Nios'I]

Nios Il Hardware Development
Tutorial

ALERAW

101 Innovation Drive
San Jose, CA 95134
www.altera.com

Copyright © 2007 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-

plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera nSN
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in- —
formation and before placing orders for products or services.

"5 Printed on recycled paper TU-N2HWDV-2.5 LS. EN ISO 9001

Altera Corporation

A |:| ==/ Contents

About this Tutorialcoome v
How to Contact Alteraccccevveveennenn. i
Typographic Conventions

Nios Il Hardware Developmentcoooniiiii e 1
INEFOAUCHON <o e 1-1
EXample DESIZIccuvviiiiiiiiieiec 1-1
Software and Hardware ReqQUIr€mMENtScccocvuviiiieimiiniiicniiciccccecncnsnns 1-2
OpenCore Plus Evaluation

Nios II System Development FIOWcccccooiiiiiiiiii e
Analyzing System ReqUirementscccococviiiiiiiniiiiiii e
Defining and Generating the System in SOPC Builder
Quartus I Hardware Development Tasks
Nios II IDE Software Development Tasks
Running and Debugging Software on the Target Board
Varying the Development FIOWccccccoovviiiincicinnen.

Refining the Software and Hardware
Iteratively Creating a Nios II System
Verifying the System with Hardware Simulation Tools

Creating the Example Designccccooeuviviiniiinininininccicicines
Install the Design FIles ...
Analyze System ReqUITEMENLScccceviiiiiiiiiiiiiiiicc s
Start the Quartus II Software and Open the Tutorial Example Design Project
Create a New SOPC Builder Systemcooiueviiiiriiicice
Define the System in SOPC BUildercccccoouiiiiniiiiiiiiccccccccs e

Specify Target FPGA and Clock Settings
Add the On-Chip MEMOTYc.cccciiiiiiiiiiiiiiiiiiicii s
Add the Nios IT ProcesSOr COTeccceeuiuiiririririeieiieeieieirieieieiriseeseesisie s
Add the JTAG UART
Add the Interval TIMEeTccooviiiiiiiiiiei s
Add the System ID Peripheral ..ot
Add the PIO
Specify Base Addresses and Interrupt Request Prioritiesc.cccccooviiiniiiiiinncnnne,
Generate the SOPC Builder System ..o
Integrate the SOPC Builder System into the Quartus II Project
Instantiate the SOPC Builder System Module in the Quartus II Project
AsSIgN FPGA PINS ..ottt
Compile the Quartus II Project and Verify Timingccccocevcvinniicnnnnnn
Download Hardware Design to Target FPGA ..o
Develop Software Using the Nios IIIDE ..o

Altera Corporation iii

Contents Nios Il Hardware Development Tutorial

Create a New Nios I C/C++ Application Project

Compile the Project ..o,

Run the Program ...
Run the Program on Target Hardware ..o,

Run the Program on the ISS
Taking the NeXt STEPcovviiiiiiiiii e

iv Altera Corporation

A |:| —Ig D)/A About this Tutorial

®

Altera Corporation

This tutorial introduces you to the Altera® Nios®II-based system. It shows
you how to use the Quartus®II software to create and process your own
Nios II system design that interfaces with components on Nios
development boards.

Table 1-1 shows the tutorial revision history.
Refer to the Nios II Embedded Design Suite Release Notes and Nios II

Embedded Design Suite Errata for the latest features, enhancements, and
known issues in the current release.

Table 1-1. Tutorial Revision History
Date & Document _—

. Description

Version
October 2007 o Added altera.components project information.
v2.5 e Minor text changes.
May 2007 o Updated to describe new SOPC Builder MegaWizard
v2.4 design flow.
o Added OpenCore Plus information.

March 2007 No changes from previous release.
v2.3
November 2006 Minor text changes.
v2.2
May 2006 Revised and simplified the tutorial flow.
v2.1
May 2005 Revised the introductory information.
v2.0
December 2004 Updated for the Nios Il 1.1 release.
vi.1
September 2004 Updated for the Nios Il 1.01 release.
v1.01
May 2004 First release of this hardware tutorial for the Nios Il
v1.0 processor on the Nios development board.

http://www.altera.com/support/ip/processors/nios2/rn/ips-niosii-rn.html
http://www.altera.com/support/ip/processors/nios2/er/ips-niosii-er.html
http://www.altera.com/support/ip/processors/nios2/er/ips-niosii-er.html

How to Contact Altera

Nios Il Hardware Development Tutorial

How to Contact
Altera

Typographic
Conventions

For the most up-to-date information about Altera® products, refer to the
following table.

Contact (1) wniact Address
Technical support Website www.altera.com/support
Technical training Website www.altera.com/training
Email custrain@altera.com

Product literature Website www.altera.com/literature
Altera literature services Email literature @altera.com
Non-technical support (General) | Email nacomp @altera.com

(Software Licensing) | Email authorization @altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.

This document uses the typographic conventions shown below.

Visual Cue

Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type

External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fyax, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Documenttitles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type

Internal timing parameters and variables are shown in italic type.
Examples: tpja, n+ 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters

Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title”

References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

Vi

Altera Corporation

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:literature@altera.com
mailto:nacomp@altera.com
mailto:authorization@altera.com

Nios Il Hardware Development Tutorial Typographic Conventions

Visual Cue

Courier type

Signal and port names are shown in lowercase Courier type. Examples: datal,
tdi, input . Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c: \gdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1,2.,3., and Numbered steps are used in a list of items when the sequence of the items is

a., b, c.,etc important, such as the steps listed in a procedure.

H e ° Bullets are used in a list of items when the sequence of the items is not important.
v The checkmark indicates a procedure that consists of one step only.

The hand points to information that requires special attention.

A caution calls attention to a condition or possible situation that can damage or
destroy the product or the user’s work.

A warning calls attention to a condition or possible situation that can cause injury
to the user.

The angled arrow indicates you should press the Enter key.

The feet direct you to more information on a particular topic.

Altera Corporation

vii

Typographic Conventions Nios Il Hardware Development Tutorial

viii Altera Corporation

A |:| —Ig D)/A Nios Il Hardware

® Development

Introduction

Altera Corporation
October 2007

This tutorial introduces you to the system development flow for the
Nios II processor. This tutorial is a good starting point if you are new to
the Nios II processor or the general concept of building embedded
systems in FPGAs. In this tutorial you build a Nios II hardware system
and create a software program to run on the Nios II system.

Building embedded systems in FPGAs is a broad subject, involving
system requirements analysis, hardware design tasks, and software
design tasks. This tutorial guides you through the basics of each topic,
with special focus on the hardware design steps. Where appropriate, the
tutorial refers you to further documentation for greater detail.

If you are interested only in software development for the Nios II
processor, see the Software Development Tutorial available in the Nios II
IDE help system.

When you complete this tutorial, you will understand the Nios II system
development flow, and you will be able to create your own custom Nios II
system.

Example Design

The example design you build in this tutorial demonstrates a small
Nios II system for control applications, which displays character I/O
output and blinks LEDs in a binary counting pattern. This Nios II system
can also communicate with a host computer, allowing the host computer
to control logic inside the FPGA.

The example Nios II system contains the following;:

Nios II/s processor core

On-chip memory

Timer

JTAG UART

8-bit parallel I/O (PIO) pins to control LEDs
System identification component

Introduction

Nios Il Hardware Development Tutorial

Figure 1-1 is a block diagram showing the relationship between the host
computer, the target board, the FPGA, and the Nios II system.

Figure 1-1. Tutorial Example Design

Target Board

ontroller

Altera FPGA

VCC

Nios Il System

JTAG C

10-pin
JTAG
Header

Debug
Control_| Nios Ii/s
Core
JTAG
Character | UART
/0
Timer

Instr
Data

3
~
o
©
w
-
o
o
c
=
o
e
7]
2
=
=
7]
2
2]
>
(7]

PIO

System
ID

On-Chip
RAM

Other
Logic

Clock

Oscillator

As shown in Figure 1-1, other logic can exist within the FPGA alongside
the Nios II system. In fact, most FPGA designs with a Nios II system also
include other logic. A Nios II system can interact with other on-chip logic,
depending on the needs of the overall system. For the sake of simplicity,
the example design in this tutorial does not include other logic in the

FPGA.

Software and Hardware Requirements

This tutorial requires you to have the following software:

B Altera Quartus I software version 7.1 or later — The software must be
installed on a Windows or Linux computer that meets the Quartus I
minimum requirements.

B Nios II Embedded Design Suite version 7.1 or later

Altera Corporation
October 2007

Nios Il Hardware Development Tutorial Introduction

‘e For information on Nios II development kits, visit www.altera.com/

Altera Corporation
October 2007

Design files for the example design — A hyperlink to the design files
appears next to this document on the Nios II literature page. Visit
www.altera.com/literature/lit-nio2.jsp.

You can build the example design in this tutorial whether you own a
development board or not. This tutorial allows you to choose from the
following target board options:

No board - If you do not have a target board, you can still use the
tutorial, but you will not witness the example design running on
hardware. Instead, you simulate software running on the Nios II
instruction set simulator (ISS).

Nios development board - If you have an Altera Nios Il development
kit, use the board included in the kit. In this case, you also must have
the DC power supply and download cable provided with the kit,
such as the USB-Blaster™ cable. The following Altera kits are
supported:

e Nios II Development Kit, Stratix® II Edition

Nios II Development Kit, Stratix Edition

Nios II Development Kit, Stratix Professional Edition

Nios II Development Kit, Cyclone™ II Edition

Nios IT Development Kit, Cyclone Edition

devkits.

Custom board — You can use this tutorial with any board that meets

the following requirements:

e Theboard must have an Altera FPGA.

e The FPGA must meet the following density requirements,
depending on the device family:

e Any Stratix III or Stratix II device

e Stratix EP1S10 device or larger

¢ Any Cyclone III or Cyclone II device
* Cyclone EP1C12 device or larger

e An oscillator must drive a constant clock frequency to an FPGA
pin. The maximum frequency limit depends on the speed grade
of the FPGA. Frequencies of 50 MHz or less should work for
most boards; higher frequencies might work.

e Theboard musthave a 10-pin header connected to the dedicated
JTAG pins on the FPGA to provide a communication link to the
Nios II system.

e FPGA I/0 pins can optionally connect to 8 (or fewer) LEDs to
provide a visual indicator of processor activity.

e You must have an Altera USB-Blaster download cable, revision
B or higher. Prior cables might exhibit communication errors

http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/devkits
http://www.altera.com/devkits

Introduction

Nios Il Hardware Development Tutorial

when connecting to the Nios II processor. Revised cables have a
clearly marked revision label; earlier cables do not.

OpenCore Plus Evaluation

You can perform this tutorial, even on hardware, without a license. With
Altera's free OpenCore Plus evaluation feature, you can perform the
following actions:

B Simulate the behavior of a Nios II processor within your system

B Verify the functionality of your design, as well as evaluate its size
and speed quickly and easily

B Generate time-limited device programming files for designs that
include Nios II processors

B Program a device and verify your design in hardware

You only need to purchase a license for the Nios II processor when you
are completely satisfied with its functionality and performance, and want
to take your design to production.

For more information on OpenCore Plus, refer to AN 320: OpenCore Plus
Evaluation of Megafunctions.

Altera Corporation
October 2007

http://www.altera.com/literature/an/an320.pdf
http://www.altera.com/literature/an/an320.pdf

Nios Il Hardware Development Tutorial Nios Il System Development Flow

Nios Il 8vstem This section discusses the complete design flow for creating a Nios II

system and prototyping it on a target board. Figure 1-2 shows the Nios II
Develo pme nt system development flow.

Flow

Figure 1-2. Nios Il System Development Flow

Analyze System
Requirements

— Y ————
Nios I Custom
Cores » Define & Generate < Instruction

& System in SOPC Builder Cus&;om
Standard :
Peripherals Pe{ghigral
~N—_ g
T
Meem
< — Altera
Hardware
Integrate SOPC Develop . Abstraction
Custom ».| Builder System Software <« Layer
HENGATES 7| into Quartus i with the &
Modules . Nios Il IDE Peripheral
Project Drivers
~_
\ 4 ——
Assign Pin
. User C/C++
L(‘)I'(i:;tilr(\)ns’ \ 4 Application
Re uiren?ents ocelanc
a?\d Other Run/Debug Custom
Design Software Using Libraries
Constraints [SStiniNios]l —
4
Compile Hardware
Design for Target
Board \ 4
Download
Software
A4 Executable
to Nios Il
Download FPGA
! —>] System on
De3|anot;)r'l('jarget Target Board
Run/Debug Software
on Target Board
\ 4
Refine Software
and Hardware
Altera Corporation 1-5

October 2007

Nios Il System Development Flow

Nios Il Hardware Development Tutorial

The Nios II development flow consists of three types of development:
hardware design steps, software design steps, and system design steps,
involving both hardware and software. For simpler Nios II systems, one
person might perform all steps. For more complex systems, separate
hardware and software designers might be responsible for different steps.
System design steps involve both the hardware and software, and might
require input from both sides. In the case of separate hardware and
software teams, it is important to know exactly what files and
information must be passed between teams at the points of intersection in
the design flow.

The design steps in this tutorial focus on hardware development, and
provide only a simple introduction to software development. For further
details on the software development process, Altera recommends that
you read the Software Development Tutorial available from the Nios II IDE
help system after you complete this tutorial.

The Software Development Tutorial and complete IDE reference are
included in the Nios II IDE help system. To open the Nios II IDE help
system, click Help Contents on the Help menu. To see the tutorials, click
Nios II IDE Help in the Contents pane, and then click Tutorials.

Analyzing System Requirements

The development flow begins with predesign activity which includes an
analysis of the application requirements, such as:

What computational performance does the application require?
How much bandwidth or throughput does the application require?
What types of interfaces does the application require?

Does the application require multithreaded software?

Based on the answers to these questions, you can determine the concrete
system requirements, such as:

Which Nios II processor core to use: smaller or faster?

What components does the design require? How many of each kind?

Which real-time operating system (RTOS) to use, if any?

Where can hardware acceleration logic dramatically improve system

performance? For example:

e Could adding a DMA component eliminate wasted processor
cycles copying data?

e Could a custom instruction replace the critical loop of a DSP
algorithm?

e Could the Nios II C-to-Hardware (C2H) Acceleration Compiler
improve performance?

Altera Corporation
October 2007

Nios Il Hardware Development Tutorial

Nios Il System Development Flow

Altera Corporation
October 2007

Answers to these questions involve both the hardware and software
teams.

Defining and Generating the System in SOPC Builder

After analyzing the system hardware requirements, you use the SOPC
Builder tool which is included in the Altera Quartus II software. Using
SOPC Builder you specify the Nios II processor core(s), memory, and
other components your system requires. SOPC Builder automatically
generates the interconnect logic to integrate the components in the
hardware system.

You can select from a list of standard processor cores and components
provided with the Nios Il Embedded Design Suite. You can also add your
own custom hardware to accelerate system performance. You can add
custom instruction logic to the Nios II core which accelerates CPU
performance, or you can add a custom component which offloads tasks
from the CPU. This tutorial covers adding standard processor and
component cores, but does not cover adding custom logic to the system.

The primary outputs of SOPC Builder are the following:

B SOPC Builder System File (.ptf) — This file stores the hardware
contents of the SOPC Builder system. The Nios II IDE requires the
SOPC Builder System File to compile software for the target
hardware.

B Hardware description language (HDL) files — These files are the
hardware design files which describe the SOPC Builder system. The
Quartus II software uses the HDL files to compile the overall FPGA
design into an SRAM Object File (.sof).

For further details on the Nios II processor, see the Nios II Processor
Reference Handbook. For further details on SOPC Builder and developing
custom components, see the Quartus II Handbook Volume 4: SOPC Builder.
For further details on custom instructions, see the Nios II Custom
Instruction User Guide.

Quartus Il Hardware Development Tasks

After you generate the Nios II system using SOPC Builder, you integrate
it into the overall Quartus II project. Using the Quartus II software, you
perform all tasks required to create the final FPGA hardware design.

As shown in Figure 1-1 on page 1-2, most FPGA designs include logic
outside the Nios II system. You can integrate your own custom hardware
modules into the FPGA design, or you can integrate other ready-made

http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf
http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf
http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf

Nios Il System Development Flow

Nios Il Hardware Development Tutorial

intellectual property (IP) design modules available from Altera or third
party IP providers. This tutorial does not cover adding other logic outside
the Nios II system.

Using the Quartus II software, you also assign pin locations for I/O
signals, specify timing requirements, and apply other design constraints.
Finally, you compile the Quartus II project to produce an SRAM Object
File to configure the FPGA.

You download the SRAM Object File to the FPGA on the target board
using an Altera download cable, such as the USB-Blaster. After
configuration, the FPGA behaves as specified by the hardware design,
which in this case is a Nios II processor system.

For further information on using the Quartus II software, see the Quartus
II Tutorial in the Quartus II help system, and both Introduction to the
Quartus II Software and the Quartus II Handbook, available at
www.altera.com/literature/lit-qts.jsp.

Nios Il IDE Software Development Tasks

Using the Nios II IDE, you perform all software development tasks for
your Nios II processor system. After you generate the system with SOPC
Builder, you can begin designing your C/C++ application code
immediately with the Nios II IDE. Altera provides component drivers
and a hardware abstraction layer (HAL) which allows you to write
Nios II programs quickly and independently of the low-level hardware
details. In addition to your application code, you can design and reuse
custom libraries in your Nios II IDE projects.

If you do not have a target board for software development, you can run
and debug your code with the Nios II instruction set simulator (ISS). The
ISS simulates the processor, memory, and stdin/stdout/stderr
streams, which allows you to verify program flow and algorithm
correctness. As soon as you have a target board with an Altera FPGA
configured with the Nios II system, you can download your software to
the board using an Altera download cable, such as the USB-Blaster.

To create a new Nios II C/C++ application project, the Nios II IDE
requires the SOPC Builder System File. You also need the SRAM Object
File to configure the FPGA before running and debugging the application
project on target hardware.

The IDE can produce several outputs, listed below. Not all projects
require all of these outputs.

Altera Corporation
October 2007

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/literature/lit-qts.jsp

Nios Il Hardware Development Tutorial Nios Il System Development Flow

Altera Corporation
October 2007

B system.h file - system.h defines symbols for referencing the
hardware in the system. The IDE automatically creates this file when
you create a new project.

B Executable and Linkable Format File (.elf) — An Executable and
Linkable Format File is the result of compiling a C/C++ application
project, which you can download directly to the Nios II processor.

B Memory initialization files (.hex) — Some on-chip memories can
power up with predefined memory contents. The IDE generates
initialization files for on-chip memories that support initialization of
contents.

B Flash programming data — The IDE includes a flash programmer,
which allows you to write your program to flash memory. The flash
programmer adds appropriate boot code to allow your program to
boot from flash memory. You can also use the flash programmer to
write arbitrary data to flash memory.

This tutorial focuses only on downloading the Executable and Linkable
Format File directly to the Nios II system.

For complete details on developing software for the Nios II processor,
see the Nios II Software Developer’s Handbook and the Nios II IDE help
system.

Running and Debugging Software on the Target Board

The Nios I IDE provides complete facilities for downloading software to
a target board, and running or debugging the program on hardware. The
IDE debugger allows you to start and stop the processor, step through
code, set breakpoints, and analyze variables as the program executes.

For details on running and debugging Nios II programs, see the Software
Development Tutorial available from the Nios Il IDE help system.

Varying the Development Flow

The development flow is not strictly linear. This section describes
common variations.

Refining the Software and Hardware

After running software on the target board, you might discover that the
Nios II system requires higher performance. In this case, you can return
to software design steps to make improvements to the software
algorithm. Alternatively, you can return to hardware design steps to add
acceleration logic. If the system performs multiple mutually exclusive

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Creating the Example Design Nios Il Hardware Development Tutorial

Creating the
Example Design

1-10

tasks, you might even decide to use two (or more) Nios II processors that
divide the workload and improve the performance of each individual
processor.

Iteratively Creating a Nios I System

A common technique for building a complex Nios II system is to start
with a simpler SOPC Builder system, and iteratively add to it. At each
iteration you can verify that the system performs as expected. You might
choose to verify the fundamental components of a system, such as the
processor, memory, and communication channels, before adding more
complex components. When developing a custom component or a
custom instruction, first integrate the custom logic into a minimal system
to verify that it works as expected; later you can integrate the custom logic
into a more complex system.

The Nios II Embedded Design Suite provides several working Nios II
reference designs, which you can use as a starting point for your own
designs. After installing the Nios II Embedded Design Suite, see the
directory <Nios II EDS install path>/examples/verilog or the directory
<Nios II EDS install path>/examples/vhdl.

Verifying the System with Hardware Simulation Tools

You can perform hardware simulation of software executing on the
Nios II system, using tools such as the ModelSim RTL simulator.
Hardware simulation is useful for certain cases, including the following:

B To verify the cycle-accurate performance of a Nios II system before
target hardware is available.

B To verify the functionality of a custom component or a Nios II
custom instruction before trying it on hardware.

A hardware simulation step is not shown in Figure 1-2 on page 1-5. If
you are building a Nios II system based on the standard components
provided with the Nios Il Embedded Design Suite, the easiest way to
verify functionality is to download the hardware and software directly to
a development board.

For details on performing hardware simulation for Nios II system, see
ANB351: Simulating Nios 1I Embedded Processor Designs.

This section guides you through the Nios II development flow to create a
working example design. You perform the following steps:

1. “Install the Design Files” on page 1-11.

Altera Corporation
October 2007

http://www.altera.com/literature/an/an351.pdf

Nios Il Hardware Development Tutorial Creating the Example Design

Altera Corporation
October 2007

“Analyze System Requirements” on page 1-12.

“Start the Quartus II Software and Open the Tutorial Example
Design Project” on page 1-12.

“Create a New SOPC Builder System” on page 1-14.
“Define the System in SOPC Builder” on page 1-15.

“Integrate the SOPC Builder System into the Quartus II Project” on
page 1-28.

“Download Hardware Design to Target FPGA” on page 1-33.
“Develop Software Using the Nios II IDE” on page 1-34.

“Run the Program” on page 1-38.

Install the Design Files

Before you proceed, you must install the Quartus II software and the
Nios I Embedded Design Suite. You must also download tutorial design
files from the Altera web site. The design files provide a ready-made
Quartus II project to use as a starting point. The design files are associated
with the link to this document on the Nios II literature page at
www.altera.com/literature/lit-nio2.jsp.

Perform the following steps to set up the design environment:

1.

Locate the zipped design files on the Altera web site. A different set
of design files exists for each Altera Nios development board.

Download the design files by performing one of the following steps:

a. If you have a Nios development board, download the files that
match your development board.

b. If you have a custom board, download the files that most
closely match your board. For example, if your board has a
StratixII device, download the StratixII design files
(NiosII_stratixII_2s60_es.zip).

c. If you do not have a board, you can use any of the design files.

Unzip the contents of the zip file to a directory on your computer.
Do not use spaces in the directory path name.

1-11

http://www.altera.com/literature/lit-nio2.jsp

Creating the Example Design

Nios Il Hardware Development Tutorial

1-12

The remainder of this tutorial refers to this directory as the <Design
Files Directory>.

Analyze System Requirements

This section describes the system requirements for the tutorial example
design. The goals for the design are the following;:

B Demonstrate a simple Nios II processor system that you can use for
control applications.

B Build a practical, real-world system, while providing an educational
experience.

B Demonstrate the most common and effective techniques to build
practical, custom Nios II systems.

B Build a Nios Il system that works on any board with an Altera FPGA.
The entire system must use only on-chip resources, and not rely on
the target board.

B The design should conserve on-chip logic and memory resources so
it can fit in a wide range of target FPGAs.

These goals lead to the following design decisions:

B The Nios II system uses only the following inputs and outputs:
e One clock input, which can be any constant frequency.
e Eight optional outputs to control LEDs on the target board.

B The design uses the following components:

Nios II/s core with 2 Kbytes of instruction cache

20 Kbytes of on-chip memory

Timer

JTAG UART

Eight output-only parallel I/O (PIO) pins

System ID component

For complete details on these and other components, see the Quartus II
Handbook Volume 5: Embedded Peripherals.

Start the Quartus Il Software and Open the Tutorial Example
Design Project

To start, you open the Quartus II project for the tutorial example design.
This Quartus II project serves as an easy starting point for the Nios II
development flow. The Quartus II project contains all settings and design
files required to create the SRAM Object File.

To open the Quartus II project, perform the following steps:

1. Start the Quartus II software.

Altera Corporation
October 2007

http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf

Nios Il Hardware Development Tutorial Creating the Example Design

On Windows computers, click Start, point to Programs, Altera,
Quartus Il <version>, and then click Quartus II <version>. On Linux
computers, type quartus ata shell command-prompt, assuming the
Quartus II program directory is in the search path.

On the File menu, click Open Project. Be careful not to mistake
Open for Open Project. The Open Project dialog box appears.

Browse to <Design Files Directory>.

Select the file nios2_quartus2_project.qpf and click Open. The
Quartus II software opens the project.

If the Quartus II software does not automatically display the Block
Diagram File (.bdf) nios2_quartus2_project.bdf (see Figure 1-3),
perform the following steps:

a. On the File menu, click Open. The Open dialog box appears.

b. Browse to <Design Files Directory>.

c. Select the file nios2_quartus2_project.bdf and click Open.

Figure 1-3 shows the Block Diagram File nios2_quartus2_project.bdf.

Figure 1-3. Example Design Block Diagram File

4 nios2_quartus2_project. bdf

sﬁ; (PLOELOCKINFUTH] it o

Niosll Quartusll Project — Nios Il, Cyclone 1C20

This is the top level for the HW tutorial
aon the Miosll Cyclong 1C20 Development Board.

Targeted for the NiosIl Cyclone 1020 development board.

M UTEUT - [EDG(. 0]

The Block Diagram File contains an input pin for the clock input and eight
output pins to drive LEDs on the board. Next, you create a new SOPC
Builder system, which you ultimately connect to these pins.

Altera Corporation
October 2007

1-13

Creating the Example Design Nios Il Hardware Development Tutorial

Create a New SOPC Builder System

You use SOPC Builder to generate the Nios II processor system, adding
the desired components, and configuring how they connect together.
Perform the following steps to create a new SOPC Builder system:

1. On the Tools menu in the Quartus II software, click SOPC Builder.
SOPC Builder starts and displays the Create New System dialog
box.

2. Typefirst nios2_ systemas the System Name.
3. Select either Verilog or VHDL as the Target HDL. If you do not
have a preference, accept the default. Later when you generate the

system, SOPC Builder outputs design files in the language you
select.

4. Click OK. The SOPC Builder GUI appears, displaying the System
Contents tab.

Figure 1-4 shows the SOPC Builder GUI in its initial state.

Figure 1-4. SOPC Builder GUI

'™ Altera SOPC Builder - first_nios2_system.sopc (C:\altera\hardware_tutorial 1c20Xfirst_nios2_system.sopc)
File Edit Mocule System View Tools Help

System Cortents | System Seneration

Q Altera SOPC Builder Target Clock Settings
‘Q Create nev component... =

& Mios Il Processar Device Fam\l\f' MNamne Source MHz Pipeline Add
- Bridges and Adapters clk External 50.0 | O

~Memory Mapped

~Streaming
Interface Protocols
[#-Legacy Components .
[&-Memories and Memory Controllers Use .. Module Name Description Clock Basze End
Peripherals
[#-PLL

A v address Map | [Fiter

@ Info: Your system is ready to generate

5] (=)

1-14 Altera Corporation
October 2007

Nios Il Hardware Development Tutorial Creating the Example Design

Define the System in SOPC Builder

You use SOPC Builder to define the hardware characteristics of the Nios II
system, such as which Nios II core to use, and what components to
include in the system. SOPC Builder does not define software behavior,
such as where in memory to store instructions or where to send the
stderr character stream.

In this section, you perform the following steps:

1. Specify target FPGA and clock settings.

2. Add the Nios II core, on-chip memory, and other components.
3. Specify base addresses and interrupt request (IRQ) priorities.
4. Generate the SOPC Builder system.

The SOPC Builder design process does not need to be linear. The design
steps in this tutorial are presented in the most straightforward order for a
new user to understand. However, you can perform SOPC Builder design
steps in a different order.

Specify Target FPGA and Clock Settings

The Target and Clock Settings sections of the System Contents tab
specify the SOPC Builder system's relationship to other devices in the
system. Perform the following steps:

1. Select the Device Family that matches the Altera FPGA you are
targeting.

2. Double-click the clock frequency in the MHz column for c1k. Type
the clock frequency as shown in Table 1-1, and press Enter. c1k is
the default clock input name for the SOPC Builder system. The
frequency you specify for c1k must match the oscillator that drives

the FPGA.
Table 1-1. Clock Frequency for Target Boards
Target Board Frequency
Nios Development Board (all versions), 50
or no board
Custom board Same as oscillator on board
Altera Corporation 1-15

October 2007

Creating the Example Design

Nios Il Hardware Development Tutorial

1-16

Next, you begin to add hardware components to the SOPC Builder
system. As you add each component, you configure it appropriately to
match the design specifications.

Add the On-Chip Memory

Processor systems require at least one memory for data and instructions.
This example design uses one 20 Kbyte on-chip memory for both data
and instructions. To add the memory, perform the following steps:

1.

In the list of available components (on the left-hand side of the
System Contents tab), expand Memories and Memory Controllers,
expand On-Chip, and then click On-Chip Memory (RAM or
ROM).

Click Add. The On-Chip Memory (RAM or ROM) MegaWizard
interface appears.

In the Block Type list, select M4K.

In the Total memory size box, type 20 and select Kbytes to specify a
memory size of 20 Kbytes (see Figure 1-5).

Do not change any of the other default settings.

Altera Corporation
October 2007

Nios Il Hardware Development Tutorial Creating the Example Design

Figure 1-5. On-Chip Memory MegaWizard

'™ On-Chip Memory (RAM or ROM) - onchip_mem_1

On-Chip Memory
“ (RAM or ROM)

Version 7.1

Documentation

Memary type

(3) RAM (Witable) () ROM (Read-only)

[[] Dual-part access

Initialize: memaory content

Mermory will be inftialized from onchip_mem_1.hex

Size
Total memory size: m

|:| Minirmize memaory block usage (may impact frax)

Read latency
Man-efault memory initialization

[[] Enable nan-defautt initialization file

User-created inttialization file: l:l e

6. Click Finish. You return to the SOPC Builder System Contents tab,
and an instance of the on-chip memory named onchip_mem now
appears in the table of available components.

«o For further details on on-chip memory, you can click Documentation in
the On-Chip Memory (RAM or ROM) MegaWizard interface.

= This documentation feature is available in the MegaWizard
interface for each component.

Add the Nios Il Processor Core

In this section you add the Nios II/s core and configure it to use 2 Kbytes
of on-chip instruction cache memory. For educational purposes, the
tutorial example design uses the Nios II/s "standard" core, which

Altera Corporation 1-17
October 2007

Creating the Example Design Nios Il Hardware Development Tutorial

provides a balanced trade-off between performance and resource
utilization. In reality, the Nios II/s core is more powerful than necessary
for most simple control applications.

Perform the following steps to add a Nios II/s core to the system:
1. In the list of available components, select Nios II Processor.

2. Click Add. The Nios II Processor MegaWizard interface appears,
displaying the Nios II Core page.

3. Specify the following settings (see Figure 1-6):

Nios II Core: Nios II/s

Hardware Multiply: None

Hardware Divide: Off

Reset Vector: Memory: onchip_mem Offset: 0x0
Exception Vector: Memory: onchip_mem Offset: 0x20

Figure 1-6. Nios Il MegaWizard — Nios Il Core Page

'™ Nios Il Processor - cpu E|
Nios II Processor
Core Mias ||
Select a Hios Il core:
ONios Ilife ®Nios IIfs ONios IIf
. RISC RIZC RIZC
Nios Il 32-bit 324t 32-hit
Selector Guide Instruction Cache Instruction Cache
Family: Cyclone Branch Prediction Branch Prediction
Hardware Multiphy Harchwvare Muttiply
foystem: 50.0 MHz Hardware Divide Harchware Divide
: Barrel Shifter
cpuid: 0 Data Cache
Dynamic Branch Prediction
Performance st S0.0 MHz Up to S DMIPS Up to 22 DMIPS Up to 49 DMIPS
Logic Usage 600-700 LEs 1200-1400 LEs: 1400-1300 LEs
Memory Usage Tuwvo Maks (or equiv.) Twvo MdKs + cache Three Mdks + cache
Rl et iore ~ | [Harsirare Divide
Reset wectar. Memory: |DﬂDh\p_"|El’I’l 3 ‘Oflset: | ox0 |UxUUUUUUUU
Exesption Vector: Memory. [anchip_mem | @tfset [mez |xo0000020
1-18 Altera Corporation

October 2007

Nios Il Hardware Development Tutorial Creating the Example Design

4. Click Caches and Memory Interfaces. The Caches and Memory
Interfaces page appears.

5. Specify the following settings (see Figure 1-7):
e Instruction Cache: 2 Kbytes

e Enable Bursts: Off
e Include tightly coupled instruction master port(s): Off

Figure 1-7. Nios Il MegaWizard — Caches and Memory Interfaces page

Caches and Memaory Interfaces
Instruction Master

Instruction Cache:

[[] Enable Bursts (Burst Size: 32 bytes) Hel Data Cache Line Size

[[1Inciude tightly coupled instruction master part(s)

¥ Nios Il Processor - cpu El

Nios II Processor
Megacors’ Version 7.1

> advanced Features P T

Data Master

Data Cache: |

(Burst Size: 32 bytes) Help

[[|

Altera Corporation
October 2007

6. Do not change any settings on the Advanced Features, JTAG
Debug Module, or Custom Instructions pages.

7. Click Finish. You return to the SOPC Builder System Contents tab,
and an instance of the Nios II core named cpu now appears in the
table of available components.

For further details on configuring the Nios II core, see the Instantiating

the Nios II Processor in SOPC Builder chapter of the Nios II Processor
Reference Handbook.

1-19

http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf

Creating the Example Design

Nios Il Hardware Development Tutorial

SOPC Builder automatically connects the instruction and data
master ports on the Nios II core to the memory slave port (see
Figure 1-8). When building a system, always verify that SOPC
Builder's automatic connections are appropriate for your system
requirements.

Figure 1-8. System Contents Tab with the Nios Il Core and On-Chip Memory

Target

Clock Seftings

Device Fami\y. Marme Source MHz Pipeline Bad

External

Use Con.. | Module Name

Description Clock Base End

onchip_mem On-Chip Memory (RAM or ROM)

a1 Avalon Slave ik 0300000000 0x00004EfF
E cpu Mios | Processaor

instruction_master Avalon Master clk

data_master Avalon Master IrRQ O IRQ

Jtan_clebug_module Avalon Slave 0x00008800 Dx&oafff

g For further details on connecting memory to Nios II systems, see the

Building Memory Subsystems Using SOPC Builder chapter of the Quartus II
Handbook Volume 4: SOPC Builder.

Add the JTAG UART

The JTAG UART provides a convenient way to communicate character
data with the Nios II processor through the USB-Blaster download cable.
Perform the following steps to add the JTAG UART:

1.

1-20

In the list of available components, expand Interface Protocols,
expand Serial, and then click JTAG UART.

Click Add. The JTAG UART MegaWizard interface appears.

Do not change the default settings (see Figure 1-9).

Altera Corporation
October 2007

http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf
http://www.altera.com/literature/hb/qts/qts_qii54006.pdf

Nios Il Hardware Development Tutorial Creating the Example Design

Figure 1-9. JTAG UART MegaWizard

'™ TAG UART, - jtag uvart

“ JTAG UART
¢, Version 7.1

2 Simulation

Wirite FIFC (Data fram Avalan to JTAG)

|:| Corstruct using registers instead of memory blocks

Read FIFO (Data from JTAG ta Avalon)

|:| Corstruct using registers instead of memory blocks

4. Click Finish. You return to the SOPC Builder System Contents tab,
and an instance of the JTAG UART named jtag_uart now appears in
the table of available components.

Il=" SOPC Builder automatically connects the data master port on
the Nios II core to the JTAG UART slave port. (The instruction
master port does not connect to the JTAG UART, because the
JTAG UART is not a memory device and cannot feed
instructions to the Nios II processor.) When building a system,
always verify that SOPC Builder's automatic connections are
appropriate for your system requirements.

as® For further details on the JTAG UART, see the [TAG UART Core chapter
of the Quartus II Handbook Volume 5: Embedded Peripherals.

Add the Interval Timer

Most control systems use a timer component to enable precise calculation
of time. To provide a periodic system clock tick, the Nios Il HAL requires
a timer.

Perform the following steps to add the timer:

Altera Corporation 1-21
October 2007

http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51009.pdf

Creating the Example Design Nios Il Hardware Development Tutorial

1. In the list of available components, expand Peripherals, expand
Microcontroller Peripherals, and then click Interval Timer.

2. Click Add. The Interval Timer MegaWizard interface appears.
3. In the Presets list, select Full-featured.

4. Do not change any of the other default settings (see Figure 1-10).

Figure 1-10. Interval Timer MegaWizard

!B Interval Timer - timer

Interval Timer

Version 7.1

Tirmeout period

Period: | ¢ ||ms -

Hardware options

Prezets: | SR

Registers

Output signals

5. Click Finish. You return to the SOPC Builder System Contents tab,
and an instance of the interval timer named timer now appears in
the table of available components.

6. Right-click timer and click Rename.

7. Type sys_clk_timer and press Enter.

1-22 Altera Corporation
October 2007

Nios Il Hardware Development Tutorial Creating the Example Design

=" Itisa good habit to give memorable names to hardware
components. Nios II programs use these symbolic names to
access the component hardware. Therefore, your choice of
component names can make Nios II programs easier to read and
understand.

a®® For further details on the timer, see the Timer Core chapter of the Quartus
II Handbook Volume 5: Embedded Peripherals.

Add the System ID Peripheral

The system ID peripheral safeguards against accidentally downloading
software compiled for a different Nios II system. If the system includes
the system ID peripheral, the Nios II IDE prevents you from
downloading programs compiled for a different system.

Perform the following steps to add the system ID peripheral:

1. Inthe list of available components, expand Peripherals, expand
Debug and Performance, and then click System ID Peripheral.

2. Click Add.... The System ID Peripheral MegaWizard interface
appears. The system ID peripheral has no user-configurable options
(see Figure 1-11).

Figure 1-11. System ID Peripheral MegaWizard

1E System ID Peripheral - sysid

“ System ID Peripheral
Megators VETSiON 7.1

Parameter

Settings

System IDx 453566277
Time stamp: 1178153405
& unigue ID is assigned every time the system is generated.

3. Click Finish. You return to the SOPC Builder System Contents tab,
and an instance of the system ID peripheral named sysid now
appears in the table of available components.

e For further details on the system ID peripheral, see the Systemn ID Core
chapter of the Quartus Il Handbook Volume 5: Embedded Peripherals.

Altera Corporation 1-23
October 2007

http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51008.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51014.pdf

Creating the Example Design

Nios Il Hardware Development Tutorial

Add the PIO

PIO signals provide an easy method for Nios II processor systems to
receive input stimuli and drive output signals. Complex control
applications might use hundreds of PIO signals which the Nios II
processor can monitor. This example design uses eight PIO signals to

drive LEDs on the board.

Perform the following steps to add the PIO. Perform these steps even if

your target board doesn't have LEDs.

1. Inthe list of available components, expand Peripherals, expand
Microcontroller Peripherals, and then click PIO (Parallel 1/0).

2. Click Add. The PIO (Parallel I/O) MegaWizard interface appears.

3. Do not change the default settings (see Figure 1-12). The
MegaWizard interface defaults to an 8-bit output-only PIO, which

exactly matches the needs for the example design.

Figure 1-12. PIO MegaWizard

™ PIO (Parallel I/0) - pio

R PIO (Parallel 1/0)
Version 7.1

Input Options > Simulation 3

Width
s R

Direction
O Bidirectional (tristate) ports
() Input ports anly
() Bath input and output parts

(®) Output ports only

1-24

Altera Corporation
October 2007

Nios Il Hardware Development Tutorial Creating the Example Design

Altera Corporation
October 2007

4. Click Finish. You return to the SOPC Builder System Contents tab,
and an instance of the PIO named pio now appears in the table of
available components.

5. Right-click pio and click Rename.
6. Type led_pio and press Enter.

1= Nios II software uses this name to access the component. You
must name the PIO led_pio, or else tutorial programs written
for this Nios II system will fail to work in later steps.

For further details on the PIO, see the PIO Core chapter of the Quartus II
Handbook Volume 5: Embedded Peripherals.

Specify Base Addresses and Interrupt Request Priorities

At this point, you have added all the necessary hardware components to
the system. Now you must specify how the components interact to form
a system. In this section, you assign base addresses for each slave
component, and assign interrupt request (IRQ) priorities for the JTAG
UART and the timer.

SOPC Builder provides the Auto-Assign Base Addresses command
which makes assigning component base addresses easy. For many
systems, including this example design, Auto-Assign Base Addresses is
adequate. However, you can adjust the base addresses to suit your needs.
Below are some guidelines for assigning base addresses:

B Nios II processor cores can address a 31-bit address span. You must
assign base address between 0x00000000 and Ox7FFFFFFE.

B Nios Il programs use symbolic constants to refer to addresses. Do not
worry about choosing address values that are easy to remember.

B Address values that differentiate components with only a one-bit
address difference produce more efficient hardware. Do not worry
about compacting all base addresses into the smallest possible
address range, because this can create less efficient hardware.

B SOPC Builder does not attempt to align separate memory
components in a contiguous memory range. For example, if you
want an on-chip RAM and an off-chip RAM to be addressable as one
contiguous memory range, you must explicitly assign base
addresses.

SOPC Builder also provides an Auto-Assign IRQs command which

connects IRQ signals to produce valid hardware results. However,
assigning IRQs effectively requires an understanding of how software

1-25

http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51007.pdf

Creating the Example Design

Nios Il Hardware Development Tutorial

responds to them. Because SOPC Builder does not deal with software
behavior, it cannot make educated guesses about the best IRQ
assignment.

The Nios I HAL interprets low IRQ values as higher priority. The timer
component must have the highest IRQ priority to maintain the accuracy
of the system clock tick.

To assign appropriate base addresses and IRQs, perform the following
steps:

1. On the System menu, click Auto-Assign Base Addresses to make
SOPC Builder assign functional base addresses to each component
in the system. The Base and End values in the table of active
components might change, reflecting the addresses that SOPC
Builder reassigned.

2. Click the IRQ value for the jtag_uart component to select it.
3. Type 16 and press Enter to assign a new IRQ value.

Figure 1-13 shows the state of the SOPC Builder System Contents tab
with the complete system.

Figure 1-13. System Contents Tab with Complete System

Target Clock Settings
Device Family: Cyclone - Matne SoLrce MHZ Fipeline add
clk External 50.0 o
Use = Con Madlule: Natne: Desctiption Clack Baze End
B onchip_mem Dn-Chip Memory (RAM or RORM)
s1 Awvalon Slave clk 00000000 (0x0000CELE
' B epu Mioz | Pracessar
instruction_master Balon Master clk
' data_master \&valon Master IRQ 0O IRQ 21
™ Jag_debug_module: Ayvalon Slave 000010800 (0x00010f£f
B jtag_uart WTAG LART
avalon_jtag_slave Swvalon Slave clk 000011030 (0x00011037
B sys_clk_timer Irterval Timer
=1 WBvalon Slave clk 000011000 (0x0001101%
B sysid =ystem I Peripheral
control_slave Avalon Slave clk 000011038 (0x0001103f

PIO (Parallel 110}
Avalon Slave

000011020

Ox000110Z ¢

1-26

Generate the SOPC Builder System

You are now ready to generate the SOPC Builder system. Perform the
following steps:

Altera Corporation
October 2007

Nios Il Hardware Development Tutorial Creating the Example Design

1. Click the System Generation tab.

2. Turn off Simulation. Create simulator project files., which saves
time because this tutorial does not cover the hardware simulation

flow.
3. Click Generate. The system generation process begins.

The generation process can take several minutes. When it completes,
the System Generation tab displays a message "Info: System
generation was successful." (see Figure 1-14).

Figure 1-14. Successful System Generation

Altera SOPC Builder - first_nios2_system.sopc (C:\alteralhardware_tutorial 1c20_design_filesMirst_nios2_system.sopc)

File Edit Module System “iew Tools Mozl Help

System Corterts || System Generation |

Options
System mocule logic will be crested in Verilog.

[Simulstion. Creste project simulstor files

M Il Taols
Miog Il IDE

Infa: Aftera or its authorized distributors. Please refer tothe
Info; applicable agreement for further details.

Inf: Processing started: Wed May 02 17:56:49 2007

@ Info: Command: guartus_sh - first_nios2_system_setup_guartus tcl

@ Infa: Evalustion of Tl script first_nios2_system_setup_quartus tel was successful

(@) Info: Guartus | Shel was successful. 0 errors, 0 warnings

Intfo; Allocated 42 megabytes of memory during processing

Info: Processing ended: Wed May 02 17:56:50 2007

Into: Elapsed tirme: 00:00:01

2007 0502 17:56:-51 (*) Completed generation for system: first_nins2_system

2007 0502 17:56:51 (*) THE FOLLOWNG SYSTEM ITEMS HAVE BEEN GENERATED:

SOPC Builder database : C/aterahardveare_tutorial_1c20_design_filesfirst_nios2_system ptf

System HOL Model : Cisteraharchware_tutorial_1c20_design_filesffirst_nios2_system.y

System Generation Script : Claterahardvware_tutorial_1c20_desion_filesfirst_nios2_system_generation_script

2007.0502 17:56:51 (%) SUCCESS: SYSTEM GENERATION COMPLETED.

@ Info: System generation was successiul

< >

@ Imvfo: Your system is reacy to generate.

(o] [rme) [arm] > [ooman]

4. Click Exit to return to the Quartus II software.

Congratulations! You have finished creating the Nios II processor system.
You are ready to integrate the system into the Quartus Il hardware project
and use the Nios II IDE to develop software.

Altera Corporation 1-27

October 2007

Creating the Example Design Nios Il Hardware Development Tutorial

1-28

For further details on generating systems with SOPC Builder, see the
Quartus Il Handbook Volume 4: SOPC Builder. For details on hardware
simulation for Nios II systems, see AN351: Simulating Nios Il Embedded
Processor Designs.

Integrate the SOPC Builder System into the Quartus Il Project

In this section you perform the following steps to complete the hardware
design:

B Instantiate the SOPC Builder system module in the Quartus II
project.

B Assign FPGA pins.

B Compile the Quartus II project.

B Verify timing.

=" Youcanskip ahead to “Develop Software Using the Nios IT IDE”
on page 1-34 if you do not have a target board. Alternatively,
you can read this section to familiarize yourself with more of the
hardware design flow. However, the steps in this section do not
affect the outcome of the tutorial if you do not have a target
board.

For further information on using the Quartus II software, see the Quartus
II Tutorial in the Quartus II help system, and both Introduction to the
Quartus II Software and the Quartus 11 Handbook, available at
www.altera.com/literature/lit-qts.jsp.

Instantiate the SOPC Builder System Module in the Quartus Il Project

SOPC Builder outputs a design entity called the system module. The
tutorial example design uses the Block Diagram File method of design
entry, so you instantiate a system module symbol first_nios2_system into
the Block Diagram File.

s How you instantiate the system module depends on the design
entry method of the overall Quartus II project. For example, if
you were using Verilog HDL for design entry, you would
instantiate the Verilog module first_nios2_system defined in
the file first_nios2_system.v.

To instantiate the system module in the Block Diagram File, perform the
following steps:

1. Double click in the empty space between the input and output pins.
The Symbol dialog box appears.

Altera Corporation
October 2007

http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf
http://www.altera.com/literature/an/an351.pdf
http://www.altera.com/literature/an/an351.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/literature/lit-qts.jsp

Nios Il Hardware Development Tutorial Creating the Example Design

Under Libraries:, expand Project.

Click first_nios2_system. The Symbol dialog box displays the
first_nios2_system symbol.

Click OK. You return to the Block Diagram File schematic. The
first_nios2_system symbol tracks with your mouse pointer.

Position the symbol so the inputs on the symbol align with the wires
on the left-hand side of the Block Diagram File.

Click the left mouse button to drop the symbol in place.

If your target board has LEDs that the Nios II system can drive,
perform the following step to connect the LEDGI7..0] output pins to
the first_nios2_system.

Click and drag LEDGI7..0] to connect it with the port
out_port_from_the_led_pio[7..0] on the first_nios2_system
symbol.

Figure 1-15 shows the completed Board Design File schematic using the
LED pins.

Figure 1-15. Completed Board Design File Schematic

& nios2_quartus2_project.bdf

—— clk

first_nios2_system

\u:lg ¢ PALD_CLOCKINRLTE]

reset_n

oulgor_om e es_il.0] g e f

inst

Altera Corporation
October 2007

If you are targeting a custom board that does not have LEDs, you
must delete the LEDGI7..0] pins. To delete the pins, perform the
following steps:

a. Click the output symbol LEDG[7..0] to select it.

b. Press Delete.

To save the completed Block Diagram File, click Save on the File
menu.

1-29

Creating the Example Design

Nios Il Hardware Development Tutorial

Assign FPGA pins

If you are targeting a custom board, you must assign a specific target
device and then assign FPGA pin locations to match the pinouts of your

boar

IT =
&

You
secti

d.
Skip ahead to section “Compile the Quartus II Project and Verify
Timing” on page 1-32, if you are targeting a Nios development
board. The provided Quartus II project files already contain
appropriate assignments for Nios development boards.

must know the pin layout for the custom board to complete this

on. You also must know other requirements for using the board,

which are beyond the scope of this document. Refer to the documentation
for your board.

To assign the device, perform the following steps:

1.

1-30

On the Assignments menu, click Device. The Settings dialog box
appears.

In the Family list, select the FPGA family that matches your board.

Click No if a dialog box asks, "Device family selection has changed.
Do you want to remove all location assignments?"

Under Target Device select Specific device selected in 'Available
devices' list.

Under Available devices select the exact device that matches your
board.

Click No if a dialog box asks, "Altera recommends removing all
location assignments when changing the device. Do you want to

remove all location assignments?"

Click OK to accept the device assignment.

Altera Corporation
October 2007

Nios Il Hardware Development Tutorial Creating the Example Design

Figure 1-16 shows an example of the Settings dialog box assigning a
Cyclone device.

Figure 1-16. Assigning a Device in the Quartus Il Settings Dialog Box

Select the family and device you want to target for compilation,

Family: ‘Eycluns j Shaw in ‘Available devices' list
- - - Package: Ay hd
Device and Pin Options.
Pir count Any -
Target device
¢ Auto device selected by the Filer Speed grade: | Any =
& GSpecific device selected in ‘Svailable devices' list [” Show advanced devices
fy r

Available devices:

Name Corev... | LEs Memor... | PLL | ~
EP1C120240C6 1.5¢ 12060 233616 2
EPTC 2024007 1.5¢ 12060 239616 2
EP1C1200240C8 184 12060 233616 2
EP1CI2024017 1.5¢ 12060 233616 2
EP1C20F324C6 1.5V 20060 294912 2
EF1C20F324C7 184 20060 234312 2
EF1CZ0F324C8 1.5v 20060 234312 2
EPIC20F32417 1.5V 20060 294912 2
EF1C20F400CE 1.5 20060 234312 2
g 1.5Y 20060 2
FPC2NFANNCra 15 2NNRN 294917 E v,

Migration compatibility

Migration Devices. J

0 migration devices selected =

Altera Corporation
October 2007

To assign the FPGA pin locations, perform the following steps:

1. On the Assignments menu, click Pins. The Quartus II Pin Planner
appears. The Quartus II project has many ready-made assignments
appropriate for a Nios development board, which you must
reassign to suit your board.

2. In the Node Name column, locate PLD_CLOCKINPUTI[1]. You
might need to expand the PLD_CLOCKINPUTI1..1] category to
make PLD_CLOCKINPUTI[1] visable.

3. Inthe PLD_CLOCKINPUTI[1] row, double-click in the Location
cell. A list of available pin locations appears.

4. Select the appropriate FPGA pin that connects to the oscillator on
the board (see Figure 1-17).

1-31

Creating the Example Design Nios Il Hardware Development Tutorial

Figure 1-17. Assigning Pins with the Quartus Il Pin Planner

Pin P M
Grouns Ed|
E Hamed: [§ -
k @\ = Mode Mame Direction Location 10 Bank, wref
[.
b=d o # LEDG[7..0] Qutput Group
B E PLD_CLOCKINPUTLL..1] |Input Group P
= of & | [PLO_CLOCKINPUT[I] |Input b1 K| |t B1_M1 G Su sy
= <<new node > ~
. PIN_KE If0 Bank 1 Dedicated Clock CLKLLYDSCLKLR
i = (Bl PIN_K14 [0Bark3 Dedicated Clock CLK3/LYDSCLKZR
ﬁﬁ g PIN_K15 If0 Bark 3 Row IfO Lv¥DSE0p
PIN_K16 If0 Bark 3 Row IfO LvDSE0n
= B & PIN_K19 IoBark3 RowIO YREF1E3
= < PIN_L4 I/0 Bark 1 Row IfOr ASDO
H M PIN_LE I/0 Bark 1 Row IfOr FLL1_OUTp el
"_/ ﬁ This cell specifies the pin number, If0 bank, of edge location to which vou want to assign the pin.
ﬁg Mamed: |i j «x Edit M| | Filter |F'\ns: all j
% | | Node Marne | Direction Location | I/ Bank | ‘ref Group 5

5. If you connected the LED pins in the Board Design File schematic,
repeat steps 2 to 4 with LEDGJ7..0] to assign appropriate pin
locations for each of the LED outputs pins: LEDG[0], LEDGI1],
LEDGI2], LEDGI3], LEDGI4], LEDGI[5], LEDGI6], LEDGI[7].

6. On the File menu, click Save to save the assignments.
7. Close the Pin Planner.

Depending on the board, you might have to make more
assignments for the project to function correctly. You can
damage the board if you fail to account for the board design.
Consult with the maker of the board to ensure that the following
conditions will not damage the board:

CAUTION

B After power-up all unused I/O pins on the FPGA enter a high-
impedance state.

B The IO banks are configured for the 3.3V LVTTL I/O standard. The
board must supply 3.3V to the FPGA's VCCIO pins.

B The LEDGI7..0] outputs drive 3.3V.

e For further details on making assignments in the Quartus II software, see
the Quartus II Handbook Volume 2: Design Implementation and Optimization.

Compile the Quartus Il Project and Verify Timing

At this point you are ready to compile the Quartus II project and verify
that the resulting design meets timing requirements.

1-32 Altera Corporation
October 2007

http://www.altera.com/literature/hb/qts/qts_qii5v2.pdf

Nios Il Hardware Development Tutorial Creating the Example Design

Altera Corporation
October 2007

You must compile the hardware design to create an SRAM Object File that
you can download to the board. After the compilation completes, you
must analyze the timing performance of the FPGA design to verify that
the design will work in hardware.

Perform the following steps:
1. On the Processing menu, click Start Compilation.

2. The Quartus II Status utility window displays progress. The
compilation process can take several minutes. When compilation
completes, a dialog box displays the message "Full compilation was
successful.”

3. Click OK. The Quartus II software displays the Compilation Report
window.

4. Expand the Timing Analyzer category of the Compilation Report
window.

5. Click Summary.

6. Check the frequency listed in the Actual Time cell associated with
PLD_CLOCKINPUTI1]. This is the maximum frequency (Fyiax)
that this FPGA design is capable of running.

Il=" If the Actual Time frequency for PLD_CLOCKINPUTI[1] is less
than the oscillator frequency on the board, this design will not
operate in hardware. You must make Quartus II timing
assignments to optimize the clock, or reduce the oscillator
frequency driving the FPGA.

Congratulations! You have finished integrating the Nios II system into
the Quartus II project. You are ready to download the SRAM Object File
to the target board.

For further details on meeting timing requirements in the Quartus II
software, see the Quartus II Handbook Volume 1: Design and Synthesis.

Download Hardware Design to Target FPGA

In this section you download the SRAM Object File to the target board.
Perform the following steps:

1. Connect the board to the host computer with the download cable,
and apply power to the board.

1-33

http://www.altera.com/literature/hb/qts/qts_qii5v1.pdf

Creating the Example Design Nios Il Hardware Development Tutorial

2. On the Tools menu in the Quartus II software, click Programmer.
The Programmer window appears and automatically displays the
appropriate configuration file (nios2_quartus2_project.sof).

3. Click Hardware Setup in the top-left corner of the Programmer
window to verify your download cable settings. The Hardware
Setup dialog box appears.

4. Select the appropriate download cable in the Currently selected
hardware list. If the appropriate download cable does not appear in
the list, you must first install drivers for the cable.

5. Click Close.

6. Turn on Program/Configure for nios2_quartus2_project.sof (see
Figure 1-18).

7. Click Start. The Progress meter sweeps to 100% as the Quartus II
software configures the FPGA.

Figure 1-18. Quartus Il Programmer Window

i} niog2_quartus?_project.cdf
USE-Blaster [USE-0]

:Ea Hardware Setup.
Mode:

Progress:

P Start

kb Auto Detect

[a7a5 |

Program/

File: Device Checksum Usercode Confiqure

Werify

hios2_quartus2_project. sof EP1C20F400 FFFFFFFF

1-34

At this point, the Nios II system is configured and alive in the FPGA, but
it does not yet have a program in memory to execute.

Develop Software Using the Nios Il IDE

In this section you start the Nios Il integrated development environment
(IDE) and compile a simple C language program. This section presents
only the most basic software development steps to demonstrate software
running on the hardware system you created in previous sections.

For a complete tutorial on using the Nios II IDE to develop programs,
see the Software Development Tutorial available from the IDE help system.

In this section you perform the following actions:

Altera Corporation
October 2007

Nios Il Hardware Development Tutorial Creating the Example Design

Create a new Nios II C/C++ application project (see page 1-35).
Compile the project (see page 1-36).

To perform this section, you must have the SOPC Builder System File you
created in “Define the System in SOPC Builder” on page 1-15.

Create a New Nios Il C/C++ Application Project

In this section you create a new Nios II C/C++ Application Project.
Perform the following steps:

1.

10.

Altera Corporation
October 2007

Start the Nios II IDE. On Windows computers, click Start, point to
Programs, Altera, Nios II EDS <version>, and then click Nios II
IDE <version>. On Linux computers, run the executable file <Nios II
EDS install path>/bin/nios2-ide.

If the Workspace Launcher dialog box appears, click OK to accept
the default workspace location.

If you are not already in the Nios I C/C++ perspective, point to
Open Perspective on the Window menu, and then either click

Nios II C/C++, or click Other and then click Nios II C/C++.

On the File menu, point to New, and then click Nios IT C/C++
Application to open the New Project wizard.

Click Browse under Select Target Hardware. The Select Target
Hardware dialog box opens.

Browse to <Design Files Directory>.
Select first_nios2_system.ptf.

Click Open. You return to the New Project wizard, and the SOPC
Builder System and CPU fields are now filled in.

Select Count Binary in the Select Project Template list. The Name
field automatically updates to count_binary_0 (see Figure 1-19).

Click Finish.

1-35

Creating the Example Design Nios Il Hardware Development Tutorial

Figure 1-19. Nios Il IDE New Project Wizard

. New Project

Nios II C/C+ + Application)
Click Finish to create application with a default system library as &

Cilalterathardware_tutorial_1c20softwarecount_binary_0

Mame: | count_binary_0

[specify Location

Select Target Hardware,

SOPC Builder System: | C:lalteralhardware_tutorial_1c20first_nios2_system,ptf

CPL: cpu_0 L3

Select Project Template

Blank Project ~ Description

Board Diagnostics Displays a running counk of 0:x00 to Oxff

Customn Instruction Tutarial Details
Dhiyst
HeﬁisFrD::standing Count Binary exercises the push-button, LCD, LED, and
Hello LED seven-segment display peripherals, Count Binary
Hello MicraC/0S-1T displays a running count: of 0x00 ko Oxff on oukput
Hello World peripherals, while responding ko input on the
Hello World Smal push-buttons, This example runs with or without the
Host File System MicroC/O5-I1 RTOS and supports hardware systems
Memory Test that do not include all the peripherals listed, Z
MicroCOS-11 Message Box v
@ Mext =] [Finish] [Cancel

The Nios II IDE creates and displays these new projects in the Nios II C/
C++ Projects view on the left-hand side of the workbench:

B count_binary_0 - Your C/C++ application project

B count_binary_0_syslib - A board support package that encapsulates
the details of the Nios II system hardware

B altera.components - Links to source code for all Altera-provided
components, for use during debug sessions

Compile the Project

In this section you compile the project to produce an executable software
image. For the example tutorial design, you must first adjust the project
settings to minimize the memory footprint of the software, because your
Nios II hardware system contains only 20 Kbytes of memory.

1-36 Altera Corporation
October 2007

Nios Il Hardware Development Tutorial Creating the Example Design

Altera Corporation
October 2007

Perform the following steps:

1.

Right-click count_binary_0 and click System Library Properties.
The Properties dialog box for count_binary_0_syslib opens.

Click the System Library page. The System Library page contains
all settings related to how the program interacts with the underlying
hardware. Therefore, the settings here reflect names you specified
when creating the Nios Il hardware in section “Define the System in
SOPC Builder” on page 1-15.

Change the following settings to reduce the size of the compiled
executable (see Figure 1-20).

a. Turn on Program never exits.

b. Turn off Support C++.

c. Turn off Clean exit (flush buffers).
d. Turn on Small C library.

“ . For further details on the system library see the Nios II

Software Developer’s Handbook.

1-37

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Creating the Example Design Nios Il Hardware Development Tutorial

Figure 1-20. System Library Properties

. Properties for count_binary_0_syslib

System Library

Info Target Hardware

Builders

CJC++ Build SOPC Builder System:

CiC++ D.ocumentatlon cPU:

CJ/C++ File Types

CCH+ Indexer Syskem Library Contents

Project References -

Refactoring History RTOS: nione (single-threaded) w

Syskem Library
stdout; jtag_uart w
skderr: jtag_uart w
shdin: jtag_uart v
System clock timer: sys_clk_timer w
Timestarnp timer: nong e
Max file descriptors: 32
Program never exits [clean et (Flush bufFers)
[5upport C++ [(reduced device drivers
[CJLightweight device driver APT Small C library
[CILink with prafiling library [IModelsim anly, no hardware support
[Junimplemented instruction handler [Irun time stack checking

Software Components. ..

4. Click OK to close the Properties dialog box and return to the IDE
workbench.

5. Right-click the count_binary_0 project in the Nios II C/C++ Projects
view and click Build Project.

The Build Project dialog box appears, and the IDE begins compiling the
project. When compilation completes, a "Build completed" message
appears in the Console view.

Run the Program

In this section you run the program to see the compiled code execute. You
can run the program on target hardware, on the Nios I instruction set
simulator (ISS), or both.

[l=~ Older versions of count_binary.h need a small modification to
keep the code from hanging on some newer devices and

terminating in the ISS. Be sure line 18 looks like this:

define LCD_ PRINTF (lcd, args...) /* Do Nothing */

1-38 Altera Corporation
October 2007

Nios Il Hardware Development Tutorial Creating the Example Design

Run the Program on Target Hardware

In this section you download the program to target hardware and execute
it.

I = If you do not have a target board, skip ahead to “Run the
Program on the ISS” on page 1-40. To proceed, you must have
completed the steps in “Download Hardware Design to Target
FPGA” on page 1-33.

To download the software executable to the target board, perform the
following steps:

1. Right-click the count_binary_0 project, point to Run As, and then
click Nios II Hardware. The IDE downloads the program to the
FPGA on the target board and starts execution.

I If you get a dialog box warning that the IDE needs to finish
indexing the altera.components project before you can
proceed, wait a few seconds for it to finish. The source code
is indexed for debug purposes.

When the target hardware starts executing the program, the Console
view displays character I/O output (see Figure 1-21). If you
connected LEDs to the Nios II system in “Integrate the SOPC Builder
System into the Quartus II Project” on page 1-28, then the LEDs blink
in a binary counting pattern.

2. Click Terminate (the red square) on the toolbar at the upper-right
hand corner of the Console view to terminate the run session. When
you click Terminate, the IDE disconnects from the target hardware
and leaves the Nios II processor running.

Figure 1-21. Console View Displaying Nios Il Hardware Output

Problems | Properties BEK & ol & = E-=0
<terminated > count_binary_0 Nios II HW configuration [Mios I Hardware] Mios II Terminal ‘Windaw (5/17/05 12:57 PH)
niosZ-terminal: connected to hardware target using JTAG ULRT on cable ”~
niosz-terminal: "U3B-EBlaster [U3E-0]'", dewvice 1, instance 0

niosZ-terminal: (Use the IDE stop kbutton or Ctrl-C to terminate)

TR TAETAETAETAETAETRTTATTE
* Hello frowm Nios IT! *
* Counting from 00 to ££ *

T EATRATAATARTARTAREARETAT

oo, ©i, 0z, 03, 04, 05, 06, 07, 08, 03, 0O, Ob, Oz, 0d, O0e, Of,

Altera Corporation 1-39
October 2007

Creating the Example Design Nios Il Hardware Development Tutorial

You can make edits to the count_binary.c program in the IDE and repeat
these two steps to witness your changes executing on the target board. If
you rerun the program, buffered characters from the previous run session
might display in the Console view before the program begins executing.

«o For information on running and debugging programs on target
hardware, see the Software Development Tutorial available from the Nios II
IDE help system.

Run the Program on the ISS

In this section you run the count_binary_0 program on the Nios II ISS.
Perform the following steps:

1. Right-click the count_binary_0 project, point to Run As, and then
click Nios IT Instruction Set Simulator.
1= (; you get a dialog box warning that the IDE needs to finish
indexing the altera.components project before you can
proceed, wait a few seconds for it to finish. The source code
is indexed for debug purposes.

When the ISS starts executing the program, the Console view
displays character I/O output from the program (see Figure 1-22).
The count output appears very slowly because there are delay loops
in the code.

2. Click the Terminate button (the red square) on the toolbar at the
upper-right hand corner of the Console view to terminate the ISS
session.

Figure 1-22. Console View Displaying Instruction Set Simulator Output

Problems Properties

ount_binary_0 Mios I1 155 configuration [Mios IT Instruction Set Simulator] Mios 1T Instruction Set Simulat e

Terminate

Simulation may be incorrect if your software attewmpts to access it

Warning : 3C0PC Builder system component sysid is not supported gimulator. -~

Warning : SOPC Builder system component led pio is not supported by the simulato
r. Simulation may be incorrect if your software attempts Lo access it

B T T T
* Hello from Nios II! *
* Counting from 00 to ££ *
B T T T

oo, o1, 0z, 03, 04, 05, 06, 07, 08, 09, 0Os, Ob, Oc, 04, 0=, Of,

You can make edits to the count_binary.c program in the IDE and repeat
these two steps to witness your changes executing on the ISS.

1-40 Altera Corporation
October 2007

Nios Il Hardware Development Tutorial Taking the Next Step

«® Forinformation on running and debugging programs on the ISS, see the

Software Development Tutorial available from the Nios II IDE help system.

Taki ng the Next Congratulations! You have completed building a Nios II hardware
system and running software on it. Through this tutorial, you have
Step familiarized yourself with the steps for developing a Nios II system:

Analyzing system requirements

Defining and generating Nios II system hardware in SOPC Builder
Integrating the SOPC Builder system into a Quartus II project
Compiling the Quartus II project and verifying timing

Creating a new project in the Nios II IDE

Compiling the project

Running the software on the ISS and target hardware

The following documents provide next steps to further your
understanding of the Nios II processor:

Nios 11 Software Developer’s Handbook — This handbook provides
complete reference on developing software for the Nios II processor.
Software Development Tutorial available in the Nios I IDE help system
— This tutorial teaches in detail how to use the Nios II IDE to develop,
run, and debug new Nios II C/C++ application projects.

Nios II IDE Help System — The help system in the IDE provides
complete reference on features of the IDE. To open the help system,
click Help Contents on the Help menu, then click the Nios II IDE
Help book in the Contents pane.

Nios II Processor Reference Handbook — This handbook provides
complete reference for the Nios II processor hardware.

Quartus II Handbook Volume 4: SOPC Builder — This volume provides
complete reference on using SOPC Builder, including topics such as
building memory subsystems and creating custom components.
Quartus II Handbook Volume 5: Embedded Peripherals — This handbook
contains details on the components provided free as part of the
Nios I Embedded Design Suite.

For a complete list of all documents available for the Nios II processor,
visit the Nios Il literature page at www.altera.com/literature/lit-nio2.jsp.

Altera Corporation
October 2007

1-41

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf
http://www.altera.com/literature/lit-nio2.jsp

Taking the Next Step Nios Il Hardware Development Tutorial

1-42 Altera Corporation
October 2007

	Nios II Hardware Development
	Contents
	About this Tutorial
	How to Contact Altera
	Typographic Conventions

	Nios II Hardware Development
	Introduction
	Example Design
	Software and Hardware Requirements
	OpenCore Plus Evaluation

	Nios II System Development Flow
	Analyzing System Requirements
	Defining and Generating the System in SOPC Builder
	Quartus II Hardware Development Tasks
	Nios II IDE Software Development Tasks
	Running and Debugging Software on the Target Board
	Varying the Development Flow
	Refining the Software and Hardware
	Iteratively Creating a Nios II System
	Verifying the System with Hardware Simulation Tools

	Creating the Example Design
	Install the Design Files
	Analyze System Requirements
	Start the Quartus II Software and Open the Tutorial Example Design Project
	Create a New SOPC Builder System
	Define the System in SOPC Builder
	Specify Target FPGA and Clock Settings
	Add the On-Chip Memory
	Add the Nios II Processor Core
	Add the JTAG UART
	Add the Interval Timer
	Add the System ID Peripheral
	Add the PIO
	Specify Base Addresses and Interrupt Request Priorities
	Generate the SOPC Builder System

	Integrate the SOPC Builder System into the Quartus II Project
	Instantiate the SOPC Builder System Module in the Quartus II Project
	Assign FPGA pins
	Compile the Quartus II Project and Verify Timing

	Download Hardware Design to Target FPGA
	Develop Software Using the Nios II IDE
	Create a New Nios II C/C++ Application Project
	Compile the Project

	Run the Program
	Run the Program on Target Hardware
	Run the Program on the ISS

	Taking the Next Step

