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Introduction 
The Nios® II C2H Compiler is a powerful tool that generates hardware accelerators for software functions. The 
C2H Compiler enhances design productivity by allowing you to use a compiler to accelerate software algorithms 
in hardware. You can quickly prototype hardware functional changes in C, and explore hardware-software design 
tradeoffs in an efficient, iterative process. The C2H Compiler is well suited to improving computational 
bandwidth as well as memory throughput. It is possible to achieve substantial performance gains with minimal 
engineering effort. 

This tutorial teaches you how to use the C2H Compiler to accelerate a fast Fourier transform (FFT), yielding a 
large performance gain over a purely software based approach.  
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Prerequisites 

To make effective use of this tutorial, you should be familiar with the following topics: 

■ ANSI C syntax and usage 

■ Defining and generating Nios II hardware systems with SOPC Builder 

■ Compiling Nios II hardware systems with the Altera® Quartus® II development software 

■ Creating, compiling, and running Nios II software projects 

■ Nios II C2H Compiler theory of operation 

f To familiarize yourself with the basics of the C2H Compiler, refer to the Nios II C2H Compiler User 
Guide, especially chapters Introduction to the C2H Compile, and Getting Started Tutorial. To learn 
about defining, generating and compiling Nios II systems, refer to the Nios II Hardware Development 
Tutorial. To learn about Nios II software projects, refer to the Nios II Software Development Tutorial, 
available in the Nios II IDE help system.  

Hardware & Software Requirements  

This tutorial requires you to have the following software and hardware: 

■ Quartus II development software version 7.2 or later, installed on a Windows or Linux computer.  

■ Nios II Embedded Design Suite (EDS) version 7.2 or later 

■ One of the following Nios II development boards: 

● Stratix® II Edition 

● Cyclone™ II Edition 

■ A JTAG download cable compatible with your target hardware, such as a USB-Blaster™ cable. 

Getting the Hardware and Software Files  

The tutorial software files are available on the Nios II literature page. A link to the software files appears next to 
Accelerating Nios II Systems with the C2H Compiler Tutorial (this document), at www.altera.com/literature/lit-
nio2.jsp. The hardware and software files are distributed in a zip file. 

Extract the design files included in the file c2h_tutorial.zip to a new directory on your host computer. Be sure to 
recreate the directory structure on your local file system (for example, turn on Use folder names in the WinZip 
application).  

If you are targeting a Cyclone II development board, the files in the c2h_fft_cyclone_ii subdirectory are relevant 
to you. If you are targeting a Stratix II development board, the files in the c2h_fft_stratix_ii subdirectory are 
relevant. The remainder of this document refers to the relevant directory as <tutorial install dir>. 

The <tutorial install dir> folder contains a Quartus II project and a software folder. The software folder contains 
two subdirectories: c2h_fft and c2h_fft_syslib. c2h_fft is the main software project and contains the following 
files: 

■ sw_only_fft.c, sw_only_fft.h — These files implement a 256-point radix-two FFT that can run on a Nios II 
processor without any hardware acceleration. 

http://www.altera.com/literature/lit-nio2.jsp�
http://www.altera.com/literature/lit-nio2.jsp�
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■ accelerator_optimized_fft.c, accelerator_optimized_fft.h — These files implement a 256-point radix-two 
FFT that is functionally equivalent to the FFT defined in sw_only_fft.c. These files have been modified to 
run optimally in a hardware accelerator based system. For details about the optimizations, see the 
Restructuring Code to Optimize the Accelerator section. 

■ pound_defines.h — This file contains macros used by the FFT as well as pragma directives passed to the 
C2H Compiler. 

■ the_top_file.c — This file contains function main(). This is the top-level benchmark which runs both the 
software only and accelerated FFT functions and compares the performance of the two approaches. 

■ testdata.dat, results.dat — These files contain the input data to the FFT and the expected output results. 

■ twiddles.dat — This data file contains precalculated sine and cosine terms used in the software FFT 
calculation. 

To import the software projects, perform the following steps: 

1. Launch the Nios II IDE, and import the application and system library projects. 

a. Click Import in the Nios II IDE File menu. 

b. Select Existing Altera Nios II Project into Workspace, and click Next. 

c. Browse to the <tutorial install dir>/software directory, select the c2h_fft folder, and click OK. 

d. Click Finish. 

e. Repeat the above steps for the c2h_fft_syslib project. 

! If the import dialog box does not automatically locate the SOPC Builder system file, browse to the  
<tutorial install dir> directory, select FFT_system.ptf, and click OK. 

2. The C2H Compiler ignores the Configuration setting. 

FFT Background 
The fast Fourier transform (FFT) is a highly efficient method for calculating the discrete Fourier transform (DFT). 
The DFT is used in signal processing applications for a range of purposes, such as analyzing the frequency 
components of signals and data compression. The DFT is a computationally intensive function. A naïve (non-FFT) 
implementation of an n-point DFT requires n2 complex multiplications.  

The FFT algorithm achieves its efficiency gains by decomposing the DFT into a number of smaller DFTs and 
exploiting the symmetry and periodicity of the sub stages to reduce the number of calculations. An n-point FFT 
only requires n×log2n complex multiplications. Cutting down the number of complex multiplications improves the 
FFT performance, often by several orders of magnitude, depending on the order of the transform. 

A full description of the FFT algorithm is beyond the scope of this tutorial. Here are some basic facts about the 
FFT algorithm to be aware of: 

■ The FFT operates on complex data. It performs calculations simultaneously on real and imaginary 
components of the data. The algorithm implements complex multiplication as four multiplications, one 
addition and one subtraction. 
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■ One of the fundamental operations in the FFT algorithm is the butterfly calculation. The butterfly calculation 
either breaks a larger DFT into smaller DFTs, or recombines smaller DFTs into a larger. The name butterfly 
comes from the shape of the dataflow diagram describing the operation.  

f You can find more information at www.wikipedia.org, under "Butterfly (FFT algorithm)".  

■ The FFT function uses a technique called bit reversal to rearrange the input points so that the outputs are in 
the correct order.  

■ Conventional software FFT implementations obtain some of their speed by pre-calculating sine and cosine 
terms used in the butterfly calculations. These sine and cosine terms are called twiddle factors.  

The example design included with this tutorial is based on a radix-two implementation of the FFT function. This a 
decimation-in-time FFT, which decomposes the original 256-point DFT into two 128-point DFTs, which it then 
breaks down to four 64-point DFTs, and so on, until ultimately it evaluates 128 two-point DFTs.  

Analyzing the FFT Code 
A typical first step with the C2H Compiler is to accelerate the C function without restructuring the code. This 
approach rarely yields optimal performance. However, it provides performance metrics which allow you to 
identify the system bottlenecks.  

Creating a Build Report 

The C2H Compiler provides tools to help you analyze your C code. Carry out the following steps to see an 
analysis of the FFT function. 

1. Launch the Nios II IDE if it is not already running. 

2. Open the file sw_only_fft.c in the application project. 

3. Highlight the function name software_only_fft, right-click, and click Accelerate with the Nios II 
C2H Compiler, as shown in Figure 1. 

4. The Nios II IDE displays the C2H view. Expand the folders labeled c2h_fft and sw_only_fft(), and select 
Use Software implementation and Analyze all accelerators. Make sure the settings are as follows: 

● Use software implementation for all accelerators 

● Use hardware accelerator in place of software implementation. Flush data cache before each call 

The message Build report cannot be displayed is normal at this point. 

5. Right click the c2h_fft application project, and then click Build Project. As part of the build process, the 
Nios II IDE performs the following steps: 

● Analyzes the function to be accelerated, determining the mapping from C constructs to hardware, and 
computing performance metrics. 

● Compiles the software executable, using the software implementation of software_only_fft(). 
Depending on the speed of your platform, this can take ten to twenty minutes. While you wait for the 
build to complete, you might wish to read ahead in the Unoptimized Accelerator section. This section 
describes how the C2H Compiler accelerates software_only_fft() without optimizations. 

http://www.wikipedia.org/�
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Figure 1. Accelerating the Function 

 
 

! The Nios II compiler displays the following message: ignoring #pragma 
altera_accelerate connect_variable. You can disregard this warning. The C2H 
Compiler uses the altera_accelerate pragma to limit the number of master ports, as 
described in the Restructuring Code to Optimize the Accelerator section. It has no meaning for the 
Nios II compiler. 

Performance Metrics 

Although the C2H Compiler can accelerate unmodified ANSI C code, you typically need to modify the code to 
build a fully optimized hardware design. To gain insight into which portions of the function might need 
optimization, look at the build report generated by the C2H Compiler. The build report appears in the C2H view 
after you build the project. To see the performance metrics, expand the folders labeled Build Report, 
Performance, and The accelerated function contains 5 loops, and then expand each folder labeled 
file:../sw_only_fft.c line:n Loop CPLI=m, as shown in Figure 2 on page 6. 
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The most important performance metrics are: 

■ Cycles per loop iteration (CPLI) ― the number of clock cycles per loop iteration in the best case. The lowest 
possible value of CPLI is 1. This means that an iteration of the loop occurs every clock cycle, assuming no 
stalling for inner loops or memory access. A loop with CPLI = 1 has the maximum throughput possible 
without fundamental restructuring beyond the scope of this tutorial. 

■ Loop latency ― the initial overhead when the accelerator enters the state machine implementing a C loop. 
The accelerator must fill its pipeline before the first result is ready, and the loop latency is the number of 
clock cycles it requires to do so. 

Figure 2. Performance Metrics for Non-Optimized FFT 
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The results in Figure 2 show that most of the values of loop latency and CPLI are high. The next section provides 
an overview of how the C2H Compiler generates the unoptimized accelerator. 

Unoptimized Accelerator 
The C2H Compiler translates C constructs to their hardware equivalents in a straightforward way. C code is 
usually designed assuming serial execution on a CPU, and therefore is not optimal for parallel execution on 
hardware. 

The FFT function uses the following operations: 

■ Memory Access 

■ Multiplication 

■ Division 

■ Addition and subtraction 

■ Bit Shifting 

■ Iteration with counter 

All of the operations listed above translate to hardware constructs.  

f For further information about C2H hardware transforms, refer to the chapter C-to-Hardware Mappings Reference 
in the Nios II C2H Compiler User Guide. 

Figure 3 illustrates the system that the C2H Compiler builds when you accelerate the unoptimized FFT function.  

Figure 3. Hardware Accelerated System 

Nios II

 SDRAM

FFT Accelerator

 
 

In the next section, you accelerate the FFT algorithm with optimizations for the C2H Compiler. 
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Optimizing the FFT 
This tutorial includes a modified version of the FFT algorithm, accelerator_optimized_fft(). It is 
optimized according to techniques described later in this tutorial. In this section, you perform the following steps: 

■ Accelerate the function accelerator_optimized_fft() 

■ Build the software project 

■ Compile the hardware design, which includes the accelerator 

■ Run the accelerated FFT, comparing its performance with the software implementation 

The following sections guide you through the process of creating the optimized accelerator.  

Adding On-Chip Buffers 

Perform the following steps to prepare the hardware project for optimized acceleration: 

1. Start the Quartus II development software, and open the Quartus II project (2s60_fft_acceleration.qpf or 
2c35_fft_acceleration.qpf). 

2. Start SOPC Builder. 

3. Add four on-chip memories to the SOPC Builder system with the following properties: 

● Memory Type = RAM 

● Dual-Port Access enabled 

● Memory Width = 16 bits 

● Total Memory Size = 512 bytes 

● Read Latency = 1 (this applies to both slave ports) 

The accelerator uses these on-chip memories to buffer the input and output data for the FFT. The 
Restructuring Code to Optimize the Accelerator section discusses the reasons for the memory settings. 

4. Give the memories the following names:  

● BufferRAM1 

● BufferRAM2 

● BufferRAM3  

● BufferRAM4 

5. Add two on-chip memories to the system with the following properties. 

● Memory Type = RAM 

● Dual Port Access disabled 

● Memory Width = 16 bits 

● Total Memory Size = 512 bytes 

● Read Latency = 1 
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The accelerated code uses these on-chip buffers to store sine and cosine terms. The Restructuring Code to 
Optimize the Accelerator section discusses the reasons for the memory settings. 

6. Give these memories the following names: 

● CosRAM  

● SinRAM 

7. Disconnect all on-chip memory slave ports. By default, SOPC Builder connects the on-chip memories to the 
Nios II processor's instruction and data master ports. The C2H Compiler connects the memory's slave ports to 
the accelerator at build time. 

8. Set each memory's base address as shown in Table 1. In the case of dual-port memories, set both slave ports 
to the same base address. Be sure to lock the base address of all on-chip memories in the system. 

Table 1. Memory Addresses 

Memory Name Base Address 
BufferRAM1 0x00000000 
BufferRAM2 0x00000200 
BufferRAM3 0x00000400 
BufferRAM4 0x00000600 
CosRAM 0x00000800 
SinRAM 0x00000A00 

! It is important to use the exact names shown in Table 1, because the FFT source code refers to them 
explicitly.  

9. Verify that your system resembles the system depicted in Figure 4.  

Disregard the messages stating that the slave ports are not connected to any master port. The C2H Compiler 
connects them later, when it builds the accelerator. 

10. Exit SOPC Builder, making sure to save the system when prompted. You do not need to generate the SOPC 
Builder system at this point. The C2H Compiler generates it for you after it builds the accelerator. 

Building the Accelerator 

Perform the following steps to build the optimized accelerator. 

1. Launch the Nios II IDE, if it is not already running. 

2. Remove the accelerator from software_only_fft().  

a. In the C2H view, select the function name, right-click, and click Remove C2H. The Nios II IDE 
prompts you: Do you really want to remove the function "software_only_fft()" from the list of 
functions to accelerate?  

b. Click Yes. A message appears saying The accelerator has been removed. Rebuild the project to 
update the SOPC Builder system.  

c. Click OK. 
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Figure 4. SOPC Builder System 

 

3. In the file accelerator_optimized_fft.c, accelerate the function accelerator_optimized_fft(), as 
you accelerated software_only_fft()in the Creating a Build Report section on page 4. This time, 
leave Build software, generate SOPC Builder system, and run Quartus II compilation selected (the 
default). 

4. Expand the c2h_fft and accelerator_optimized_fft() folder icons in the C2H view, and make sure the 
following settings are turned on: 

● Build software, generate SOPC Builder system, and run Quartus II compilation 

● Use hardware accelerator in place of software implementation. Flush data cache before each call 

5. Build the application project again. As part of the build process, the Nios II IDE performs the following 
steps: 

● Analyzes the function to be accelerated, determining the mapping from C constructs to hardware, and 
computing performance metrics 
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● Integrates the accelerator into the SOPC Builder system 

● Generates the HDL 

● Compiles the system in Quartus II 

● Creates a wrapper function to invoke the accelerator 

● Compiles the software executable  

The build process might take 20 to 40 minutes, depending on the speed of your platform. While you wait, you 
might wish to read ahead in the Bottlenecks and Restructuring Code to Optimize the Accelerator sections. 
These sections describe how accelerator_optimized_fft() is optimized to improve the accelerator 
performance. 

! The Nios II compiler displays the following message: ignoring #pragma 
altera_accelerate connect_variable. You can disregard this warning. The C2H 
Compiler uses the altera_accelerate pragma to limit the number of master ports, as 
described in the Restructuring Code to Optimize the Accelerator section. It has no meaning for the 
Nios II compiler. 

Optimized Performance Metrics 

After you accelerate the function, the Nios II IDE displays a new set of performance metrics in the C2H view. 

The new performance metrics show that the latency of most loops is lower, and CPLI=1 for each for loop in the 
design. Even though the calculation stage consists of three nested loops, each loop has CPLI=1, minimizing 
stalling of the outer loops. 

To review the accelerator that the C2H Compiler has added to the SOPC Builder System, open the design in 
SOPC Builder. The system connections and on-chip memory base addresses appear. 

You might notice that the on-chip RAM slave ports are not visibly connected. This is normal. SOPC Builder hides 
accelerator master ports, because they are often so numerous that the connection grid is unreadable. You cannot 
use SOPC Builder to edit master-slave connections inserted by the C2H Compiler. 

Downloading and Running the Accelerated System 

Perform the following steps to download and run the accelerated system. 

1. After the compilation has finished, download the resulting FPGA configuration file (.sof) to the development 
board using the Quartus II programmer. 

2. Return to the Nios II IDE, right-click the c2h_fft application project, point to Run As, and click Nios II 
Hardware to run the software project on the development board. 

The example executes 1000 iterations of the unaccelerated and accelerated FFT functions, and verifies that 
the output data from the last run of each is valid. After the software is finished, the results of the FFT 
benchmark appear in the Console view of the Nios II IDE. The console output for the Nios II Cyclone II 
development board resembles Figure 5. 
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Figure 5. FFT Benchmark Sample Output 
 
FFT Benchmark Starting (this will take up to 20 seconds) 
- Running 1000 iterations for both software and hardware. 
- Each iteration runs a 256 point radix 2 FFT transformation. 
 
--Performance Counter Report-- 
Total Time: 0.930541 seconds  (93054055 clock-cycles) 
+---------------+-----+-----------+---------------+-----------+ 
| Section       |  %  | Time (sec)|  Time (clocks)|Occurrences| 
+---------------+-----+-----------+---------------+-----------+ 
|Software Only  | 94.3|    0.87767|       87767457|          1| 
+---------------+-----+-----------+---------------+-----------+ 
|HW Accelerated | 5.67|    0.05272|        5271886|          1| 
+---------------+-----+-----------+---------------+-----------+ 
 
The software only output data is correct 
The hardware accelerated output data is correct 

 

The report details the performance of the FFT on the Nios II processor using unaccelerated software, followed by 
the performance results from the FFT accelerated with the C2H Compiler. In the example shown in Figure 5, the 
C2H Compiler has improved the performance of the FFT calculation by a factor of approximately 16. 

The remainder of this tutorial describes the techniques used to achieve this performance improvement. 

Bottlenecks 
This tutorial shows three common types of performance bottlenecks which can occur in unoptimized accelerators, 
discussed in the following sections: 

■ Computational Bottlenecks 

■ Memory Bottlenecks 

■ Multiple Master Port Memory Stalls 

Computational Bottlenecks 

The FFT is subject to a common type of computational bottleneck caused by mismatched data widths. 
software_only_fft(), designed for a Nios II system with plenty of memory and a 32-bit data path, uses 32-
bit signed data types to avoid overflow and underflow. However, when you implement a design in hardware, wide 
data paths consume more logic than narrow ones, which can reduce fMAX for the entire design. When accelerating 
software functions in hardware, it is best to tailor the data width to your exact data range requirements. 

Selection of signed or unsigned data types also plays a role in the performance of the design. When possible, use 
unsigned values. Converting an unsigned value to signed is trivial, but the opposite conversion requires extra logic.  

Memory Bottlenecks 

Memory bottlenecks cause the largest performance penalty in the unoptimized hardware accelerator. This tutorial 
exemplifies two common types of memory bottleneck: 
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■ Narrow Memory Access 

■ Random Access to SDRAM 

The following sections discuss these types of memory bottleneck. 

Narrow Memory Access 

The SDRAM used in the example design has a 32 bit data width. However, the FFT software function uses 16 bit 
data types. Therefore each time the accelerator fetches a variable from memory, half of the memory bandwidth is 
wasted, because the function only uses 16 bits. For the best performance, access high latency memory devices 
with bus transfers of the same width as the memory device. 

Random Access to SDRAM 

The SDRAM device used in the example design suffers from long latency times. SDRAM devices achieve their 
highest bandwidth when they are accessed sequentially. By contrast, SRAM based memories typically have no 
performance penalty for random (non-sequential) access.  

There are two situations in which the FFT algorithm accesses the SDRAM non-sequentially: 

■ Single Master Port Random Access 

■ Multiple Master Port Random Access 

The following sections discuss each of these situations. 

Single Master Port Random Access 

The FFT algorithm uses a technique called bit reversal to rearrange the input points so that the outputs are in the 
correct order. The bit reversal values form a pattern of array indices beginning with the following values: 0, 128, 
64, 192, and 32. The algorithm uses these values as array indices for each input point read from SDRAM. This 
causes poor memory performance, because the indices are not sequential. 

Multiple Master Port Random Access 

The hardware accelerator contains multiple Avalon-MM master ports, all of which compete for access to the 
SDRAM. Each master port accesses independent locations within memory. This results in non-sequential memory 
accesses when the Avalon interconnect fabric arbitrates between master ports.  

This type of random access is typical of any system with multiple master ports. 

Multiple Master Port Memory Stalls 

Another memory bottleneck results from the physical limitations of memory interfaced with multiple master ports. 
Only one master port can access the memory at a time. If a second master port tries to access memory when the 
first is in control, the second master port must wait. This stalls the pipeline. 

The FFT hardware accelerator must read data, sine and cosine terms from memory, and also write results back to 
memory. These multiple types of memory access cause memory stalls. One state in the pipelined transform can be 
starved of input data when master ports belonging to other states gain access to the SDRAM.  
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Restructuring Code to Optimize the Accelerator 
To improve accelerator performance, optimize your code to allow independent reading and writing tasks to occur 
in parallel. This optimization technique requires fast data buffering, which you can implement using on-chip 
memory available in the FPGA. This is why you add the on-chip memories in the Adding On-Chip Buffers section. 

Data Buffering Optimizations 

This example illustrates several types of data buffering optimizations: 

■ Fast Memory 

■ Double Buffering 

■ Master Port Minimization  

■ Sine and Cosine Data Buffering 

■ Bit Reversal Buffering 

Fast Memory 

The accelerated FFT stores data in fast memory with a low, fixed latency. The on-chip memories have a latency of 
1, the lowest available. Low latency lets the calculation stage access the data rapidly, because it reduces the 
number of states the C2H Compiler must create for the state machines that schedule the memory access. Fixed 
latency means that the accelerator need not access the memory sequentially to achieve the highest throughput. 

Double Buffering 

The software FFT implementation performs in-place data calculations. The software implementation uses the 
same memory buffer to load input values, save intermediate calculation results, and store output values. In-place 
calculations save memory resources, but often slow performance when translated to hardware. Full concurrency is 
difficult to achieve with a single buffer, because of the memory stalls described in Multiple Master Port Memory 
Stalls on page 13. 

The optimized FFT accelerator uses on-chip memory to buffer the input and output data, so that the calculation 
portion of the accelerator can operate independently of SDRAM. To achieve full concurrency, the transformation 
phase of the FFT must be able to read and write at the same time.  

The optimized FFT achieves this with double buffering. Double buffering, also known as ping-pong buffering, 
allows one master port in the FFT accelerator to read input data from one buffer while another master port writes 
results into another buffer. This type of data buffering avoids memory stalls. 

Figure 6 illustrates a simplified form of the double buffering scheme used in the optimized FFT function. In this 
FFT implementation, double buffering requires a total of 4 buffers. This is because the FFT performs calculations 
on real and imaginary input data simultaneously. The FFT uses one pair of buffers for real data, and one pair for 
imaginary data. The real and imaginary calculations are independent of one another, so the accelerator can 
perform them concurrently. This section describes the buffering method for the real input data. The algorithm 
handles imaginary data exactly the same. 
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Figure 6. Hardware Accelerated Data Buffering Scheme 
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Figure 7 illustrates the double buffering scheme used in the optimized code. 

Figure 7. Double Buffering 
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The 256-point FFT in this example decomposes into eight stages. During the first stage the read buffer is 
BufferRAM1 and the write buffer is BufferRAM2, as shown in Example 1.  

Example 1. accelerator_optimized_fft.c: Initial Buffer State 
 

    52   /* Assign the ping pong buffers default address locations */ 
    53   BufferedRealCalcDataRead = BufferRAM1; 
    54   BufferedRealCalcDataReadPort2 = BufferRAM1;   
    55   BufferedRealCalcDataWrite = BufferRAM2; 
    56   BufferedRealCalcDataWritePort2 = BufferRAM2; 

 

The algorithm swaps the buffers after each stage, as shown in Example 2.  

Example 2. accelerator_optimized_fft.c: Swapping Buffers 
 

   144       BufferedRealCalcDataRead = BufferedRealCalcDataWrite; 
   145       BufferedRealCalcDataWrite = BufferedRealCalcDataReadPort2; 
   146       BufferedRealCalcDataReadPort2 = BufferedRealCalcDataRead; 
   147       BufferedRealCalcDataWritePort2 = BufferedRealCalcDataWrite; 

 

When all eight stages are complete, the results of the FFT are in BufferRAM1. The function copies the results 
back to SDRAM, as shown in Example 3.  

Example 3. accelerator_optimized_fft.c: Results Stored in SDRAM 
 
   155   /* returning the interleaved results to sdram  
   156    * Since the data is 16 bit and interleaved we'll stick the real and 
   157    * imaginary parts together and send them off to sdram */  
   158   for(outputCounter = 0; outputCounter < NUM_POINTS; outputCounter++) { 
   159     tempOutputPtr[outputCounter] =  
                 (((alt_u32)(BufferedImagCalcDataRead[outputCounter]) & 0x0000FFFF)<<16) | 
                  ((alt_u32)BufferedRealCalcDataRead[outputCounter] & 0x0000FFFF); 
   160   } 

 

The accelerator maintains data integrity, because it always reads from memory written to on the previous loop 
iteration. Because there is an even number of stages, the finished data ends up in BufferRAM1. 

This buffering scheme improves performance, because when the accelerator is performing butterfly calculations, it 
can read and write data concurrently. Also, the on-chip buffers generate no excess wait states which could cause 
pipeline stalls. 

The input consists of 256 data points, each 16 bits wide. This means that each of the two on-chip memory buffers 
is 512 bytes long. As the memory block type is set to Automatic in SOPC Builder, the Quartus II development 
software allocates it to a single M4K block if available. In the tutorial, the real data flows through buffers 
BufferRAM1 and BufferRAM2, while the imaginary data flows through buffers BufferRAM3 and 
BufferRAM4. 

The double buffer scheme described above connects two master ports to each of the buffers (the calculation read 
master port and the calculation write master port).  
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Master Port Minimization 

When designing buffer schemes for the C2H Compiler, it is important to consider how many master ports are 
connected to each memory. The more master ports that are connected to a memory the higher the likelihood of 
degrading system fMAX, and causing memory stalls as master ports contend for access to the memory. There is also 
a higher likelihood of master ports competing for the same resources when large numbers of master ports are used. 
Therefore it is important to balance the number of master ports connected to each memory with the throughput 
needs of the system.  

When multiple master ports are connected to a slave port, SOPC Builder must generate logic to arbitrate among 
them. This logic, if too complex, causes a reduction in fMAX. 

In this example, only the FFT accelerator needs to access the on-chip memories, so the Nios II processor is not 
connected to them. The accelerated code uses pragma directives to connect only the master ports that are required. 

Sine and Cosine Data Buffering 

The software FFT implementation in this tutorial stores the sine and cosine terms (twiddle factors) in SDRAM. 
Storing these values in low latency on-chip memory increases performance.  

In this tutorial, the sine terms are in SinRAM, and the cosine terms are in CosRAM, as shown in Example 4. The 
Quartus II development software initializes the memories from files SinRAM.hex and CosRAM.hex, which 
contain the precalculated sine and cosine terms. 

Example 4. accelerator_optimized_fft.c: Sine and Cosine Data 
 
    63   /* Point the Cosine and Sine Tables to the CosRAM and SinRAM on-chip memory 
    64    * buffers.  These memories are local to the accelerator and are not shared 
    65    * with the Nios II processor. */                     
    66   CosineTable = CosRAM; 
    67   SineTable = SinRAM; 

 

Bit Reversal Buffering 

The optimized FFT algorithm reads input data sequentially from SDRAM and stores it in the read buffer. It then 
accesses the read buffer non-sequentially, using the bit reversal indexes. The read buffer is implemented in on-
chip memory, which has no latency penalty for random access. The bit reversal pattern is the only part of the FFT 
function that accesses memory in a non-sequential order. This means that all of the accelerator's SDRAM accesses 
are sequential, taking advantage of the SDRAM's optimal bandwidth. 

SDRAM Memory Access Optimizations 

It is important to use the full data width of the available memory interface. In the FFT, each real and imaginary 
data point is 16 bits wide. However, the SDRAM device used in this example has a 32 bit interface. For example, 
the unoptimized code makes two separate accesses to SDRAM when reading the data samples, as shown in 
Example 5. This wastes half the bandwidth of the SDRAM interface. 



               Restructuring Code to Optimize the Accelerator 
 

 18 Altera Corporation 
Accelerating Nios II Systems with the C2H Compiler Tutorial  August 2008 

Example 5. sw_only_fft.c: Unoptimized SDRAM Access 
 
    24     // Re-order samples using bit reversal 
    25     for (i = 0; i < NUM_POINTS; i++) { 
    26         bit_rev_index = bitrev(i);    
    27         reversed_RealData[bit_rev_index] = InData[2*i]; 
    28         reversed_ImaginaryData[bit_rev_index] = InData[2*i+1]; 
    29     } 

 

Each data point is a complex number, stored as a pair (real and imaginary). Thus a single 32 bit read from 
SDRAM can access the entire pair. The optimized hardware accelerator uses this fact in the input stage, reading 
data pairs and storing the real and imaginary components concurrently into separate buffers. The accelerator uses 
the same optimization in the output phase, storing the real and imaginary components into SDRAM in a single 32 
bit write.  

This code is optimized for the C2H Compiler by reading from the SDRAM into a temporary variable and then 
writing each half of the temporary variable into the appropriate buffer, as shown in Example 6. 

Example 6. accelerator_optimized_fft.c: Optimizing SDRAM Access 
 

    71   /* Calculate the bitreversal index and read 
    72    * 32 bits of data from the input buffer in SDRAM (real and imaginary pair). 
    73    * Split the data read into half and write them into real and imaginary 
    74    * buffers concurrently */  
    75   for (inputCounter = 0; inputCounter < NUM_POINTS; inputCounter++) { 
    76     bit_rev_index = bitrev(inputCounter);   
    77       
    78     tempInput = tempInputPtr[inputCounter];     
    79    BufferedRealCalcDataRead[bit_rev_index] = (alt_16)(tempInput & 0x0000FFFF);  
    80     BufferedImagCalcDataRead[bit_rev_index] = (alt_16)((tempInput & 0xFFFF0000)>>16);  
    81   } 

 

Calculation Stage Optimizations 

The FFT function uses complex multiplications to calculate the outputs from each butterfly calculation. The 
algorithm implements complex multiplication as four multiplications, one addition and one subtraction. 

To improve the throughput of the FFT butterfly calculation, the accelerator uses four separate hardware multipliers, 
so that all the mathematical operations occur on a single clock cycle, as shown in Example 7. This improves the 
computational bandwidth of the accelerator. However, all the inputs to the computation stage come from on-chip 
memory buffers. To maximize the computational throughput, the memory buffers must be able to match the 
throughput. 

Example 7. accelerator_optimized_fft.c: Using Parallel Multipliers 
 
   113         /* Scale twiddle products to accomodate 16 bit storage */ 
   114         /* CosReal, SinReal, temp1, and temp2 are all registers so no 
   115          * waiting occurs here (this happens concurrently) */ 
   116         tRealData = (( CosReal * temp1 ) + ( SinReal * temp2 ))>> PRESCALE; 
   117         tImagData = (( CosReal * temp2 ) - ( SinReal * temp1 ))>> PRESCALE; 

 

To improve the throughput of the memory buffers, the read and write buffers are implemented as dual-port 
memories. Dual-port buffers are helpful because the butterfly calculation uses two inputs for every output. The 
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two inputs always come from different memory locations. Therefore the accelerator can retrieve them 
simultaneously without collision. Example 8 shows the optimized code. 

Example 8. accelerator_optimized_fft.c: Using Dual-Port Memory 
 
   104         /* using temps (regs) to allow this to happen concurrently since 
   105          * these are DP RAM accesses that do not overlap.  We are using read 
   106          * pointers here so that the write pointers at the bottom can work in 
   107          * parallel */ 
   108         temp1 = BufferedRealCalcDataRead[l]; 
   109         temp2 = BufferedImagCalcDataRead[l]; 
   110         temp3 = BufferedRealCalcDataReadPort2[butterfly_index]; 
   111         temp4 = BufferedImagCalcDataReadPort2[butterfly_index]; 

 

Conclusion 
With a few straightforward code optimizations, the Nios II C2H Compiler can sharply improve the computational 
bandwidth and memory throughput of a software algorithm.  

In the case of an FFT, we apply the following optimizations: 

■ Use 16-bit integers in place of 32-bit integers  

■ Use unsigned integers in place of signed integers  

■ Fetch data from SDRAM 32 bits at a time  

■ Avoid non-sequential SDRAM access by buffering data in SRAM  

■ Avoid multi-master-port memory stalls by buffering data and constants in multiple memories  

■ Facilitate pipelining with double buffering and dual-port RAM  

■ Reduce wait states by using low-latency on-chip RAM  

The optimized accelerator is up to 50 times faster than a software-only implementation. 
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