
Using Nios II Floating-Point Custom Instructions

May 2006 Tutorial

The Nios® II floating-point custom instructions accelerate arithmetic functions executed on float types.

This tutorial guides you through the basics of using the Nios II floating-point custom instructions. It is a good
starting point if you are considering the floating-point custom instructions for inclusion in your own project. In
this tutorial you add the floating-point custom instructions to a Nios II example design, and create a software
program to exhibit floating-point performance. When you complete this tutorial, you will know:

■ How to add the floating-point custom instructions to a Nios II processor

■ How to use the floating-point custom instructions in a C program, and how the custom instructions work with
the Nios II Embedded Design Suite (EDS).

■ The advantages and disadvantages of the floating-point custom instructions, and how best to use them in your
own system

Table of Contents

Document Conventions...2
About the Floating-Point Custom Instructions..2
Getting Ready...2

Prerequisites.. 2
Hardware & Software Requirements .. 3
Getting the Example Design ... 3
Getting the Software Files .. 3

Building and Programming the Hardware ...4
Building and Running the Software ...5

Creating the Software Project ... 5
Building and Running the Software and Analyzing the Results ... 5
Tutorial Implementation ... 6

Moving On to Your Own System...7
Assessing Your Floating-Point Optimization Needs... 7
Floating-Point Divide Considerations... 8
Floating Point Constants... 8
Simulation... 9
Device Resource Usage .. 9

Altera Corporation 1
TU-N2FLTNGPNT-1.0

 TTTTTTDocument Conventions

Document Conventions
This document uses the variables shown in Table 1 to represent file paths on your system.

Table 1. File path conventions
Symbol Meaning

<Nios II EDS Install Path> The location where the Nios II EDS is installed. On a Windows system, by default, that location is
c:\altera\kits\nios2_nn, where nn represents the current version number.

<HDL> The selected hardware description language: verilog or vhdl
<Nios II development board> The directory name identifying a Nios II development board, e.g. niosII_stratixII_2s60

About the Floating-Point Custom Instructions
The floating-point custom instructions, optionally available on the Nios II processor, implement single precision
floating-point arithmetic operations. You can use the custom instructions to accelerate floating-point operations in
your Nios II C/C++ application program. This set of custom instructions is available on every Nios II core
implementation. The basic set of floating-point custom instructions includes single precision floating-point
addition, subtraction, and multiplication. Floating-point division is available as an extension to the basic
instruction set.

Table 2 lists approximate acceleration factors afforded by the floating-point custom instructions.

Table 2. Sample Floating-Point Custom Instruction Acceleration Factors(1)

Target device Addition Subtraction Multiplication Division

EP1C20 21 x 18 x 27 x 15 x
EP1S40 20 x 20 x 19 x 18 x
EP2S60 14 x 15 x 12 x 14 x

Note to Table 2:
(1) For each floating-point custom instruction, these figures show typical speed increases over the equivalent software implementation.

For each target device, these results were obtained with the full_featured example design provided with the EDS. You might see
different acceleration results, depending on your hardware design and target device, and on the details of your software application.

When the floating-point custom instructions are present in your target hardware, the Nios II IDE compiles your
code to use the custom instructions for floating-point operations, including the four primitive arithmetic operations
(addition, subtraction, multiplication and division) and the ANSI C math library. The ANSI C math functions are
listed in Table 3 on page 8.

f The floating point custom instructions substantially comply with the IEEE 754-1985 floating point standard. For
details, refer to Floating Point Instructions under Arithmetic Logic Unit, in the Processor Architecture chapter of
the Nios II Processor Reference Handbook.

Getting Ready

Prerequisites

To make effective use of this tutorial, you should be familiar with the following topics:

■ Defining and generating Nios II hardware systems with SOPC Builder

 2 Altera Corporation
Using Nios II Floating-Point Custom Instructions May 2006

Getting Ready

■ Compiling Nios II hardware systems with the Quartus® II development software

■ Creating, compiling, and running Nios II software projects

f To learn about defining, generating and compiling Nios II systems, refer to the Nios II Hardware
Development Tutorial. To learn about Nios II software projects, refer to the Nios II Software
Development Tutorial.

Hardware & Software Requirements

This tutorial requires you to have the following software and hardware:

■ Altera® Quartus II development software version 6.0 or later, installed on a Windows or Linux computer.

■ Nios II EDS version 6.0 or later

■ Nios II target hardware.

■ A JTAG download cable compatible with your target hardware: for example, a USB-Blaster™ cable.

Your target hardware can be a Nios II development board for the EP1C20, EP2C35, EP1S40 or EP2S60, or any
hardware that meets these criteria:

■ It must include an Altera FPGA supporting the Nios II processor.

■

following char

●

● the floating-point custom instructions. For details, see Table 4.

■ clock frequency to an FPGA pin. The maximum frequency limit depends

■ cted to the dedicated JTAG pins on the FPGA to provide a
communication link to the Nios II system.

! owever, you can use the
floating-point custom instructions with the ModelSim® hardware simulator.

he full-
l Path>/examples/<HDL>/<Nios II development

board>/full_featured, installed with the Nios II EDS.

Do not modify the full-featured design in your Nios II EDS installation. Make a copy of it in a working directory.

 A hyperlink to the software files appears
next to this document, at www.altera.com/literature/lit-nio2.jsp.

 The target hardware must support a full_featured example design (distributed with the EDS) with the
acteristics:

 Includes a performance counter component.

Leaves enough unused logic to support
Approximate Device Resource Usage.

An oscillator must drive a constant
on the speed grade of the FPGA.

The board must have a 10-pin header conne

The Nios II instruction set simulator does not support custom instructions. H

Getting the Example Design

As the basis for this tutorial, use the full-featured example design corresponding to your target hardware. T
featured example designs reside at <Nios II EDS Instal

Getting the Software Files

The tutorial software files are available on the Nios II literature page.

Altera Corporation 3
May 2006 Using Nios II Floating-Point Custom Instructions

 Building and Programming the Hardware

The software files are distributed in a zip file. Unzip this file to a temporary directory. There are four files:

■ floating_point.c – the main program

■ floating_point.h – global definitions

■ floating_point_CI.c – functions to exercise the floating-point custom instructions

■ floating_point_SW.c – functions to exercise the software-implemented floating-point operations

Building and Programming the Hardware
Follow these steps to add the floating-point custom instructions to the Nios II processor in the example design:

1. Launch the Quartus II development software, and open your working copy of the hardware example design.

2. Launch SOPC Builder.

3. Edit the Nios II processor component. This launches the Nios II configuration wizard.

4. Select the Custom Instructions tab.

5. Select Floating Point Hardware from the Library list, and click Add.

6. Turn on the Use floating point division hardware option. Click Finish to exit the Nios II Floating Point
Hardware dialog.

7. Click Finish to exit the Nios II Wizard. Figure 1 shows the SOPC Builder Custom Instructions Tab with
floating-point hardware inserted.

Figure 1. Custom Instructions Tab in the Nios II Configuration Wizard

 4 Altera Corporation
Using Nios II Floating-Point Custom Instructions May 2006

Building and Running the Software

f For further information about adding the floating-point custom instructions, refer to the chapter
Implementing the Nios II Processor in SOPC Builder, in the Nios II Processor Reference Handbook.

! The floating-point division hardware is optional. For a discussion of the advantages and disadvantages
of using the floating-point division hardware, see the Floating-Point Divide Considerations section.

8. Generate the HDL for your SOPC Builder system. When the generation process is complete, exit SOPC
Builder.

9. Compile the Quartus II project.

10. Program your target hardware with the resulting FPGA configuration file (.sof).

Building and Running the Software

Creating the Software Project

Follow these steps to create and build the software project:

1. Launch the Nios II IDE.

2. Create a new Nios II C/C++ application, based on the Blank Project template. Under Select Target
Hardware, select the SOPC Builder project that you generated in the Building and Programming the
Hardware section.

3. Import the tutorial software files into your Nios II C/C++ application project. The easiest way to do this is to
select the files in an application such as Windows Explorer, and drag them into the Nios II C/C++ application
project folder in the C/C++ Projects view of the Nios II IDE.

4. Open the Properties dialog box for your Nios II C/C++ application project. In the C/C++ Build category, set
Configuration to Release. This enables compiler optimization.

Building and Running the Software and Analyzing the Results

1. Build the software project.

2. Run the software on your Nios II hardware.

The Nios II IDE detects the presence of the floating-point custom instructions at build time, and uses them for all
single precision floating-point arithmetic.

The program runs four tests, one each for the add, subtract, multiply, and divide operations. In each test, the
program carries out the floating-point operation on 1000 pairs of random operands. It executes both the floating-
point custom instruction and the equivalent software implementation. Using the performance counter component,
the tutorial software compares the hardware and software execution times.

As shown in Figure 2, the results include a report for each test. In each report, the section FP CI … lists the
performance of the custom instruction, and the section FP SW … lists the performance of the software
implementation. The Time (sec) and Time (clock) columns represent the aggregate time spent executing

Altera Corporation 5
May 2006 Using Nios II Floating-Point Custom Instructions

 Building and Running the Software

the floating-point operations, in seconds and in Nios II clock cycles. Total Time represents the duration of the
test, expressed both in seconds and in Nios II clock cycles. The column labeled with a percent sign (%) represents
the time spent executing the floating-point operation, as a percentage of the test total.

Figure 2. Sample Software Results

--Performance Counter Report--
Total Time: 0.01222420 seconds (611210 clock-cycles)
+---------------+-----+-----------+---------------+-----------+
| Section | % | Time (sec)| Time (clocks)|Occurrences|
+---------------+-----+-----------+---------------+-----------+
|FP CI ADD | 2.29| 0.00030| 14000| 1000|
+---------------+-----+-----------+---------------+-----------+
|FP SW ADD | 50.2| 0.00610| 306640| 1000|
+---------------+-----+-----------+---------------+-----------+

--Performance Counter Report--
Total Time: 0.00987798 seconds (493899 clock-cycles)
+---------------+-----+-----------+---------------+-----------+
| Section | % | Time (sec)| Time (clocks)|Occurrences|
+---------------+-----+-----------+---------------+-----------+
|FP CI SUBTRACT | 2.83| 0.00028| 14000| 1000|
+---------------+-----+-----------+---------------+-----------+
|FP SW SUBTRACT | 50.8| 0.00502| 250975| 1000|
+---------------+-----+-----------+---------------+-----------+

--Performance Counter Report--
Total Time: 0.0110131 seconds (550654 clock-cycles)
+---------------+-----+-----------+---------------+-----------+
| Section | % | Time (sec)| Time (clocks)|Occurrences|
+---------------+-----+-----------+---------------+-----------+
|FP CI MULTIPLY | 2.18| 0.00024| 12000| 1000|
+---------------+-----+-----------+---------------+-----------+
|FP SW MULTIPLY | 59| 0.00650| 325076| 1000|
+---------------+-----+-----------+---------------+-----------+

--Performance Counter Report--
Total Time: 0.0142152 seconds (710758 clock-cycles)
+---------------+-----+-----------+---------------+-----------+
| Section | % | Time (sec)| Time (clocks)|Occurrences|
+---------------+-----+-----------+---------------+-----------+
|FP CI DIVIDE | 4.5| 0.00064| 32000| 1000|
+---------------+-----+-----------+---------------+-----------+
|FP SW DIVIDE | 67.8| 0.00963| 481698| 1000|
+---------------+-----+-----------+---------------+-----------+

You might see different speed results, depending on your target hardware and on the actual values of the random
operands.

Tutorial Implementation

The tutorial software uses #pragma directives to compare hardware and software implementations of the
floating-point instructions. These #pragmas direct the Nios II compiler to ignore the floating-point instructions
and generate software implementations. The #pragma directives are:

■ #pragma no_custom_fadds — forces software implementation of floating-point add

■ #pragma no_custom_fsubs — forces software implementation of floating-point subtract

■ #pragma no_custom_fmuls — forces software implementation of floating-point multiply

 6 Altera Corporation
Using Nios II Floating-Point Custom Instructions May 2006

Moving On to Your Own System

■ #pragma no_custom_fdivs — forces software implementation of floating-point divide

The scope of these #pragmas is the entire C file.

f The tutorial software uses the Nios II performance counter component to collect timing information on the
floating-point operations. For more detail on the performance counter component, refer to the Performance
Counter Core with Avalon Interface section in the Quartus II Development Software Handbook, Volume 5:
Embedded Peripherals.

Moving On to Your Own System
Congratulations! You have built and demonstrated a Nios II system using the floating-point custom instructions.
Through this tutorial, you have familiarized yourself with the steps for integrating the floating-point custom
instructions into a Nios II system:

■ Modifying and generating Nios II system hardware in SOPC Builder

■ Compiling the Quartus II project

■ Creating a new project in the Nios II IDE

■ Compiling the project

■ Running the software on the target hardware

This section can help you determine how to use the floating-point custom instructions in your own project.

Assessing Your Floating-Point Optimization Needs

The best choice for your hardware design depends on a balance among floating-point usage, hardware resource
usage, and performance. While the floating-point custom instructions speed up floating-point arithmetic, they add
substantially to the size of your hardware project. If resource usage is an issue, before using the floating-point
custom instructions, consider these possibilities:

■ Have you identified your performance bottlenecks? Make sure your performance issues are caused by
floating-point arithmetic before you try to fix them with floating-point acceleration.

f

■

ple example, if you are

■ ion
level through the Properties dialog box for your Nios II C/C++ application and system library projects.

f ion of the chapter Developing Programs using the
HAL in the Nios II Software Developer's Handbook.

 Refer to AN391: Profiling Nios II Systems for detailed information about Nios II performance profiling.

 Can you use integer arithmetic? While the floating-point custom instructions are faster than software-
implemented floating-point, they are slower than hardware-based integer arithmetic. A common integer
technique is to represent numerical values with an implicit scaling factor. As a sim
calculating milliamps, you might represent your values internally as microamps.

Are you taking full advantage of compiler optimization? You can increase the Nios II compiler optimizat

For details, refer to the Reducing Code Footprint sect

Altera Corporation 7
May 2006 Using Nios II Floating-Point Custom Instructions

 Moving On to Your Own System

■ Have you hand-optimized your mathematical operations? Numerical analysis textbooks offer simple,
effective techniques for performing accurate calculations with the minimum number of floating-point
operations.

If you have followed these suggestions, and you need further acceleration, the floating-point custom instructions
are probably an appropriate solution.

Floating-Point Divide Considerations

The floating-point division hardware requires more resources than the other instructions, so you might opt to omit
it if your Nios II C/C++ application does not make heavy use of floating-point division.

In some cases, you can rewrite your code to minimize or even eliminate divide operations. For example, if your
algorithm requires division by a constant value, you can precalculate its inverse and use a multiply operation in the
speed-critical section of your code.

Table 3 indicates which math library functions use floating-point, and of those, which use floating-point division.
If a function uses floating-point, it runs faster with floating-point hardware. If a function uses floating-point
division, it runs still faster with floating-point division hardware.

Table 3. Math Library Floating-Point Usage
Math function Uses floating-

point?
Uses floating-
point division?

Math function Uses floating-
point?

Uses floating-
point division?

acos() Yes Yes frexp() Yes
asin() Yes Yes ldexp() Yes
atan() Yes Yes log() Yes Yes
atan2() Yes Yes log10() Yes Yes
cos() Yes modf() Yes
cosh() Yes Yes pow() Yes Yes
sin() Yes sqrt() Yes Yes
sinh() Yes Yes ceil() Yes
tan() Yes Yes fabs()
tanh() Yes Yes floor() Yes
exp() Yes Yes fmod() Yes Yes

When you omit the floating-point divide instruction, the Nios II IDE implements floating-point division in
software.

f For details of selecting the floating-point division hardware in the Nios II Wizard, refer to the Implementing the
Nios II Processor in SOPC Builder chapter of the Nios II Processor Reference Handbook.

Floating Point Constants

The Nios II compiler treats floating point constants as double precision. Therefore, if you want the floating point
custom instructions to be used for an operation with a floating point constant, you need to append an f to the
constant, as in Figure 1. This tells the compiler to treat it is a single precision float.

Figure 3. Float and Double Constants

y = x * 4.67; // Double precision. Does NOT use floating point custom instructions.
y = x * 4.67f; // Single precision. Does use floating point custom instructions.

 8 Altera Corporation
Using Nios II Floating-Point Custom Instructions May 2006

Moving On to Your Own System

Simulation

The Nios II instruction set simulator does not support custom instructions. If you need to run your software on the
instruction set simulator, you can disable the floating-point custom instructions in software with the #pragma
directives described in Tutorial Implementation on page 6.

You can use the floating-point custom instructions with the ModelSim hardware simulator.

Device Resource Usage

The floating-point custom instructions are available on all Altera devices that support the Nios II processor. Table
4 on page 9 shows approximate resource usage in each supported device.

If the target device includes on-chip multiplier elements, the floating-point hardware incorporates them as needed.
If there are no on-chip multiplier elements, the floating-point custom instructions are implemented entirely with
general-purpose logic elements.

Table 4. Approximate Device Resource Usage
LEs or ALUTs (1)Target device family

without divide with divide
Multiplier elements (2)

Cyclone 2500 6500 N/A
Cyclone II 2000 5400 7

Stratix 1800 5500 8
Stratix II 1600 4900 8

Notes to Table 4:
(1) For the Stratix II, the numbers in these columns represent adaptive look-up tables (ALUTs.) For other devices, the numbers

represent logic elements (LEs).
(2) In Cyclone II devices, a "multiplier element" is an embedded multiplier 9-bit element. In Stratix and Stratix II devices, a "multiplier

element" is a DSP 9-bit element. Cyclone devices do not have hardware multipliers.

! Resource usage in your own project might differ considerably from the values shown in Table 4,
depending on the details of Quartus II routing and fitting.

Altera Corporation 9
May 2006 Using Nios II Floating-Point Custom Instructions

 Moving On to Your Own System

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
www.altera.com
Applications Hotline:
(800) 800-EPLD
Literature Services:
literature@altera.com

© 2006 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific
device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted
otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service
names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents
and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to
current specifications in accordance with Altera’s standard warranty, but reserves the right to make changes to any products
and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are
advised to obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.

 10 Altera Corporation
Using Nios II Floating-Point Custom Instructions May 2006

mailto:literature@altera.com

	Document Conventions
	About the Floating-Point Custom Instructions
	Getting Ready
	Prerequisites
	Hardware & Software Requirements
	Getting the Example Design
	Getting the Software Files

	Building and Programming the Hardware
	Building and Running the Software
	Creating the Software Project
	Building and Running the Software and Analyzing the Results
	Tutorial Implementation

	Moving On to Your Own System
	Assessing Your Floating-Point Optimization Needs
	Floating-Point Divide Considerations
	Floating Point Constants
	Simulation
	Device Resource Usage

