contral...
=1 Avalon Slave 001000000
ol E message_buffer_RAM On-Chip Memory (RAM or ROM)
=1 Avalon Slave 0302001000
[l [E message_buffer_mutex Mutex
=1 Avalon Slave 002003000
ol E external_SSRAM_bus Avalon-Mh Tristate Bricoe
avalon_slave Avalon Slave 0300000000
triztate_master Avalon Tristate Master
ol g E external_SSRAM Cypress CY7C1380C SSRAM
=1 Avalon Tristate Slave OxfEEEEEEE

Figure 11-3 illustrates the default system interconnect fabric for the system in

Figure 11-2.

Figure 11-3. Example System without Bridges—System Interconnect View

i

]

M
‘ !
System
Fabric
- N N ™
N,
213/ 3132 3 3 al g
o O L O] O] O
121 i o'o[o] 5 |
%%g ol gl < 8 sl g
kel k=gx=] ©| ©| T © gg%
BB slalg E] EEE
A A A A
ol ol g o|o| o] o] ol o] g1 =
o O © 0| 0| | 0| D 15 &
[r4ial2 [e4[414 el x x
BlE B Blp B ble 2 2122
3| 3 3 3S(3 3 33 3 3 3
o @@ @ | @|@| @D @ @|d| @ 0| @ 0| 3
X| | ©| & x| ol g g X d|g| g | < S
3| &8 & =] 8] 3 &l & s
G| © T T T T © o
= 8|8| & E‘aoo 2 o|o|a [alfali=] 5
B =| = = Ol =l | S | | | i 5| o]
=} =] =} —
35153 81 58|8 3 5B 323 &
Bl << < @l << < A <|<| < < |
N | ley| o PN =l s S
o| 2|2 2 2| D|3|2 =) o] l=] =} 22|32 o
o|lo|ala ol ojalo o ool Qoo (s}
O] 0|6l O O| O|o|o O O|0| O 0|00

1 —
\ v \ v v v \
DDR SDRAM Message Buffer Message Buffer Tristate Bridge
to External
Controller RAM Mutex SRAM

Avalon-MM Master Port
Avalon-MM Slave Port

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

11-4

Chapter 11: Avalon Memory-Mapped Bridges
Structure of a Bridge

Figure 11-4 and Figure 11-5 show how inserting bridges can affect the generated
logic. For example, if the DDR SDRAM controller can run at 166 MHz and the CPUs
accessing it can run at 120 MHz, inserting an Avalon-MM clock-crossing bridge
between the CPUs and the DDR SDRAM has the following benefits:

m Allows the CPU and DDR interfaces to run at different frequencies.

m Places system interconnect fabric for the arbitration logic and multiplexer for the
DDR SDRAM controller in the slower clock domain.

m Reduces the complexity of the interconnect logic in the faster domain, allowing the
system to achieve a higher f,;,y.
"=~ Inserting the clock-crossing bridge does increase read latency and may not
be beneficial unless your system includes more devices that access the
memory.

In the system illustrated in Figure 114, the message buffer RAM and message buffer

mutex must respond quickly to the CPUs, but each response includes only a small
amount of data. Placing an Avalon-MM pipeline bridge between the CPUs and the
message buffers results in the following benefits:

Eliminates separate arbiter logic for the message buffer RAM and message buffer

mutex, which reduces logic utilization and propagation delay, thus increasing the

fMAX'

Figure 11-4. Example SOPC System with Bridges—SOPC Builder View

Reduces the overall size and complexity of the system interconnect fabric.

Use

™

Connections hodule Mame Description Clock Base End IRG
= cpul hin= Il Processor
instruction_master Lvalon Master clk
—_— = data_master Awalon Master IBQ O IRQ 21—
fao_debug_module Awvalon Slave 0303400800 0x03400fff
B cpu2 Mios Il Processar
—_— instruction_master Awalon Master clk
———————— data_master Avalon Master TRQ O IRQ Z1fF—
jtag_debug_rmodule Avalon Slave 003000800 Ox0O3I000£ff
B cpu3 Miog Il Processor
—_— instruction_master Avalon Master clk
—_— data_master Avalon Master IEQ O IRQ 31—
jtan_debug_module Avalon Slave 0303001000 0Ox030017FEF
E bridge Avalon-rbd Clock Crossing Bridoe
=1 Avalon Slave clk 000000000 Ox0OlfEff£fff
: ml Avalon Master clk
= ddr_sdram COR SDRAM Controller MegaCore Fun...
=1 Avalon Slave clk 000000000 OxOlfEfffff
E pipeline_bridge 2walon-hhl Pipeline Bridge
=1 Avalon Slave clk 0x02000000 |(0x02001E£Lf
il Avalon Master
E message_buffer_ram |On-Chip Memory (RAWM or ROk
=1 Asealon Slave clk 0x00000000 |(0x00000££F
E message_buffer_mu... kute:x
=1 Ayvalon Slave clk 0300001000 |Dx00001007
B ext_ssram_bus Avalon-hi Tristate Bridge
avalon_slave Avalon Slave clk
tristate_master Avalon Tristate Master
C B ext_ssram Cypress CY 701 3800 SSRAM
=1 Axvalon Tristate Slave clk 0x0F2Z00000 Ox0OZILEEELE

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

s

If an orange triangle appears next to an address in Figure 114, it indicates that the

address is an offset value and is not the true value of the address in the address map.

Figure 11-5 shows the system interconnect fabric that SOPC Builder creates for the
system in Figure 11—4. Figure 11-5 is the same system that is pictured in Figure 11-3
with bridges to control system topology.

© March 2009 Altera Corporation

Chapter 11: Avalon Memory-Mapped Bridges 11-5
Structure of a Bridge

Figure 11-5. Example System with a Bridge

A Al

System
Interconnect
Fabric

CPU2 Addr, Data, BurstRe
CPU3 Addr, Data, BurstRe

rddata_cgul
rddata_cgu2
rddata_cpgu3

«—CPU3 Addr, Data, BurstReq

Avalon-MM Avalon-MM S4
Clock Crossing Pipeline - -
Bridge Bridge Tristate Bridge
to External
A

System Interconnect Fabric

\ 4 y \ 4
DDR Message Message JTAG JTAG JTAG
SDRAM Buffer Buffer Debug Debug Debug
Cntl RAM Mutex CPU1 CPU2 CPU3

Avalon-MM Master Port
Avalon-MM Slave Port

Address Mapping for Systems with Avalon-MM Bridges
An Avalon-MM bridge has an address span and range that are defined as follows:

m The address span of an Avalon-MM bridge is the smallest power-of-two size that
encompasses all of its slave’s ranges.

m The address range of an Avalon-MM bridge is a numerical range from its base
address to its base address plus its (span -1).

Equation 11-1.

range = [base address .. (base address + (span - 1)];

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

11-6 Chapter 11: Avalon Memory-Mapped Bridges
Structure of a Bridge

SOPC Builder follows several rules in constructing an address map for a system with
Avalon-MM bridges:

1. The address span of each Avalon-MM slave is rounded up to the nearest power of
two.

2. Each Avalon-MM slave connected to a bridge has an address relative to the base
address of the bridge. This address must be a multiple of its span. (See
Figure 11-6.)

Figure 11-6. Avalon-MM Master and Slave Addresses

\valon-MM Masterl sees Slavel at Addr = 0x1100

\valon-MM Masterl sees Slave2 at Addr = 0x1400
Addr = 0x400 -
P S | Slave2

AA

Addr = 0x1000 Avalon-MM
B B E
Masterl S Bridge M {

E Avalon-MM Master Port P S | Slavel
Addr = 0x100

EI Avalon-MM Slave Port

3. In the example shown in Figure 11-6, if the address span of Slave 1 is 0x100 and
the address span of Slave 2 is 0x200, Figure 11-7 illustrates the address span of the
Avalon-MM bridge.

Figure 11-7. The Address Span of an Avalon-MM Bridge

Master Address Space

Avalon-MM Bridge Address Translation
span =0x800
=0x1000 .. (0x1000 + OX7FF)
=0x1000 .. 0x17FF
Slave Addr Space
OX7FF
Slave2
0x1400
OxX5FF
—> Slave2 span =0x200
range = 0x400 - Ox5FF
0x400
Slavel
0x1000
x1FF span =0x100
—>
vl 0x100 range = 0x100 - OX1FF
0x000 0x000

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 11: Avalon Memory-Mapped Bridges 11-7

Avalon-MM Pipeline Bridge

Tools for Visualizing the Address Map

The Base Address column of the System Contents tab displays the base address offset
of the Avalon-MM slave relative to the base address of the Avalon-MM bridge to
which it is connected. You can see the absolute address map for each master in the
system by clicking Address Map on the System Contents tab.

Differences between Avalon-MM Bridges and Avalon-MM Tristate Bridges

You use Avalon-MM bridges to control topology and separate clock domains for
on-chip components. You use tristate bridges to connect to off-chip components and
to share pins, decreasing the overall pin count of the device. Tristate bridges are
transparent, meaning that they do not affect the addresses of the components to which
they connect.

For more information about the Avalon-MM tristate bridge, refer to the SOPC Builder
Memory Subsystem Development Walkthrough chapter in volume 4 of the Quartus I1
Handbook.

Avalon-MM Pipeline Bridge

This section describes the hardware structure and functionality of the Avalon-MM
pipeline bridge component.

Component Overview

CAUTION

The Avalon-MM pipeline bridge inserts registers in the path between its master and
slaves. In a given SOPC Builder system, if the critical register-to-register delay occurs
in the system interconnect fabric, the pipeline bridge can help reduce this delay and
improve system fy;,y.

The bridge allows you to independently pipeline different groups of signals that can
create a critical timing path in the interconnect:

m Master-to-slave signals, such as address, write data, and control signals
m Slave-to-master signals, such as read data

m Thewai t request signal to the master

You can also use the Avalon-MM pipeline bridge to control topology without adding
a pipeline stage. To instantiate a bridge that does not add any pipeline stages, simply
do not select any of the Pipeline Options on the parameter page. For the system
illustrated in Figure 11-5, a pipeline bridge that does not add a pipeline register stage
is optimal because the CPUs benefit from minimal delay from the message buffer
mutex and message buffer RAM.

A pipeline bridge with no latency cannot be used with slaves that support pipelined
reads. If a slave does not have read latency, you cannot connect it to a bridge with no
pipeline stages, because the pipeline bridge slave port has a r eaddat aval i d signal.
Pipelined read components cannot have zero read latency. Some examples of 0
latency components available in SOPC Builder include the UART, Timer and SPI core.
You you are connecting a pipeline bridge to one of these components, increase the
read latency from 0 to 1.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/hb/qts/qts_qii54006.pdf
http://www.altera.com/literature/hb/qts/qts_qii54006.pdf

11-8

Chapter 11: Avalon Memory-Mapped Bridges

Avalon-MM Pipeline Bridge

The Avalon-MM pipeline bridge component integrates easily into any SOPC Builder
system.

Functional Description
Figure 11-8 shows a block diagram of the Avalon-MM pipeline bridge component.

Figure 11-8. Avalon-MM Pipeline Bridge Block Diagram

Master-to-Slave

Signals
Connects to an
Avalon-MM
Slave waitrequest

Interface

Slave-to-Master
Signals

Avalon-MM Pipeline Bridge

Master-to-Slave
Pipeline

P D Q
Slave
IIF
waitrequest
Pipeline
Wait Request
Logic
<

Slave-to-Master
Pipeline

>

Master
IIF

Master-to-Slave

Signals
Connects to an
Avalon-MM
waitrequest Master
Interface

Slave-to-Master
Signals

The following sections describe the component’s hardware functionality.

Interfaces

The bridge interface is composed of an Avalon-MM slave and an Avalon-MM master.
The data width of the ports is configurable, which can affect how SOPC Builder
generates dynamic bus sizing logic in the system interconnect fabric. Both ports
support Avalon-MM pipelined transfers with variable latency. Both ports optionally
support bursts of lengths that you can configure.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

© March 2009 Altera Corporation

Chapter 11: Avalon Memory-Mapped Bridges 11-9
Avalon-MM Pipeline Bridge

Pipeline Stages and Effects on Latency

The bridge provides three optional register stages to pipeline the following groups of
signals.

m Master-to-slave signals, including:
m address
m witedata
m wite
m read
m byteenabl e
m chipsel ect
m burstcount (optional)
m Slave-to-master signals, including:
m readdata
m readdatavalid
m Thewai t request signal to the master

When you include a register stage, it affects the timing and latency of transfers
through the bridge, as follows:

m The latency increases by one cycle in each direction.

m Write transfers on the master side of the bridge are decoupled from write transfers
on the slave side of the bridge because Avalon-MM write transfers do not require
an acknowledge signal from the slave.

B Including thewai t r equest register stage increases the latency of master-to-slave
signals by one additional cycle when the wai t r equest signal is asserted.

Burst Support

The bridge can support bursts with configurable maximum burst length. When
configured to support bursts, the bridge propagates bursts between master-slave
pairs, up to the maximum burst length. Not having burst support is equivalent to a
maximum burst length of one. In this case, the system interconnect fabric
automatically decomposes master-to-bridge bursts into a sequence of individual
transfers.

Example System with Avalon-MM Pipeline Bridges

Figure 11-9 illustrates a system in which seven Avalon-MM masters are accessing a
single DDR2 memory controller. By inserting two Avalon-MM pipeline bridges, you
can limit the complexity of the multiplexer that would be required.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

11-10 Chapter 11: Avalon Memory-Mapped Bridges
Clock Crossing Bridge

Figure 11-9. Seven Avalon-MM Masters Accessing One Avalon-MM Slave

. External External
DIKIA [Rise DR WiTiEe Processor Processor
]]
\ 4

\ 4
S S
Avalon-MM Avalon-MM
Pipeline Pipeline
Bridge Bridge
[v] [v]

Avalon-MM Master Port
Avalon-MM Slave Port

5]
DDR2 Memory
Controller

Clock Crossing Bridge

The Avalon-MM clock-crossing bridge allows you to connect Avalon-MM master and
slaves that operate in different clock domains. Without a bridge, SOPC Builder
automatically includes generic clock domain crossing (CDC) logic in the system
interconnect fabric, but it does not provide optimal performance for high-throughput
applications. Because the clock-crossing bridge includes a buffering mechanism, you
can pipeline multiple read and write transfers. After an initial penalty for the first
read or write, there is no additional latency penalty for pending reads and writes,
increasing throughput at the expense primarily of on-chip memory. The
clock-crossing bridge has parameterizeable FIFOs for master-to-slave and
slave-to-master signals, and allows burst transfers across clock domains.

The Avalon-MM clock-crossing bridge component is SOPC Builder-ready and
integrates easily into any SOPC Builder-generated system.

Choosing Clock Crossing Methodology

When determining clock frequencies for your components, you should also consider
the impact on the latency that transferring data across clock domains can cause.
Whether you use a clock-crossing bridge or rely on the clock domain adapter created
automatically by SOPC Builder, additional latency occurs. You should also consider
the resource usage and throughput capabilities of each solution.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 11: Avalon Memory-Mapped Bridges 11-11
Clock Crossing Bridge

If you rely on the automatically generated clock crossing adapter to connect master
and slave ports driven by separate clock inputs, there is a fixed latency penalty
associated to each transfer. Each transfer becomes blocking, meaning that while one
transfer is underway another cannot begin until the first completes. For this reason,
you should not connect high-speed, pipelined components such as SDRAM memory
to a master on a different clock domain without using a clock-crossing bridge between
them. The clock crossing bridge, on the other hand, can queue multiple transfers, so
that even though the latency increases, the throughput does not decrease.

Because a clock crossing adapter is generated for every master and slave pair, you
should use a clock crossing bridge if your design contains multiple master and slave
pairs operating in different clock domains. Alternatively, if your design uses a large
amount of on-chip memory, you may need to use a clock domain adapter, because the
clock-crossing bridge uses on-chip memory resources for buffering.

Functional Description

Figure 11-10 shows a block diagram of the Avalon-MM clock-crossing bridge
component. The following sections describe the component’s hardware functionality.

Figure 11-10. Avalon-MM Clock-Crossing Bridge Block Diagram

Avalon-MM Clock-Crossing Bridge
Master-to-Slave . Master-to-Slave Master-to-Slave
. in out ’
Signals EIEO Signals
—
Slave Master
IIF IIF
Connects to Slav;ton-g/llsaster e Slave'—:tloF—glaster in ¢ Slavgtc:]—zl:ster Connects to
Avalon-MM 9 9 Avalon-MM
Master — Slave
Interface Interface
Wait
waitrequest |- Request waitrequest
Logic
slave_clk | b master_clk
Interfaces

The bridge interface comprises an Avalon-MM slave and an Avalon-MM master. The
data width of the ports is configurable, which affects the size of the bridge hardware
and how SOPC Builder generates dynamic bus sizing logic in the system interconnect
fabric. Both ports support Avalon-MM pipelined transfers with variable latency. Both
ports optionally support bursts of user-configurable length. Ideally, the settings for
one port match the other, such that there are no mixed data widths or bursting
capabilities.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

11-12

Chapter 11: Avalon Memory-Mapped Bridges
Clock Crossing Bridge

Clock Crossing Bridge and FIFQs

Two FIFOs in the bridge transport address, data, and control signals across the clock
domains. One FIFO captures data and controls traveling in the master-to-slave
direction, and the other FIFO captures data in the slave-to-master direction. Clock
crossing logic surrounding the FIFOs coordinates the details of passing data across
the clock-domain boundaries and ensures that the FIFOs do not overflow or
underflow.

The signals that pass through the master-to-slave FIFO include:
m witedata

m address

m read

m wite

m byteenabl e

m bur st count, when bursting is enabled

The signals that pass through the slave-to-master FIFO include:
m readdata

m readdatavalid

You can configure the depth of each FIFO. Because there are more signals traveling in
the master-to-slave direction, changing the depth of the master-to-slave FIFO has a
greater impact on the memory utilization of the bridge.

For read transfers across the bridge, the FIFOs in both directions incur latency for data
to return from the slave. To avoid paying a latency penalty for each transfer, the
master can issue multiple reads that are queued in the FIFO. The slave of the bridge
asserts r eaddat aval i d when itdrives valid data and assertswai t r equest when it
is not ready to accept more reads.

For write transfers, the master-to-slave FIFO causes a delay between the
master-to-bridge transfers and the corresponding bridge-to-slave transfers. Because
Avalon-MM write transfers do not require an acknowledge from the slave, multiple
write transfers from master-to-bridge might complete by the time the bridge initiates
the corresponding bridge-to-slave transfers.

Burst Support

The bridge optionally supports bursts with configurable maximum burst length.
When configured to support bursts, the bridge propagates bursts between
master-slave pairs, up to the maximum burst length. Not having burst support is
equivalent to a maximum burst length of one. In this case, the system interconnect
fabric automatically breaks master-to-bridge bursts into a sequence of individual
transfers.

When you configure the bridge to support bursts, you must configure the
slave-to-master FIFO depth deeply enough to capture all burst read data without
overflowing. The masters connected to the bridge could potentially fill the
master-to-slave FIFO with read burst requests; therefore, the minimum
slave-to-master FIFO depth is described by equation given in Example 11-1.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 11: Avalon Memory-Mapped Bridges
Clock Crossing Bridge

11-13

Example 11-1. Minimum Slave-To-Master FIFO Depth

= ((master-to-slave FI FO depth) * (nmax burst length)) + max slave | atency/pendi ng reads

Example System with Avalon-MM Clock-Crossing Bridges

Figure 11-11 uses Avalon-MM clocking crossing bridges to separate slave components
into two groups. The low-performance slave components are placed behind a single
bridge and clocked at a low speed. The high performance components are placed
behind a second bridge and clocked at a higher speed. By inserting clock-crossing
bridges in the system, you optimize the interconnect fabric and allow the Quartus® I
fitter to expend effort optimizing paths that require minimal propagation delay.

Figure 11-11. One Avalon-MM Master with Two Groups of Avalon-MM Slaves

CPU

y

S S
Avalon-MM Avalon-MM
IClock-Crossing| Clock-Crossing|
Bridge Bridge
[v] Y
A

\ 4
#x:tlgtne JTAG Debug UART System ID Seven Segment LCD
PIO Displa
Bridge Module isplay
M

5]
Flash
Memory

Avalon-MM Master Port S

Avalon-MM Slave Port
External

|
8

DDR Avalon
SDRAM Tristate
Bridge

L

SRAM

© March 2009 Altera Corporation

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

11-14

Chapter 11: Avalon Memory-Mapped Bridges
Clock Crossing Bridge

Instantiating the Avalon-MM Clock-Crossing Bridge in SOPC Builder

Table 11-1 describes the options available on the Parameter Settings page of the
MegaWizard™ interface.

Table 11-1. Avalon-MM Clock Crossing Bridge Parameters

Master-to-slave FIFO

instead of memory blocks

Parameter Value Description
FIFO depth 8,16, 32 Determines the depth of the FIFO.
Construct FIFO with registers | On/Off When you turn on this option, the FIFO uses registers as

storage instead of embedded memory blocks. This can
considerably increase the size of the bridge hardware and
lower the fyax.

Slave-to-master FIFO

FIFO depth

8, 16, 32, 64, 128,
256, 512, 1024

Determines the depth of the FIFO.

Construct FIFO with registers
instead of memory bhlocks

On/Off

When you turn on this option, the FIFO uses registers as
storage instead of embedded memory blocks. This can
considerably increase the size of the bridge hardware and
lower the fyax.

Common options

Data width

8, 16, 32, 64, 128,
256,512, 1024

Determines the data width of the interfaces on the bridge, and
affects the size of both FIFOs. For the highest bandwidth, set Data
width to be as wide as the widest master connected to the bridge.

Slave domain synchronizer
length

2-8

The number of pipeline stages in the clock crossing logic in the
issuing master to target slave direction. Increasing this value leads
to a larger meantime between failures (MTBF). You can determine
the MTBF for a given design can be determined by running a
TimeQuest timing analysis.

Master domain synchronizer
length

The number of pipeline stages in the clock crossing logic in the
issuing master to target slave direction. Increasing this value leads
to a larger meantime between failures (MTBF). You can determine
the MTBF for a given design can be determined by running a
TimeQuest timing analysis.

urst settings

Allow bursts

On/Off

Includes logic for the bridge’s master and slaves to support
bursts. You can use this option to restrict the minimum depth for
the slave-to-master FIFO.

Maximum burst size

2,4,8,16, 32, 64,
128, 256, 512, 1024

Determines the maximum length of bursts for the bridge to
support, when you turn on Allow bursts.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

© March 2009 Altera Corporation

Chapter 11: Avalon Memory-Mapped Bridges 11-15
Clock Domain Crossing Logic

Clock Domain Crossing Logic

SOPC Builder generates CDC logic that hides the details of interfacing components
operating in different clock domains. The system interconnect fabric upholds the
Avalon-MM protocol with each port independently, and therefore masters do not
need to incorporate clock adapters in order to interface to slaves on a different
domain. The system interconnect fabric logic propagates transfers across clock
domain boundaries automatically:.

The clock-domain adapters in the system interconnect fabric provide the following
benefits that simplify system design efforts:

m Allow component interfaces to operate at different clock frequencies.
m Eliminate the need to design CDC hardware.

m Allow each Avalon-MM port to operate in only one clock domain, which reduces
design complexity of components.

m Enable masters to access any slave without communication with the slave clock
domain.

m Allow you to focus performance optimization efforts only on components that
require fast clock speed.

Description of Clock Domain Adapter

The clock domain adapter consists of two finite state machines (FSM), one in each
clock domain, that use a simple hand-shaking protocol to propagate transfer control
signals (r ead_r equest ,wr i t e_r equest , and the master wai t r equest signals)
across the clock boundary. Figure 11-12 shows a block diagram of the clock domain
adapter between one master and one slave.

Figure 11-12. Block Diagram of Clock Crossing Adapter

Receiver
Port

Receiver Clock Domain Sender Clock Domain

CDC Logic
control transfer o _|control o
< B - iransfer_y, Synchro-_y, < B
X quest "1 | nizer
waitrequest Receiver ! Sl waitrequest
< Handshake | Handshake (¢
FSM I FSM
Synchro-{ , acknowledge
nizer |,
1
adéiress _
| >
1
1
, Y
__ readdata .
: < P readdata
! <
writedata & byte enable _
1

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

11-16

Chapter 11: Avalon Memory-Mapped Bridges
Clock Domain Crossing Logic

The synchronizer blocks in Figure 11-12 use multiple stages of flipflops to eliminate
the propagation of metastable events on the control signals that enter the handshake
FSMs.

The CDC logic works with any clock ratio. Altera tests the CDC logic extensively on a
variety of system architectures, both in simulation and in hardware, to ensure that the
logic functions correctly.

The typical sequence of events for a transfer across the CDC logic is described as
follows:

1. Master asserts address, data, and control signals.

2. The master handshake FSM captures the control signals, and immediately forces
the master to wait.

"=~ The FSM uses only the control signals, not address and data. For example,
the master simply holds the address signal constant until the slave side has
safely captured it.

3. Master handshake FSM initiates a transfer request to the slave handshake FSM.
4. The transfer request is synchronized to the slave clock domain.

5. The slave handshake FSM processes the request, performing the requested
transfer with the slave.

6. When the slave transfer completes, the slave handshake FSM sends an
acknowledge back to the master handshake FSM.

7. The acknowledge is synchronized back to the master clock domain.

8. The master handshake FSM completes the transaction by releasing the master
from the wait condition.

Transfers proceed as normal on the slave and the master side, without a special
protocol to handle crossing clock domains. From the perspective of a slave, there is
nothing different about a transfer initiated by a master in a different clock domain.
From the perspective of a master, a transfer across clock domains simply requires
extra clock cycles. Similar to other transfer delay cases (for example, arbitration delay
or wait states on the slave side), the system interconnect fabric simply forces the
master to wait until the transfer terminates. As a result, pipeline master ports do not
benefit from pipelining when performing transfers to a different clock domain.

Location of Clock Domain Adapter

You can use the clock crossing bridge described in the following paragraphs for
higher throughput clock crossing, at the expense of memory resources.

SOPC Builder automatically determines where to insert the CDC logic, based on the
system contents and the connections between components. SOPC Builder places CDC
logic to maintain the highest transfer rate for all components. SOPC Builder evaluates
the need for CDC logic for each master and slave pair independently, and generates
CDC logic wherever necessary.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 11: Avalon Memory-Mapped Bridges 11-17
Clock Domain Crossing Logic

Duration of Transfers Crossing Clock Domains

CDC logic extends the duration of master transfers across clock domain boundaries.
In the worst case which is for reads, each transfer is extended by five master clock
cycles and five slave clock cycles. Assuming the default value of 2 for the Master
domain synchronizer length and the Slave domain synchronizer length, the
components of this delay are the following;:

m Four additional master clock cycles, due to the master-side clock synchronizer
m Four additional slave clock cycles, due to the slave-side clock synchronizer

m One additional clock in each direction, due to potential metastable events as the
control signals cross clock domains

[l=~ Systems that require a higher performance clock should use the Avalon-MM clock
crossing bridge instead of the automatically inserted CDC logic. The clock crossing
bridge includes a buffering mechanism, so that multiple reads and writes can be
pipelined. After paying the initial penalty for the first read or write, there is no
additional latency penalty for pending reads and writes, increasing throughput by up
to four times, at the expense of added logic resources.

<o For more information, refer to the System Interconnect Fabric for Streaming Interfaces
chapter in volume 4 of the Quartus II Handbook and Avalon Memory-Mapped Design
Optimizations in the Embedded Design Handbook.

Implementing Multiple Clock Domains in SOPC Builder

You specify the clock domains used by your system on the System Contents tab of
SOPC Builder. You define the input clocks to the system with the Clock Settings
table. Clock sources can be driven by external input signals to the SOPC Builder
system or by PLLs inside the SOPC Builder system. Clock domains are differentiated
based on the name of the clock. You may create multiple asynchronous clocks with
the same frequency.

To specify which clock drives which components you must display the Clock column
in the System Contents tab. By default, clock names are not displayed. To display
clock names in the Module Name column and the clocks in the Clock column in the
System Contents tab, right-click in the Module Name column and click Show All. To
connect a clock to follow these steps.

1. Click in the Clock column next to the clock port. A list of available clock signals
appears.

2. Select the appropriate signal from the list of available clocks. Figure 11-13
illustrates this step.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/hb/qts/qts_qii54019.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf

11-18 Chapter 11: Avalon Memory-Mapped Bridges
Avalon-MM DDR Memory Half-Rate Bridge

Figure 11-13. Assigning Clocks to Components

tadule Mame Description Clock Basze Encl EIEI
L) teus oy L e N R L L Iy P
high_res_timer Interwval timer clk b 0x02120820 0= 029 2083F |3_
seven_seqg_pio PIC (Parallel 1420 0x02120890 0021 2089F)
reconfig_request_pio PIO (Parallel 100) fastclk 0x021208A0 0021 2084F
uart1 UART (RS-232 serial port) |clk 0x02120840 D021 2085F|[4
sysid System 1D Peripheral clk: 0x021208B8 0021 205EF)
sdram SORAM Controller clk & 0:01000000 0x01FFFFFF
dma_0 D2, faztclk 0x00800000 Ox00G000MF|[F
read_buffer On-Chip Memmory (Ram . |fastolk 0x00801000 000501 FFF)
write_buffer Cn-Chip Memory (RAM ... [fastclk 0x00802000 Ox00S02FFF)

Avalon-MM DDR Memory Half-Rate Bridge

The Avalon Memory-Mapped (MM) Half-Rate Bridge core is a special-purpose
clock-crossing bridge intended for CPUs that require low-latency access to high-speed
memory. The core works under the assumption that the memory clock is twice the
frequency of the CPU clock, with zero phase shift between the two. It allows high
speed memory to run at full rate while providing low-latency interface for a CPU to
access it by using lightweight logic that translates one single-word request into a
two-word burst to a memory running at twice the clock frequency and half the width.
For systems with a 8-bit DDR interface, using the Half-Rate DDR Bridge in
conjunction with a DDR SDRAM high-performance memory controller creates a
datapath that matches the throughput of the DDR memory to the CPU. This half-rate
bridge provides the same functionality as the clock crossing bridge, but with
significantly lower latency—2 cycles instead of 12.

The core’s master interface is designed to be connected to a high-speed DDR SDRAM
controller and thus only supports bursting. Because the slave interface is designed to
receive single-word requests, it does not support bursting. Figure 11-14 shows a
system including an 8-bit DDR memory, a high-performance memory controller, the
Half-Rate DDR Bridge, and a CPU.

Figure 11-14. SOPC Builder Memory System Using a DDR Memory Half-Rate Bridge

PCB

DDR2/3 High

Performance Half-Rate
Controller Bridge
(full rate)

DDR Clk e > Controller Clk =~ <----------- > Controller Clk/2
burst count = 4 burst count = 2 burst count = 1

The Avalon-MM DDR Memory Half-Rate Bridge core has the following features and
requirements:

m SOPC Builder ready with TimeQuest Timing Analyzer constraints

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 11: Avalon Memory-Mapped Bridges 11-19

Avalon-MM DDR Memory Half-Rate Bridge

m Requires master clock and slave clock to be synchronous
m Handles different bus sizes between CPU and memory
m Requires the frequency of the master clock to be double of the slave clock

m Has configurable address and data port widths in the master interface

Resource Usage and Performance

This section lists the resource usage and performance data for supported devices
when operating the Half-Rate Bridge with a full-rate DDR SDRAM high-performance
memory controller.

Using the Half-Rate Bridge with a full-rate DDR SDRAM high-performance memory
controller results an average of 48% performance improvement over a system using a
half-rate DDR SDRAM high-performance memory controller in a series of embedded
applications. The performance improvement is 62.2% based on the Dhrystone
benchmark, and 87.7% when accessing memory bypassing the cache. For memory
systems that use the Half-Rate bridge in conjunction with DDR2/3 High Performance
Controller, the data throughput is the same on the Half-Rate Bridge master and slave
interfaces. The decrease in memory latency on the Half-Rate Bridge slave interface
results in higher performance for the processor.

Table 11-2 shows the resource usage for Stratix® II and Stratix III devices.

Tahle 11-2. Resource Utilization Data for Stratix Devices

Memory
Combinational M512/M4K/
Device Family ALUTs ALMs Logic Register M-RAM
Stratix Il 58 143 153 0
Stratix I 59 135 154 0
Table 11-3 lists the resource usage for a Cyclone® III device.
Table 11-3. Resource Utilization Data for Cyclone Il Devices
Memory
Logic Cells Logic Register-only | LUT/Register | M512/M4K/
(LC) Register LUT-only LC LC LCs M-RAM
233 152 30 84 119 0

Functional Description

The Avalon MM DDR Memory Half Rate Bridge works under two constraints:

m Its memory-side master has a clock frequency that is synchronous (zero phase
shift) to, and twice the frequency of, the CPU-side slave.

m Its memory-side master is half as wide as its CPU-side slave.

© March 2009 Altera Corporation

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

11-20

Chapter 11: Avalon Memory-Mapped Bridges
Avalon-MM DDR Memory Half-Rate Bridge

The bridge leverages these two constraints to provide lightweight, low-latency
clock-crossing logic between the CPU and the memory. These constraints are in
contrast with the Avalon-MM Clock-Crossing Bridge, which makes no assumptions
about the frequency/phase relationship between the master- and slave-side clocks,
and provides higher-latency logic that fully-synchronizes all signals that pass
between the two domains.

The Avalon MM DDR Memory Half-Rate Bridge has an Avalon-MM slave interface
that accepts single-word (non-bursting) transactions. When the slave interface
receives a transaction from a connected CPU, it issues a two-word burst transaction
on its master interface (which is half as wide and twice as fast). If the transaction is a
read request, the bridge's master interface waits for the slave’s two-word response,
concatenates the two words, and presents them as a single readdata word on its slave
interface to the CPU. Every time the data width is halved, the clock rate is doubled. As
a result, the data throughput is matched between the CPU and the off-chip memory
device.

Figure 11-15 shows the latency in the Avalon-MM Half-Rate Bridge core. The core
adds two cycles of latency in the slave clock domain for read transactions. The first
cycle is introduced during the command phase of the transaction and the second
cycle, during the response phase of the transaction. The total latency is 2+<x>, where
<x> refers to the latency of the DDR SDRAM high-performance memory controller.
Using the clock crossing bridge for this same purpose would impose approximately
12 cycles of additional latency.

Figure 11-15. Avalon-MM DDR Memory Half-Rate Bridge Block Diagram

DDR2/3 High Half-Rate Bridge
Performance
Controller
(full rate)

Cmd +1

DDR2/3
Memory

Instantiating the Core in SOPC Builder

Use the MegaWizard Plug-In Manager for the Avalon-MM Half-Rate Bridge core in
SOPC Builder to specify the core’s configuration. Table 114 describes the parameters
that can be configured for the Avalon-MM Half-Rate Bridge core.

Table 11-4. Configurable Parameters for Avalon-MM DDR Memory Half-Rate Bridge Core

Parameters Value Description
Data Width 8, 16, 32, 64, | The width of the data signal in the master interface.
128, 256, 512
Address Width 1-32 The width of the address signal in the master interface.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

Chapter 11: Avalon Memory-Mapped Bridges 11-21
Avalon-MM DDR Memory Half-Rate Bridge

Table 11-5 describes the parameters that are derived based on the Data Width and
Address Width settings for the Avalon-MM Half-Rate Bridge core.

Table 11-5. Derived Parameters for Avalon-MM DDR Memory Half-Rate Bridge Core

Parameter Description
Master interface’s Byte Enable The width of the byte-enable signal in the master interface.
Width
Slave interface’s Data Width The width of the data signal in the slave interface.
Slave interface’s Address Width | The width of the address signal in the slave interface.
Slave interface’s Byte Enable The width of the byte-enable signal in the slave interface.
Width

Example System

The following example provides high-level steps showing how the Avalon-MM DDR
Memory Half-Rate Bridge core is connected in a system. This example assumes that
you are familiar with the SOPC Builder GUI

- For a quick introduction to this tool, read of the one-hour online course, Using SOPC
Builder.

1. Add a Nios II Processor to the system.

2. Add a DDR2 SDRAM High-Performance Controller and configure it to full-rate
mode.

3. Add Avalon-MM DDR Memory Half-Rate Bridge to the system.

4. Configure the parameters of the Avalon-MM DDR Memory Half-Rate Bridge
based on the memory controller. For example, for a 32 MByte DDR memory
controller in full rate mode with 8 DQ pins (see Figure 11-14), the parameters
should be set as the following:

m Data Width =16

For a memory controller that has 8 DQ pins, its local interface width is 16 bits.
The local interface width and the data width must be the same, therefore data
width is set to 16 bits.

m Address Width = 25

For a memory capacity of 32 MBytes, the byte address is 25 bits. Because the
master address of the bridge is byte aligned, the address width is set to 25 bits.

5. Connectal t menddr _auxhal f to the slave clock interface (cl k_s1) of the
Half-Rate Bridge.

6. Connectal t menddr _syscl k to the master clock interface (cl k_ml) of the
Half-Rate Bridge.

7. Remove all connections between Nios II processor and the memory controller, if
there are any.

8. Connect the master interface (M) of the Avalon-MM DDR Memory Half-Rate
Bridge to the memory controller slave interface.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/education/training/courses/OEMB1115?GSA_pos=3&WT.oss_r=1&WT.oss=sopc%20builder
http://www.altera.com/education/training/courses/OEMB1115?GSA_pos=3&WT.oss_r=1&WT.oss=sopc%20builder

11-22 Chapter 11: Avalon Memory-Mapped Bridges
Device Support

9. Connect the slave interface (s1) of the Avalon-MM DDR Memory Half-Rate
Bridge to the Nios II processor dat a_nast er interface.

10. Connect al t menddr _auxhal f to Nios II processor clock interface.

Device Support

Altera device support for the bridge components is listed in Table 11-6.

Table 11-6. Device Family Support

Avalon-MM Pipeline Bridge Avalon-MM Clock-Crossing Bridge
Device Family Support Support
Arria® GX Full Full
Arria Il GX Full Full
Stratix® Full Full
Stratix I Full Full
Stratix Il GX Full Full
Stratix Il Full Full
Stratix IV Full Full
Cyclone® Full Full
Cyclone Il Full Full
Cyclone Il Full Full
Hardcopy® Full Full
HardGopy Il Full Full
HardCopy Il Full Full
MAX® Full No support
MAX 1| Full No support

Hardware Simulation Considerations

The bridge components do not provide a simulation testbench for simulating a
stand-alone instance of the component. However, you can use the standard SOPC
Builder simulation flow to simulate the component design files inside an SOPC
Builder system.

Software Programming Model

The bridge components do not have any user-visible control or status registers.
Therefore, software cannot control or configure any aspect of the bridges during
run-time. The bridges cannot generate interrupts.

Referenced Documents

This chapter references the following documents:
m Avalon Interface Specifications

m Avalon Memory-Mapped Design Optimizations in the Embedded Design Handbook

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii54006.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf

Chapter 11: Avalon Memory-Mapped Bridges

Document Revision History

11-23

m DDRand DDR2 SDRAM High-Performance Controller User Guide
m DDR3 SDRAM High-Performance Controller User Guide

m SOPC Builder Memory Subsystem Development Walkthrough chapter in volume 4 of
the Quartus II Handbook

m System Interconnect Fabric for Streaming Interfaces chapter in volume 4 of the
Quartus I Handbook

Document Revision History

Table 11-7 shows the revision history for this chapter.

Table 11-7. Document Revision History

Date and Document
Version

Changes Made

Summary of Changes

March 2009, v9.0.0

m Added information for synchronization when
crossing clock domains.

New information to allow user
control of metastability.

m Corrected Figure 114 to show correct connectivity
between masters and bridges. Show JTAG debug
modules for each CPU behind pipeline bridge.

m Deleted references to Avalon Memory-Mapped and
Streaming Interface Specifications and replaced with
new Avalon Interface Specifications.

m Moved clock crossing bridge section from Chapter 2
to this chapter.

m Added note after Figure 10-4.

November 2008 v8.1 m Clarified connection of clock signals. —
m Added section describing half-rate bridge.
m Changed page size to 8.5 x 11 inches.

May 2008 v8.0 m Chapter renumbered from 10 to 11. —

Archive.

© March 2009 Altera Corporation

. For previous versions of the Quartus Il Handbook, refer to the Quartus II Handbook

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/hb/qts/qts_qii54006.pdf
http://www.altera.com/literature/hb/qts/qts_qii54019.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/ug/ug_ddr_ddr2_sdram_hp.pdf
http://www.altera.com/literature/ug/ug_ddr3_sdram.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

11-24 Chapter 11: Avalon Memory-Mapped Bridges
Document Revision History

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

/NE

Q1154021-9.0.0

=/ 12. Avalon Streaming Interconnect

® Components

Introduction to Interconnect Components

Avalon® Streaming (Avalon-ST) interconnect components facilitate the design of
high-speed, low-latency datapaths for the system-on-a-programmable-chip (SOPC)
environment. Interconnect components in SOPC Builder act as a part of the system
interconnect fabric. They are not end points, but adapters that allow you to connect
different, but compatible, streaming interfaces. You use Avalon-ST interconnect
components to connect cores that send and receive high-bandwidth data, including
multiplexed streams, packets, cells, time-division multiplexed (TDM) frames, and
digital signal processor (DSP) data.

The interconnect components that you add to an SOPC Builder system insert logic
between a source and sink interface, enabling that interface to operate correctly. This
chapter describes four Avalon-ST interconnect components, also called adapters:

m “Timing Adapter” on page 12-3—adapts between sinks and sources that have
different characteristics, such as ready latencies.

m “Data Format Adapter” on page 12-6—adapts source and sink interfaces that have
different data widths.

m “Channel Adapter” on page 12-8—adapts source and sink interfaces that have
different settings for the channel signal.

m “Error Adapter” on page 12-9—ensures that per-bit error information recorded at
the source is correctly transferred to the sink

All of these interconnect components adapt initially incompatible Avalon-ST source
and sink interfaces so that they function correctly, facilitating the development of
high-speed, low-latency datapaths.

Interconnect Component Usage

Interconnect components can adapt the data or control signals of the Avalon-ST
interface. Typical adaptations to control signals include:

m Adding pipeline stages to adjust the timing of the r eady signal

m Tying signals that are not used by either the source or sink to 0 or 1
Typical adaptations to data signals include:

m Changing the number of symbols (words) that are driven per cycle
m Changing the number of channels driven

When the interconnect component adapts the data interface, it has one Avalon-ST
sink interface and one Avalon-ST source interface, as shown in Figure 12-1. You
configure the adapter components manually, using SOPC Builder. In contrast to the
Avalon-MM interface, which allows you to create various topologies with a number
of different master and slave components, you always use the Avalon-ST interconnect
components to adapt point-to-point connections between streaming cores.

© March 2009 Altera Corporation Quartus 11 Handbook Version 9.0 Volume 4: SOPC Builder

12-2 Chapter 12: Avalon Streaming Interconnect Components
Introduction to Interconnect Components

Figure 12-1. Example of an Avalon-ST Interconnect Component in an SOPC Builder System

streaming) streaming
input sink Avalon-ST E i Avalon-ST) Avalon-ST m >output
component adapter component
data data
L Y

«e For details about the system interconnect fabric, refer to the System Interconnect Fabric
for Streaming Interfaces chapter in volume 4 of the Quartus II Handbook. For details about the
Avalon-ST interface protocol, refer to the Avalon Interface Specifications.

Figure 12-2 illustrates a datapath that connects a Triple Speed Ethernet MegaCore

function to a Scatter-Gather DMA controller core using a timing adapter, data format
adapter, and channel adapter so that the cores can interoperate.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii54019.pdf
http://www.altera.com/literature/hb/qts/qts_qii54019.pdf

uonesodion eidly 6002 UdIeN ©

19p|Ing 3d0S ¥ 8WNJOA 0°6 UOISISA Y0OGPUEH || SnLeng

Address Mapping

Figure 12-2. Avalon-ST Datapath Constructed Using Avalon Streaming Interconnect Components

Triple

Speed Timing Data Format
’EthernetM Adapter M Adapter

Core

Scatter-Gather
DMA Controlle

channel
adapter

Triple

Speed Timing Data Format
EthernetM Adapter M Adapter

Core

ﬂ—»
B—

|:| Avalon Streaming Interconnect Components

I:I Avalon Streaming Core

The control and status signals for the components containing source or sink interfaces can be mapped to a slave interface which
is then accessible in the global Avalon address space.

Timing Adapter
The timing adapter has two functions:
m It adapts source and sink interfaces that support the r eady signal and those that do not.
m It adapts source and sink interfaces that support the val i d signal and those that do not.
m It adapts source and sink interfaces that have different ready latencies.

The timing adapter treats all signals other than the r eady and val i d signals as payload, and simply drives them from the
source to the sink. Table 121 outlines the adaptations that the timing adapter provides.

Jaydepy Buiwi

sjuauoduwio j9auuoaiajuj huiweans uojeay :z| 13ydeys

€2l

12-4

Chapter 12: Avalon Streaming Interconnect Components
Timing Adapter

Table 12-1. Timing Adapter

Condition

Adaptation

The source has r eady, but the sink does
not.

In this case, the source can respond to backpressure, but the sink never needs
to apply it. The r eady input to the source interface is connected directly to
logical 1.

The source does not have r eady, but
the sink does.

The sink may apply backpressure, but the source is unable to respond to it.
There is no logic that the adapter can insert that prevents data loss when the
source asserts val i d but the sink is not ready. The adapter provides
simulation time error messages and an error indication if data is ever lost. The
user is presented with a warning, and the connection is allowed.

The source and sink both support
backpressure, but the sink’s ready
latency is greater than the source's.

The source responds to r eady assertion or deassertion faster than the sink
requires it. A number of pipeline stages equal to the difference in ready latency
are inserted in the r eady path from the sink back to the source, causing the
source and the sink to see the same cycles as r eady cycles.

The source and sink both support
backpressure, but the sink’s ready
latency is less than the source's.

The source cannot respond to r eady assertion or deassertion in time to satisfy
the sink. A buffer whose depth is equal to the difference in ready latency is
inserted to compensate for the source’s inability to respond in time.

Resource Usage and Performance

Resource utilization for the timing adapter depends upon the function that it
performs. Table 12-2 provides estimated resource utilization for seven different
configurations of the timing adapter

Table 12-2. Timing Adapter Estimated Resource Usage and Performance

Stratix® Il and Stratix Il GX
(Approximate LEs) Cyclone® I Stratix (Approximate LEs)
Input Output
Ready Ready fuax ALM fuax Logic fuax Logic
Latency | Latency (MHz) Count Mem Bits | (MHz) Cells (MHz) Cells Mem Bits
1 2 500 2 0 420 2 422 1 0
1 3 500 2 0 420 3 422 2 0
1 4 500 4 0 420 4 422 3 0
1 0 500 21 80 420 183 422 20 80
2 1 456 21 80 401 188 317 21 80
3 1 456 21 80 401 188 317 21 80
4 1 456 21 80 401 188 317 21 80

Instantiating the Timing Adapter in SOPC Builder

You can use the Avalon-ST configuration wizard in SOPC Builder to specify the
hardware features. Table 12-3 describes the options available on the Parameter

Settings page of the configuration wizard

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

© March 2009 Altera Corporation

Chapter 12: Avalon Streaming Interconnect Components 12-5
Timing Adapter

Table 12-3. Avalon-ST Timing Adapter Parameters

Input Interface Parameters

Parameter Description

Support Backpressure with the ready signal Turn on this option to add the backpressure functionality to the interface.

Ready Latency When the r eady signal is used, the value forr eady | at ency
indicates the number of cycles between when the r eady signal is
asserted and when valid data is driven.

Include valid signal Turn this option on if the interface includes the val i d signal. Turning
this option off means that data being received is always valid.

Output Interface Parameters

Support Backpressure with the ready signal Turn on this option to add the backpressure functionality to the interface.

Ready Latency When the r eady signal is used, the value forr eady | at ency
indicates the number of cycles between when the r eady signal is
asserted and when valid data is driven.

Include valid signal Turn this option on if the interface includes the val i d signal. Turning
this option off means that data driven is always valid.

Common to Input and Output Interfaces

Channel Signal Width (bits) Type the width of the channel signal. A channel width of 4 allows up to
16 channels. The maximum width of the channel signal is eight bits.
Set to 0 if channels are not used.

Max Channel Type the maximum number of channels that the interface supports. Valid
values are 0-255.

Data Bits Per Symbol Type the number of bits per symbol.

Data Symbols Per Beat Type the number of symbols per active transfer.

Include Packet Support Turn this option on if the interfaces supports a packet protocol, including
the st art of packet, endof packet and enpt y signals.

Include Empty Signal You can use this signal to specify the number of empty symbols in the

cycle that includes the endof packet signal. This signal is not
necessary if the number of symbols per beat is 1.

Error Signal Width (Bits) Type the width of the error signal. Valid values are 0-31 bits. Type O if the
error signal is not used.
Error Signal Description Type the description for each of the error bits. Separate the description

fields by semicolons. For a connection to be made, the description of the
error bits in the source and sink must match. Refer to “Error Adapter” on
page 12-9 for the adaptations that can be made when the bits do not
match.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

12-6

Chapter 12: Avalon Streaming Interconnect Components
Data Format Adapter

Data Format Adapter

The data format adapter handles interfaces that have different definitions for the data
signal. One of the more common adaptations that this component performs is data
width adaptation, such as converting a data interface that drives two, 8-bit symbols
per beat to an interface that drives four, 8-bit symbols per beat. The available data
format adaptations are listed in Table 12—4.

Tahle 12-4. Data Format Adapter

Condition

Description of Adapter Logic

are different.

The source and sink’s hits per symbol

The connection cannot be made.

number of symbols per beat.

The source and sink have a different

The adapter converts from the source's width to the sink’s width.

If the adaptation is from a wider to a narrower interface, a beat of data at the input
corresponds to multiple beats of data at the output. If the input er r or signal is
asserted for a single beat, it is asserted on output for multiple beats.

If the adaptation is from a narrow to a wider interface, multiple input beats are
required to fill a single output beat, and the output er r or is the logical OR of the

input er r or signal.

Resource Usage and Performance

Resource utilization for the data format adapter depends upon the function that it
performs. Table 12-5 provides estimated resource utilization for numerous
configurations of the data format adapter.

Table 12-5. Data Format Adapter Estimated Resource Usage and Performance, 8 Bits per Symbol (Part 1 of 2)

Stratix Il and Stratix Il GX Stratix
Input Output (Approximate LEs) Cyclone Il (Approximate LEs)
Symbols | Symbols | Number

per per of Packet | fyu ALM | Memory fuax Logic | Memory fuax Logic | Memory

Beat Beat | Channels | Support | (MHz) | Count Bits (MHz) | Cells Bits (MHz) | Cells Bits
1 2 1 y 500 96 0 391 93 0 375 105 0
4 1 1 y 459 106 0 31 97 0 306 76 0
4 2 1 y 500 118 0 343 107 0 326 85 0
4 8 1 y 437 326 0 346 370 0 303 330 0
4 16 1 y 357 930 0 264 1005 0 231 806 0
1 2 188 y 321 110 15 187 137 15 209 153 15
4 1 105 y 244 125 2 148 183 2 150 137 2
4 105 y 277 101 2 172 134 173 108 2
4 130 y 322 255 41 175 279 41 187 262 41
4 16 30 y 268 341 106 166 563 106 153 47 106
4 1 105 n 269 107 2 177 185 2 167 99 2
4 2 54 n 290 109 1 193 203 1 176 91 1
4 3 10 n 249 149 18 189 251 16 159 217 18
4 5 222 n 281 300 40 199 381 40 182 316 40
4 6 30 n 312 184 40 201 385 40 198 241 40
4 7 139 n 253 285 56 159 416 56 161 427 56

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

© March 2009 Altera Corporation

Chapter 12: Avalon Streaming Interconnect Components 12-7
Data Format Adapter
Table 12-5. Data Format Adapter Estimated Resource Usage and Performance, 8 Bits per Symbol (Part 2 of 2)
Stratix Il and Stratix Il GX Stratix
Input Output (Approximate LEs) Cyclone Il (Approximate LEs)
Symbhols | Symhols | Number
per per of Packet | fy. ALM | Memory funx Logic | Memory funx Logic | Memory
Beat Beat | Channels | Support | (MHz) | Count Bits (MHz) | Cells Bits (MHz) | Cells Bits
4 8 198 n 311 281 40 190 247 40 198 257 40
4 15 160 n 259 370 121 165 733 121 149 697 121
4 16 36 n 227 255 105 391 93 0 146 491 105

Instantiating the Data Format Adapter in SOPC Builder

You can use the Avalon-ST configuration wizard in SOPC Builder to specify the
hardware features. Table 12-6 describes the options available on the Parameter
Settings page of the configuration wizard.

Tahle 12-6. Data Format Adapter Parameters

Input Interface Parameters

Parameter

Description

Data Symbols Per Beat

Type the number of symbols transferred per active cycle.

Include the empty signal

Turn this option on if the cycle that includes the endof packet signal can
include empty symbols. This signal is not necessary if the number of symbols
per beatis 1.

Output Interface Parameters

Data Symbols Per Beat

Type the number of symbols transferred per active cycle.

Include the empty signal

Turn this option on if the cycle that includes the endof packet signal can
include empty symbols. This signal is not necessary if the number of symbols
per beatis 1.

Common to Input & Output

Channel Signal Width (bits)

Type the width of the channel signal. A channel width of 4 allows up to 16
channels. The maximum width of the channel signal is 8 bits. Type 0 if you do
not need to send channel numbers.

Max Channel Type the maximum number of channels that the interface supports. Valid values
are 0—-255.
Include Packet Support Turn this option on if the interface supports a packet protocol, including the

startof packet, endof packet, and enrpt y signals.

Error Signal Width (Bits)

Type the width of the error signal. Valid values are 0-31 bits. Type O if the error
signal is not used.

Error Signal Description

Type the description for each of the error bits. Separate the description fields by
semicolons. For a connection to be made, the description of the error bits in the
source and sink must match. Refer to “Error Adapter” on page 12-9 for the
adaptations that can be made when the bits do not match.

Data Bits Per Symbol

Type the number of bits per symbol.

© March 2009 Altera Corporation

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

12-8

Chapter 12: Avalon Streaming Interconnect Components
Channel Adapter

Channel Adapter

The channel adapter provides adaptations between interfaces that have different
support for the channel signal or for the maximum number of channels supported.
The adaptations are described in Table 12-7.

Table 12-7. Channel Adapter

Condition

Description of Adapter Logic

The source uses channels, but the
sink does not.

You are given a warning at generation time. The adapter provides a simulation error
and signals an error for data for any channel from the source other than 0.

The sink has channel, but the source
does not.

You are given a warning, and the channel inputs to the sink are all tied to a logical 0.

The source and sink both support
channels, and the source's maximum
number of channels is less than the
sink's.

The source's channel is connected to the sink's channel unchanged. If the sink's
channel signal has more bits, the higher bits are tied to a logical 0.

The source and sink both support
channels, but the source's maximum
number of channels is greater than
the sink's.

The source’s channel is connected to the sink’s channel unchanged. If the source’s
channel signal has more bits, the higher bits are left unconnected. You are given a
warning that channel information may be lost.

An adapter provides a simulation error message and an error indication if the value
of channel from the source is greater than the sink's maximum number of channels.
In addition, the val i d signal to the sink is deasserted so that the sink never sees
data for channels that are out of range.

Resource Usage and Performance

The channel adapter typically uses fewer than 30 LEs. Its frequency is limited by the
maximum frequency of the device you choose.

Instantiating the Channel Adapter in SOPC Builder

You can use the Avalon-ST configuration wizard in SOPC Builder to specify the
hardware features. Table 12-8 describes the options available on the Parameter
Settings page of the configuration wizard.

Table 12-8. Avalon-ST Channel Adapter Parameters (Part 1 of 2)

Parameter

Description

nput Interface Parameters

Channel Signal Width (bits)

Type the width of the channel signal. A channel width of 4 allows up to
16 channels. The maximum width of the channel signal is eight bits.
Set to 0 if channels are not used.

Max Channel

Type the maximum number of channels that the interface supports. Valid
values are 0-255.

Output Interface Parameters

Channel Signal Width (bits)

Type the width of the channel signal. A channel width of 4 allows up to
16 channels. The maximum width of the channel signal is eight bits.
Set to 0 if channels are not used.

Max Channel

Type the maximum number of channels that the interface supports. Valid
values are 0-255.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

© March 2009 Altera Corporation

Chapter 12: Avalon Streaming Interconnect Components 12-9
Error Adapter

Table 12-8. Avalon-ST Channel Adapter Parameters (Part 2 of 2)

Parameter Description

Common to Input and Output Interfaces

Support Backpressure with the ready signal Turn on this option to add the backpressure functionality to the interface.

Ready Latency When the r eady signal is used, the value forr eady | at ency
indicates the number of cycles between when the r eady signal is
asserted and when valid data is driven.

Data Bits Per Symbol Type the number of bits per symbol.

Data Symbols Per Beat Type the number of symbols per active transfer.

Include Packet Support Turn this option on if the interfaces supports a packet protocol, including
the st art of packet, endof packet and enpt y signals.

Include Empty Signal You can use this signal to specify the number of empty symbols in the

cycle that includes the endof packet signal. This signal is not
necessary if the number of symbols per beat is 1.

Error Signal Width (bits) Type the width of the error signal. Valid values are 0-31 bits. Type O if you
do not need to send error values.
Error Signal Description Type the description for each of the error bits. Separate the description

fields by semicolons. For a connection to be made, the description of the
error bits in the source and sink must match. Refer to “Error Adapter” on
page 12-9 for the adaptations that can be made when the bits do not
match.

Error Adapter

The error adapter ensures that per-bit error information provided by source interfaces
is correctly connected to the sink interface's input error signal. The adaptations are
described in Table 12-9.

Instantiating the Error Adapter in SOPC Builder

You can use the Avalon-ST configuration wizard in SOPC Builder to specify the
hardware features. Table 12-9 describes the options available on the Parameter
Settings page of the configuration wizard.

Table 12-9. Avalon-ST Error Adapter Parameters (Part 1 of 2)

Parameter Description

nput Interface Parameters

Error Signal Width (bits) Type the width of the error signal. Valid values are 0—-31 bits. Type O if the
error signal is not used.
Error Signal Description Type the description for each of the error bits. Separate the description

fields by semicolons. For a connection to be made, the description of the
error bits in the source and sink must match. Refer to “Error Adapter” on
page 12-9 for the adaptations that can be made when the bits do not
match.

Output Interface Parameters

Error Signal Width (bits) Type the width of the error signal. Valid values are 0—31 bits. Type O if you
do not need to send error values.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

12-10

Chapter 12: Avalon Streaming Interconnect Components
Installation and Licensing

Table 12-9. Avalon-ST Error Adapter Parameters (Part 2 of 2)

Parameter

Description

Error Signal Description

Type the description for each of the error bits. Separate the description
fields by semicolons. For a connection to be made, the description of the
error bits in the source and sink must match. Refer to “Error Adapter” on
page 12-9 for the adaptations that can be made when the bits do not
match.

Common to Input and Output Interfaces

Support Backpressure with the ready signal

Turn on this option to add the backpressure functionality to the interface.

Ready Latency

When the r eady signal is used, the value for r eady_| at ency
indicates the number of cycles between when the ready signal is asserted
and when valid data is driven.

Channel Signal Width (bits)

Type the width of the channel signal. A channel width of 4 allows up to
16 channels. The maximum width of the channel signal is eight bits.
Set to 0 if channels are not used.

Max Channel

Type the maximum number of channels that the interface supports. Valid
values are 0-255.

Data Bits Per Symbol

Type the number of bits per symbol.

Data Symbols Per Beat

Type the number of symbols per active transfer.

Include Packet Support Turn this option on if the interfaces supports a packet protocol, including
the st art of packet, endof packet and enpt y signals.
Include Empty Signal Turn this option on if the cycle that includes the endof packet signal

can include empty symbols. This signal is not necessary if the number of
symbols per beat is 1.

Installation and Licensing

The Avalon-ST interconnect components are included in the Altera MegaCore® IP
Library, which is part of the Quartus Il software installation. After you install the
MegaCore IP Library, SOPC Builder recognizes these components and can instantiate

them into a system.

You can use the Avalon-ST components without a license in any design that targets an

Altera device.

Hardware Simulation Considerations

The Avalon-ST interconnect components do not provide a simulation testbench for
simulating a stand-alone instance of the component. However, you can use the
standard SOPC Builder simulation flow to simulate the component design files inside
an SOPC Builder system.

Software Programming Model

The Avalon-ST interconnect components do not have any control or status registers
that you can see. Therefore, software cannot control or configure any aspect of the
interconnect components at run-time. These components cannot generate interrupts.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

© March 2009 Altera Corporation

Chapter 12: Avalon Streaming Interconnect Components 12-11
Referenced Documents

Referenced Documents

This chapter references the following documents:
m Avalon Interface Specifications

m System Interconnect Fabric for Streaming Interfaces chapter in volume 4 of the Quartus II
Handbook

Document Revision History
Table 12-10 shows the revision history for this chapter.

Tahle 12-10. Document Revision History

Date and Document
Version Changes Made Summary of Changes

March 2009, v9.0.0 m No changes from previous release. —
November 2008, v8.1.1 | m Removed private comments —
November 2008, v8.1.0 | m Added documentation for Avalon-ST error adapter. Minor changes for 8.1.
m Reformatted parameter settings in tables.
m Changed page size to 8.5 x 11 inches.
May 2008, v8.0.0 m Chapter renumbered from 11 to 12. —

m Deleted references to Avalon Memory-Mapped and Streaming
Interface Specifications and changed to Avalon Interface
Specifications.

. For previous versions of the Quartus Il Handbook, refer to the Quartus II Handbook
Archive.

© March 2009 Altera Corporation Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/literature/hb/qts/qts_qii54019.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

12-12 Chapter 12: Avalon Streaming Interconnect Components
Document Revision History

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder © March 2009 Altera Corporation

/NE

" E——— Additional Information

About this Handhook

This handbook provides comprehensive information about the Altera® Quartus® II
design software, version 9.0.

How to Contact Altera

For the most up-to-date information about Altera products, see the following table.
Contact
Contact (Note 1) Method Address
Technical support Website www.altera.com/support
Technical training Website www.altera.com/training
Email custrain@altera.com
Altera literature services Email literature@altera.com
Non-technical support (General) Email nacomp@altera.com
(Software Licensing) Email authorization@altera.com

Note:
(1) You can also contact your local Altera sales office or sales representative.

Third-Party Software Product Information

Third-party software products described in this handbook are not Altera products, are
licensed by Altera from third parties, and are subject to change without notice.
Updates to these third-party software products may not be concurrent with Quartus II
software releases. Altera has assumed responsibility for the selection of such
third-party software products and its use in the Quartus II 9.0 software release. To the
extent that the software products described in this handbook are derived from
third-party software, no third party warrants the software, assumes any liability
regarding use of the software, or undertakes to furnish you any support or
information relating to the software. EXCEPT AS EXPRESSLY SET FORTH IN THE
APPLICABLE ALTERA PROGRAM LICENSE SUBSCRIPTION AGREEMENT
UNDER WHICH THIS SOFTWARE WAS PROVDED TO YOU, ALTERA AND
THIRD-PARTY LICENSORS DISCLAIM ALL WARRANTIES WITH RESPECT TO
THE USE OF SUCH THIRD-PARTY SOFTWARE CODE OR DOCUMENTATION IN
THE SOFTWARE, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND
NONINFRINGEMENT. For more information, including the latest available version
of specific third-party software products, refer to the documentation for the software
in question.

© March 2009 Altera Corporation Quartus 11 Handbook Version 9.0 Volume 4: SOPC Builder

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
mailto:literature@altera.com
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info-2

Additional Information

Typographic Conventions

The following table shows the typographic conventions that this document uses.

Visual Cue

Bold Type with Initial Capital Let-
ters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type

External timing parameters, directory names, project names, disk drive names, file
names, file name extensions, and software utility names are shown in bold type.
Examples: fyax, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type

Internal timing parameters and variables are shown in italic type.
Examples: tpjs, 1+ 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>. pof file.

Initial Capital Letters

Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title”

References to sections within a document and titles of on-line help topics are shown
in quotation marks. Example: “Typographic Conventions.”

Courier type

Signal and port names are shown in lowercase Courier type. Examples: dat a1, tdi,
i nput . Active-low signals are denoted by suffix n, e.g., reset n.

Anything that must be typed exactly as it appears is shown in Courier type. For exam-
ple: c:\ qdesigns\tutorial\chiptrip.gdf.Also, sections of an actual file,
such as a Report File, references to parts of files (e.g., the AHDL keyword SUBDE-

SI GN), as well as logic function names (e.g., TR) are shown in Courier.

1.,2., 3, and Numbered steps are used in a list of items when the sequence of the items is impor-

a., b.,c., etc. tant, such as the steps listed in a procedure.

E Bullets are used in a list of items when the sequence of the items is not important.
The checkmark indicates a procedure that consists of one step only.

s The hand points to information that requires special attention.

CAUTION

A caution calls attention to a condition or possible situation that can damage or
destroy the product or the user’s work.

B>

WARNING

A warning calls attention to a condition or possible situation that can cause injury to
the user.

The angled arrow indicates you should press the Enter key.

The feet direct you to more information on a particular topic.

Quartus Il Handbook Version 9.0 Volume 4: SOPC Builder

© March 2009 Altera Corporation

	Quartus II Handbook Version 9.0 Volume 4: SOPC Builder
	Contents
	Chapter Revision Dates
	Section I. SOPC Builder Features
	1. Introduction to SOPC Builder
	Quick Start Guide
	Overview
	Architecture of SOPC Builder Systems
	SOPC Builder Modules
	Example System
	Available Components
	Custom Components
	Third-Party Components

	Functions of SOPC Builder
	Defining and Generating the System Hardware
	Creating a Memory Map for Software Development
	Creating a Simulation Model and Test Bench

	Visualization of Large SOPC Builder Systems
	Operating System Support
	Talkback Support
	Referenced Documents
	Document Revision History

	2. System Interconnect Fabric for Memory-Mapped Interfaces
	Introduction
	High-Level Description
	Fundamentals of Implementation
	Functions of System Interconnect Fabric

	Address Decoding
	Datapath Multiplexing
	Wait State Insertion
	Pipelined Read Transfers
	Dynamic Bus Sizing and Native Address Alignment
	Dynamic Bus Sizing
	Wider Master
	Narrower Master

	Native Address Alignment

	Arbitration for Multimaster Systems
	Traditional Shared Bus Architectures
	Slave-Side Arbitration
	Arbiter Details
	Arbitration Rules
	Setting Arbitration Parameters in SOPC Builder
	Fairness-Based Shares
	Round-Robin Scheduling
	Burst Transfers

	Burst Adapters
	Interrupts
	Individual Requests IRQ Scheme
	Priority Encoded Interrupt Scheme
	Assigning IRQs in SOPC Builder

	Reset Distribution
	Referenced Documents
	Document Revision History

	3. System Interconnect Fabric for Streaming Interfaces
	Introduction
	High-Level Description
	Avalon Streaming and Avalon Memory-Mapped Interfaces

	Adapters
	Data Format Adapter
	Timing Adapter
	Channel Adapter
	Error Adapter

	Multiplexer Examples
	Example to Double Clock Frequency
	Example to Double Data Width and Maintain Frequency
	Example to Boost the Frequency

	Referenced Documents
	Document Revision History

	4. SOPC Builder Components
	Component Providers
	Component Hardware Structure
	Components Inside the SOPC Builder System
	Static HDL Components
	Dynamic HDL Components

	Components Outside the SOPC Builder System

	Exported Connection Points—Conduit Interfaces
	SOPC Builder Component Search Path
	Installing Additional Components
	Copy to the IP Root Directory
	Reference Components in an .ipx File

	Understanding IPX File Syntax
	Upgrading from Earlier Versions

	Component Structure
	Component Description File (_hw.tcl)
	Component File Organization

	Classic Components in SOPC Builder
	Referenced Documents
	Document Revision History

	5. Using SOPC Builder with the Quartus II Software
	Introduction
	Quartus II IP File
	Quartus II Incremental Compilation
	TimeQuest Timing Analyzer
	Analyzing PLLs
	Analyzing Slow Asynchronous I/O Paths
	Analyzing Single Data Rate SDRAM and SSRAM
	Analyzing Tristate Bridges and Asynchronous Devices
	Analyzing DDR and DDR2 Memories

	Referenced Documents
	Document Revision History

	6. Component Editor
	Introduction
	Component Hardware Structure
	Starting the Component Editor
	HDL Files Tab
	Bottom-Up Design
	Top-Down Design

	Signals Tab
	Naming Signals for Automatic Type and Interface Recognition
	Templates for Interfaces to External Logic

	Interfaces Tab
	Component Wizard Tab
	Identifying Information
	Parameters

	Saving a Component
	Editing a Component
	Software Assignments
	Component GUI
	Referenced Documents
	Document Revision History

	7. Component Interface Tcl Reference
	Introduction
	Information in a Hardware Component Description File
	Component Phases
	Writing a Hardware Component Description File
	Providing Basic Information
	Declaring Parameters
	Declaring Interfaces

	Adding Files and Guiding Generation
	Default Behaviors
	Validation Phase Behavior
	Elaboration Phase Behavior
	Generation Phase Behavior
	Editor Phase Behavior

	Overriding Default Behaviors
	Validation Callback
	Elaboration Callback
	Generation Callback
	Editor Callback

	Hardware Tcl Command Reference
	Module Definition
	get_module_properties
	get_module_property
	set_module_property
	get_module_ports
	get_module_assignment
	set_module_assignment
	add_file
	get_files
	get_file_property
	set_file_property
	send_message

	Parameters
	get_parameter_properties
	add_parameter
	get_parameters
	get_parameter_property
	set_parameter_property
	get_parameter_value
	set_parameter_value
	decode_address_map
	add_display_item

	Interfaces and Ports
	add_interface
	get_interfaces
	get_interface_properties
	get_interface_property
	set_interface_property
	add_interface_port
	get_interface_ports
	get_port_properties
	get_port_property
	set_port_property
	get_interface_assignment
	set_interface_assignment

	Generation
	get_generation_properties
	get_generation_property
	get_project_property

	Referenced Document
	Document Revision History

	8. Archiving SOPC Builder Projects
	Introduction
	Limitations
	Required Files
	Referenced Documents
	Document Revision History

	Section II. Building Systems with SOPC Builder
	9. SOPC Builder Memory Subsystem Development Walkthrough
	Introduction
	Example Design
	Example Design Structure
	Example Design Starting Point

	Hardware and Software Requirements

	Design Flow
	Component-Level Design in SOPC Builder
	SOPC Builder System-Level Design
	Simulation
	Quartus II Project-Level Design
	Board-Level Design
	Simulation Considerations
	Generic Memory Models
	Vendor-Specific Memory Models

	On-Chip RAM and ROM
	Component-Level Design for On-Chip Memory
	Memory Type
	Size
	Read Latency
	Non-Default Memory Initialization
	Enable In-System Memory Content Editor Feature

	SOPC Builder System-Level Design for On-Chip Memory
	Simulation for On-Chip Memory
	Quartus II Project-Level Design for On-Chip Memory
	Board-Level Design for On-Chip Memory
	Example Design with On-Chip Memory

	EPCS Serial Configuration Device
	Component-Level Design for an EPCS Device
	SOPC Builder System-Level Design for an EPCS Device
	Simulation for an EPCS Device
	Quartus II Project-Level Design for an EPCS Device
	Board-Level Design for an EPCS Device
	Example Design with an EPCS Device

	SDR SDRAM
	Component-Level Design for SDRAM
	SOPC Builder System-Level Design for SDRAM
	Simulation for SDRAM
	Quartus II Project-Level Design for SDRAM
	Connecting and Assigning the SDRAM-Related Pins
	Accommodating Clock Skew

	Board-Level Design for SDRAM
	Example Design with SDR SDRAM

	DDR SDRAM
	DDR2 SDRAM
	Off-Chip SRAM and Flash Memory
	Component-Level Design for SRAM and Flash Memory
	Avalon-MM Tristate Bridge
	Flash Memory
	SRAM

	SOPC Builder System-Level Design for SRAM and Flash Memory
	Simulation for SRAM and Flash Memory
	Quartus II Project-Level Design for SRAM and Flash Memory
	Board-Level Design for SRAM and Flash Memory
	Aligning the Least-Significant Address Bits
	Aligning the Most-Significant Address Bits

	Example Design with SRAM and Flash Memory
	Adding the Avalon-MM Tristate Bridge
	Adding the Flash Memory Interface
	Adding the SRAM Interface
	SOPC Builder System Contents Tab
	Connecting and Assigning Pins in the Quartus II Project
	Connecting FPGA Pins to Devices on the Board

	Referenced Documents
	Document Revision History

	10. SOPC Builder Component Development Walkthrough
	Introduction
	SOPC Builder Components and the Component Editor
	Prerequisites
	Hardware and Software Requirements

	Component Development Flow
	Typical Design Steps
	Hardware Design

	Design Example: Checksum Hardware Accelerator
	Software Design
	Verifying the Component
	System Console
	System-Level Verification

	Sharing Components
	.sopcinfo Files
	Referenced Documents
	Document Revision History

	Section III. Interconnect Components
	11. Avalon Memory-Mapped Bridges
	Introduction to Bridges
	Structure of a Bridge
	Reasons for Using a Bridge
	Address Mapping for Systems with Avalon-MM Bridges
	Tools for Visualizing the Address Map
	Differences between Avalon-MM Bridges and Avalon-MM Tristate Bridges

	Avalon-MM Pipeline Bridge
	Component Overview
	Functional Description
	Interfaces
	Pipeline Stages and Effects on Latency
	Burst Support
	Example System with Avalon-MM Pipeline Bridges

	Clock Crossing Bridge
	Choosing Clock Crossing Methodology
	Functional Description
	Interfaces
	Clock Crossing Bridge and FIFOs
	Burst Support
	Example System with Avalon-MM Clock-Crossing Bridges

	Instantiating the Avalon-MM Clock-Crossing Bridge in SOPC Builder

	Clock Domain Crossing Logic
	Description of Clock Domain Adapter
	Location of Clock Domain Adapter
	Duration of Transfers Crossing Clock Domains
	Implementing Multiple Clock Domains in SOPC Builder

	Avalon-MM DDR Memory Half-Rate Bridge
	Resource Usage and Performance
	Functional Description
	Instantiating the Core in SOPC Builder
	Example System

	Device Support
	Hardware Simulation Considerations
	Software Programming Model
	Referenced Documents
	Document Revision History

	12. Avalon Streaming Interconnect Components
	Introduction to Interconnect Components
	Interconnect Component Usage
	Address Mapping

	Timing Adapter
	Resource Usage and Performance
	Instantiating the Timing Adapter in SOPC Builder

	Data Format Adapter
	Resource Usage and Performance
	Instantiating the Data Format Adapter in SOPC Builder

	Channel Adapter
	Resource Usage and Performance
	Instantiating the Channel Adapter in SOPC Builder

	Error Adapter
	Instantiating the Error Adapter in SOPC Builder

	Installation and Licensing
	Hardware Simulation Considerations
	Software Programming Model
	Referenced Documents
	Document Revision History

	Additional Information
	About this Handbook
	How to Contact Altera
	Third-Party Software Product Information
	Typographic Conventions

