
101 Innovation Drive
San Jose, CA 95134
www.altera.com

Creating Multiprocessor Nios II Systems

Tutorial

Copyright © 2007 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

Printed on recycled paper

ii Altera Corporation
Preliminary

TU-N2033005-1.3

Altera Corporation iii
Preliminary

Contents

About This Tutorial
Revision History .. v
How to Contact Altera .. v
Referenced Documents ... vi
Typographic Conventions .. vi

Chapter 1. Creating Multiprocessor Nios II Systems
Introduction .. 1–1
Benefits of Multiprocessor Systems .. 1–2
Nios II Multiprocessor Systems ... 1–2
Hardware Design Considerations ... 1–3

Autonomous Multiprocessors .. 1–3
Multiprocessors that Share Resources ... 1–4

Sharing Resources in a Multiprocessor System .. 1–4
Sharing Memory ... 1–6
The Hardware Mutex Core ... 1–7
Nios II Systems Without a Mutex Core ... 1–8
Sharing Peripherals Between Multiple Processors .. 1–8
Multiprocessors and Overlapping Address Space .. 1–9

Software Design Considerations ... 1–10
Program Memory ... 1–10
Boot Addresses ... 1–14
Running and Debugging Multiprocessor Systems from the Nios II IDE 1–16

Design Example ... 1–17
Hardware and Software Requirements .. 1–17
Creating the Hardware System .. 1–17

Creating Software for the Multiprocessor System .. 1–26
Starting the Nios II IDE ... 1–26
Creating a Software Project for cpu1 ... 1–27
Creating a Software Project for cpu2 ... 1–29
Creating a Software Project for cpu3 ... 1–30
Building the Software Projects ... 1–31
Setting up the Nios II IDE for Multiprocessor Debug .. 1–31
Creating a Run/Debug Configuration for Each Processor .. 1–32
Creating a Multiprocessor Collection .. 1–33
Starting the Multiprocessor Collection ... 1–35
Debugging the Software Projects on the Board ... 1–36

iv Altera Corporation
Preliminary

Contents Creating Multiprocessor Nios II Systems Tutorial

Altera Corporation v
December 2007

About This Tutorial

This tutorial describes the features of the Altera® Nios® II processor and
SOPC Builder tool that are useful for creating systems with two or more
processors. The tutorial provides an example design that guides you
through a step-by-step process for building a multiprocessor system
containing three processors that all share a memory buffer. It shows you
how to use the Nios II Integrated Development Environment (IDE) to
create and debug three software projects, one for each processor in the
system.

f Refer to the Nios II Embedded Design Suite Release Notes and Nios II
Embedded Design Suite Errata for the latest features, enhancements, and
known issues in the current release.

Revision History The following table shows the revision history for this tutorial.

How to Contact
Altera

For the most up-to-date information about Altera® products, refer to the
following table.

Date and
Document Version Changes Made Summary of Changes

December 2007
v1.3

Update for Quartus II 7.2
release: minor text changes.

—

May 2007
v1.2

Updated for Quartus II 7.1
release.

—

May 2006
v1.1

Updated for Quartus II 6.0
release.

—

April 2005
v1.0

Initial release. —

Contact (1) Contact
Method Address

Technical support Website www.altera.com/support

Technical training Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
http://www.altera.com/support/ip/processors/nios2/rn/ips-niosii-rn.html
http://www.altera.com/support/ip/processors/nios2/er/ips-niosii-er.html
http://www.altera.com/support/ip/processors/nios2/er/ips-niosii-er.html

vi Altera Corporation
 December 2007

Referenced Documents Creating Nios II Multiprocessor Systems Tutorial

Referenced
Documents

This tutorial references the following documents:

■ Mutex Core chapter in volume 5 of the Quartus II Handbook
■ Nios II Embedded Design Suite Errata
■ Nios II Embedded Design Suite Release Notes
■ Nios II Flash Programmer User Guide
■ Nios II Hardware Development Tutorial
■ Nios II Software Developer's Handbook

Typographic
Conventions

This document uses the typographic conventions shown in the following
table.

Altera literature services Email literature@altera.com

Non-technical support (General)

(Software Licensing)

Email nacomp@altera.com

Email authorization@altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.

Contact (1) Contact
Method Address

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

mailto:literature@altera.com
mailto:nacomp@altera.com
mailto:authorization@altera.com
http://www.altera.com/support/ip/processors/nios2/rn/ips-niosii-rn.html
http://www.altera.com/support/ip/processors/nios2/er/ips-niosii-er.html
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51020.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf

Altera Corporation vii
December 2007

Creating Nios II Multiprocessor Systems Tutorial Typographic Conventions

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ ● • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury
to the user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information about a particular topic.

Visual Cue Meaning

viii Altera Corporation
 December 2007

Typographic Conventions Creating Nios II Multiprocessor Systems Tutorial

Altera Corporation 1–1
December 2007

1. Creating Multiprocessor
Nios II Systems

Introduction Any system which incorporates two or more microprocessors working
together to perform a task is commonly referred to as a multiprocessor
system. Developers using the Altera® Nios®II processor and SOPC
Builder tool can quickly design and build multiprocessor systems that
share resources. SOPC Builder is a system development tool for creating
SOPC design systems based on processors, peripherals, and memories. A
Nios II processor system typically refers to a system with a processor
core, a set of on-chip peripherals, on-chip memory and interfaces to off-
chip memory all implemented on a single Altera device.

This document describes the features of the Nios II processor and SOPC
Builder tool that are useful for creating systems with two or more
processors. This document provides an example design that guides you
through a step-by-step process for building a multiprocessor system
containing three processors that all share a memory buffer. Using the
Nios II Integrated Development Environment (IDE), you create and
debug three software projects, one for each processor in the system.

After completing this document, you will have the knowledge to perform
the following:

■ Build an SOPC Builder system containing more than one Nios II
processor.

■ Safely share resources between processors, avoiding data corruption.
■ Build software projects for multiprocessor systems using the Nios II

IDE.
■ Debug multiple software projects running on multiple processors

using the Nios II IDE.

This chapter assumes that you are familiar with reading and writing
embedded software and that you have read and followed the
step-by-step procedures for building a microprocessor system in the
Nios II Hardware Development Tutorial.

f The Nios II Hardware Development Tutorial can be found on the Nios II
Processor Literature page at www.altera.com/literature/lit-nio2.jsp.

http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf

Altera Corporation 1–2
December 2007

Creating Multiprocessor Nios II Systems Tutorial Benefits of Multiprocessor Systems

Benefits of
Multiprocessor
Systems

Multiprocessor systems possess the benefit of increased performance, but
nearly always at the price of significantly increased system complexity.
For this reason, the use of multiprocessor systems has historically been
limited to workstation and high-end PC computing using a complex
method of load-sharing often referred to as symmetric multiprocessing
(SMP). While the overhead of SMP is typically too high for most
embedded systems, the idea of using multiple processors to perform
different tasks and functions on different processors in embedded
applications (asymmetrical) is gaining popularity. Altera FPGAs provide
an ideal platform for developing asymmetric embedded multiprocessor
systems, because the hardware can easily be modified and tuned using
the SOPC Builder tool to provide optimal system performance.
Furthermore, with a powerful integration tool like SOPC Builder,
different system configurations can be designed, built, and evaluated
very quickly.

Nios II
Multiprocessor
Systems

The Nios II IDE version 7.1 and higher includes features to help with the
creation and debugging of multiprocessor systems. Multiple Nios II
processors are able to efficiently share system resources thanks to the
multimaster friendly slave-side arbitration capabilities of the system
interconnect fabric. Since the capabilities of SOPC Builder now allow
users to almost effortlessly add as many processors to a system as desired,
the design challenge of building multiprocessor systems no longer lies in
the arranging and connecting of hardware components. The design
challenge in building multiprocessor systems now lies in writing the
software for those processors so they operate efficiently together, and do
not conflict with one another.

To aid in the prevention of multiple processors interfering with each
other, a hardware mutex core is included in the Nios II Embedded Design
Suite (EDS). The hardware mutex core allows different processors to
claim ownership of a shared resource for a period of time. This temporary
ownership of a resource by a processor prevents the shared resource from
becoming corrupted by the actions of another processor.

f For more information about the hardware mutex core, see the Mutex Core
chapter in volume 5 of the Quartus II Handbook.

Performing software debug on multiprocessor systems is made easier
with the Nios II IDE, allowing users to launch and stop software debug
sessions on different processors with a single operation.

http://www.altera.com/literature/hb/nios2/n2cpu_nii51020.pdf

Altera Corporation 1–3
December 2007

Creating Multiprocessor Nios II Systems Tutorial Hardware Design Considerations

Hardware
Design
Considerations

Nios II multiprocessor systems are split into two main categories, those
that share resources, and those in which each processor is autonomous
and does not share resources with other processors.

Autonomous Multiprocessors

While autonomous multiprocessor systems contain multiple processors,
these processors are completely autonomous and do not communicate
with the others, much as if they were completely separate systems.
Systems of this type are typically less complicated and pose fewer
challenges because by design, the system's processors are incapable of
interfering with each other's operation. Figure 1–1 shows a block diagram
of two autonomous processors in a multiprocessor system.

Figure 1–1. Autonomous Multiprocessor System

Processor 1

Processor 2

Memory 1

UART 1

Timer 1

Memory 2

UART 2

Timer 2

Altera Corporation 1–4
December 2007

Creating Multiprocessor Nios II Systems Tutorial Sharing Resources in a Multiprocessor System

Multiprocessors that Share Resources

Multiprocessor systems that share resources can pose many more
challenges. While the Nios II EDS includes features making it possible to
reliably implement multiprocessor systems that share resources, the
creation of such systems is not necessarily a straightforward venture.
Altera recommends that you complete this tutorial and fully understand
its recommendations before attempting to create a resource-sharing
multiprocessor system.

Sharing
Resources in a
Multiprocessor
System

Resources are considered shared when they are available to be accessed
by more than one processor. Shared resources can be a very powerful
aspect of multiprocessor systems, but care must be taken when deciding
which system resources are shared, and how the different processors will
cooperate regarding the use of resources. Figure 1–2 shows a block
diagram of a sample multiprocessor system in which two processors
share an on-chip memory.

Altera Corporation 1–5
December 2007

Creating Multiprocessor Nios II Systems Tutorial Sharing Resources in a Multiprocessor System

Figure 1–2. Multiprocessor System with Shared Resource

Resources can be made shareable by simply connecting them to multiple
processor bus masters in the connection matrix of SOPC Builder, but that
in no way guarantees that the processors that share them will do so
non-destructively. The software running on each processor is responsible
for coordinating access to shared resources with the system's other
processors. Figure 1–3 shows the sample multiprocessor system in SOPC
Builder. The on-chip memory is considered shared because the data
master ports of both processors are connected to the same slave port of
the memory. Since cpu1 and cpu2 are both physically capable of writing
blocks of data to the shared memory at the same time, the software for
those processors must be written carefully to protect the integrity of the
data stored in the shared memory.

FPGA Design

Processor 1

Memory 1

Processor 2

Timer 2

UART 2

Memory 2

Shared
Memory

Timer 1

UART 1

Altera Corporation 1–6
December 2007

Creating Multiprocessor Nios II Systems Tutorial Sharing Resources in a Multiprocessor System

Figure 1–3. Multiprocessor System Sharing On-Chip Memory

Sharing Memory

The most common type of shared resource in multiprocessor systems is
memory. Shared memory can be used for anything from a simple flag
whose purpose is to communicate status between processors, to complex
data structures that are collectively computed by many processors
simultaneously.

If a memory component is to contain the program memory for more than
one processor, each processor sharing the memory is required to use a
separate area for code execution. The processors cannot share the same
area of memory for program space. Each processor must have its own
unique .text, .rodata, .rwdata, .heap, and .stack sections. See
“Software Design Considerations” on page 1–10 for information on how
to make sure each processor sharing a memory component for program
space uses a dedicated area within that memory.

If a memory component is to be shared for data purposes, its slave port
must be connected to the data masters of the processors that are sharing
the memory. Sharing data memory between multiple processors can be
trickier than sharing instruction memory because data memory can be
written to as well as read. If one processor is writing to a particular area

Altera Corporation 1–7
December 2007

Creating Multiprocessor Nios II Systems Tutorial Sharing Resources in a Multiprocessor System

of shared data memory at the same time another processor is reading or
writing to that area, data corruption will likely occur, causing application
errors at the very least, and possibly a system crash.

The processors sharing memory need a mechanism to inform one another
when they are using a shared resource, so the other processors do not
interfere.

The Hardware Mutex Core

The Nios II processor provides protection of shared resources with its
hardware mutex core feature. This hardware mutex core is not an internal
feature of the Nios II processor, but a small SOPC Builder component
named mutex.

The term mutex stands for mutual exclusion, and a mutex does exactly as
its name suggests. A mutex allows cooperating processors to agree that
one of them should be allowed mutually exclusive access to a hardware
resource in the system. This is useful for the purpose of protecting
resources from data corruption that can occur if more than one processor
attempts to use the resource at the same time.

The mutex core acts as a shared resource, providing an atomic
test-and-set operation that allows a processor to test if the mutex is
available and if so, to acquire the mutex lock in a single operation. When
the processor is finished using the shared resource associated with the
mutex, the processor releases the mutex lock. Now another processor
may acquire the mutex lock and use the shared resource. Without the
mutex, this kind of function would normally require the processor to
execute two separate instructions, test and set, between which another
processor could also test for availability and succeed. This situation
would leave two processors both thinking they successfully acquired
mutually exclusive access to the shared resource when clearly they did
not.

It is important to note that the mutex core does not physically protect
resources in the system from being accessed at the same time by multiple
processors. The software running on the processors is responsible for
abiding by the rules. The software must be designed to always acquire the
mutex before accessing its associated shared resource.

Another kind of mutex, called a software mutex is common in many
operating systems for providing the same protection of resources. The
difference is that a software mutex is purely a software construct that is
used to protect hardware resources from being corrupted by multiple
processes running on the same processor. A hardware mutex core is an
SOPC Builder component with an Avalon interface that uses logic to

Altera Corporation 1–8
December 2007

Creating Multiprocessor Nios II Systems Tutorial Sharing Resources in a Multiprocessor System

guarantee only one processor is granted the lock of the mutex at any
given time. Therefore, if every processor waits until it locks the mutex
before using the associated shared resource, the resource is protected
from corruption due to simultaneous access by multiple processors. Each
processor must first request a lock of the mutex core before accessing the
associated shared resource.

Nios II Systems Without a Mutex Core

In most cases, a mutex core should be used to protect any resource shared
between multiple processors. However, in some limited cases a mutex
core might not be necessary. Such cases might include one-way or circular
message buffer arrangements in which only one processor ever writes to
a particular set of memory locations. However, sharing resources safely
without a mutex core can be complicated. When in doubt, use the mutex
core.

Sharing Peripherals Between Multiple Processors

In general, with the exception of the mutex core, Nios II EDS does not
support sharing non-memory peripherals between multiple processors.

Sharing peripherals in multiprocessor systems presents some difficult
challenges, and is generally considered to lead to inefficient system
designs. The biggest problems arise for peripherals with interrupts. If a
peripheral is allowed to interrupt all the processors that share it, there is
no reliable way to guarantee which processor will respond first and
service that interrupt. Additionally, if the peripheral is used as an input
device for multiple processors, it becomes difficult to determine which
processor is supposed to collect given input from the device. While it is
conceivable that a complex system of handshaking could be created to
handle these scenarios, such a system is beyond the scope of this
document, and is unsupported by the Nios II hardware abstraction layer
(HAL) library.

f For more information on the Nios II HAL Library, refer to the Nios II
Software Developer's Handbook.

Altera recommends that each non-memory peripheral be accessible by
only one processor in the system. If other processors require use of the
peripheral, they should use a message buffer that is either
mutex-protected or otherwise multiprocessor-safe when communicating
with the processor that is connected to that peripheral.

When building any system, especially a multiprocessor system, it is
advisable to only make connections between peripherals that require
communication. For instance, if a processor runs from and uses only one

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 1–9
December 2007

Creating Multiprocessor Nios II Systems Tutorial Sharing Resources in a Multiprocessor System

on-chip memory, there is no need to connect that processor to any other
memory in the system. Physically disconnecting the processor from
memories it is not using both saves FPGA resources and guarantees the
processor will never corrupt those memories.

In single processor systems, SOPC Builder will usually make intelligent
default choices for connecting master and slave components. However, in
multiprocessor systems the need to connect different components is very
design dependent. Therefore, when designing multiprocessor systems,
you should explicitly verify that each component is connected
appropriately.

Multiprocessors and Overlapping Address Space

Single-processor systems typically prohibit more than one slave
peripheral from occupying the same address space because this
arrangement causes conflicts. In multiprocessor systems however,
separate slave peripherals can occupy the same base address and not
conflict, as long as each of those peripherals is exclusively mastered by a
different processor. Because not every slave peripheral is necessarily
mastered by every processor, each processor might have a different view
of the system. If processor A is connected to a slave peripheral mapped to
address 0x4000, processor B may connect to a separate slave peripheral,
also mapped to address 0x4000, as long as processor A is not connected
to processor B's slave peripheral and processor B is not connected to
processor A's slave peripheral. In effect, the point-to-point connectivity
allows the two processors to have separate address spaces. Figure 1–4
shows a block diagram of the sample multiprocessor system with
different slave components mapped to the same base address. Figure 1–3
shows the different slave components mapped to the same base address
in SOPC Builder.

Altera Corporation 1–10
December 2007

Creating Multiprocessor Nios II Systems Tutorial Software Design Considerations

Figure 1–4. Multiprocessor Slave Peripherals Mapped to the Same Base Address

Software Design
Considerations

Creating and running software on multiprocessor systems is much the
same as for single-processor systems, but requires the consideration of a
few additional points. Many of the software design issues described in
this section are dictated by the system's hardware architecture.

Program Memory

When creating multiprocessor systems, you might want to run the
software for more than one processor out of the same physical memory
device. Software for each processor must be located in its own unique
region of memory, but those regions are allowed to reside in the same

FPGA Design

Processor 1
0x00002820

0x00002800

0x00001000

0x00001000

0x00002820

0x00002800

0x00000000

Memory 1

Processor 2

Timer 2

UART 2

Memory 2

Shared
Memory

Timer 1

UART 1

0x00000000

Altera Corporation 1–11
December 2007

Creating Multiprocessor Nios II Systems Tutorial Software Design Considerations

physical memory device. For instance, imagine a two-processor system
where both processors run out of SDRAM. The software for the first
processor requires 128 KBytes of program memory, and the software for
the second processor requires 64 KBytes. The first processor could use the
region between 0x0 and 0x1FFFF in SDRAM as its program space, and
the second processor could use the region between 0x20000 and
0x2FFFF.

Nios II and SOPC Builder provide a simple scheme of memory
partitioning that allows multiple processors to run their software out of
different regions of the same physical memory. The partitioning scheme
uses the exception address for each processor, which is set in SOPC
Builder, to determine the region of memory from which each processor
will be allowed to run its software. Although the Nios II IDE is ultimately
responsible for the linking of the processors' software and determining
where the software will reside in memory, the Nios II IDE looks at the
exception addresses that were set for each processor in SOPC Builder to
calculate where the different code sections will be linked. The Nios II IDE
provides each processor its own section within memory from which it can
run its software. If the software for two different processors is linked to
the same physical memory, then the exception address of each processor
is used to determine the base address of the region which that processor's
software can occupy. The end address of the region is determined by the
next exception address found in that physical memory, or the end of that
physical memory, whichever comes first.

Each processor in a single or multiprocessor system has five primary code
sections that need to be linked to fixed addresses in memory. These
sections are:

■ .text — the actual executable code
■ .rodata — any read-only data used in the execution of the code
■ .rwdata — where read-write variables and pointers are stored
■ .heap — where dynamically allocated memory is located
■ .stack — where function-call parameters and other temporary data

is stored

See Figure 1–5 for a memory map showing how these sections are
typically linked in memory for a single processor Nios system.

Altera Corporation 1–12
December 2007

Creating Multiprocessor Nios II Systems Tutorial Software Design Considerations

Figure 1–5. Single Processor Code Linked in Memory Map

In a multiprocessor system, it might be advantageous to use a single
memory to store all the code sections for each processor. In this case, the
exception address set for each processor in SOPC Builder is used to define
the boundaries between where one processor's code sections end and
where the next processor's code sections begin.

For instance, imagine a system where SDRAM occupies the address range
0x0–0xFFFFF and processors A, B and C each require 64 KBytes of
SDRAM to run their software. If you use SOPC Builder to set their
exception addresses 64 KBytes apart in SDRAM, the Nios II IDE
automatically partitions SDRAM based on those exception addresses. See
Figure 1–6 for a memory map showing how the SDRAM is partitioned in
this example system.

1 Mbyte Memory

0x00FFFFF

0x00000000

.stack

.heap

.rwdata

.rodata

.text

Altera Corporation 1–13
December 2007

Creating Multiprocessor Nios II Systems Tutorial Software Design Considerations

Figure 1–6. Partitioning of SDRAM Memory Map for Three Processors

The lower six bits of the exception address are always set to 0x20. Offset
0x0 is where the Nios II processor must run its reset code, so the
exception address must be placed elsewhere. The offset of 0x20 is used

0x00FFFFF

1Mbyte Memory

.text

.rodata

.rwdata

.heap

.stack

Processor 1

Processor 2

Processor 3

.text

.rodata

.rwdata

.heap

.stack

.text

.rodata

.rwdata

.heap

.stack

0x00020020Exception Address

0x00020000Code Entry Point

Processor 3:

Exception Address

0x00010000Code Entry Point

Processor 2:

0x00010020

Exception Address

0x00000000Code Entry Point

Processor 1:

0x00000020

Altera Corporation 1–14
December 2007

Creating Multiprocessor Nios II Systems Tutorial Software Design Considerations

because it corresponds to one instruction cache line. The 0x20 bytes of
reset code initialize the instruction cache, and then branch around the
exception section to the system startup code.

Care must be taken when partitioning a physical memory to contain the
code sections of multiple processors. There are no safeguards in SOPC
Builder or the Nios II IDE that guarantee you have provided enough code
space for each processor's stack and heap in the partition. If inadequate
code space is allotted in memory, the stack and heap might overflow and
corrupt the processor's code execution.

Boot Addresses

In multiprocessor systems, each processor must boot from its own piece
of memory. Multiple processors might not boot successfully from the
same bit of executable code at the same address in the same non-volatile
memory. Boot memory can also be partitioned, much like program
memory can, but the notion of sections and linking is not a concern as
boot code typically just copies the real program code to where it has been
linked in RAM, and then branches to the program code. To boot multiple
processors out of separate regions with the same non-volatile memory
device, simply set each processor's reset address to the location from
where you wish to boot that processor. Be sure you leave enough space
between boot addresses to hold the intended boot payload. See
Figure 1–7 for a memory map of one physical flash device from which
three processors can boot.

Altera Corporation 1–15
December 2007

Creating Multiprocessor Nios II Systems Tutorial Software Design Considerations

Figure 1–7. Flash Device Memory Map with Three Processors Booting

0x00000000

0x00FFFFF

1Mbyte Flash Memory

Boot Loader

Program Data
Processor 1

Processor 2

Processor 3

0x0000FFFF

0x0001FFFF
0x00020000

0x00010000 Boot loader

Program Data

Boot Loader

Program Data

Boot Loader

Altera Corporation 1–16
December 2007

Creating Multiprocessor Nios II Systems Tutorial Software Design Considerations

The Nios II flash programmer is able to program bootable code for
multiple processors into a single flash device. The flash programmer
looks at the reset address of each processor and then uses that reset
address to calculate the offset within the flash memory where the code is
programmed.

f For details about the flash programmer, refer to the Nios II Flash
Programmer User Guide.

Running and Debugging Multiprocessor Systems from the Nios II
IDE

The Nios II IDE includes a number of features that can help in the
development of software for multiprocessor systems. Most notable is the
ability of the Nios II IDE to perform simultaneous on-chip debug for
multiple processors. Multiple debug sessions can run at the same time on
a multiprocessor system and can pause and resume each processor
independently. Breakpoints can also be set individually per processor. If
one processor hits a breakpoint, it does not halt or affect the operation of
the other processors. Debug sessions can be launched and stopped
independently.

Debug sessions for multiple processors can also be launched in a single
operation with the Nios II IDE, using a feature called multiprocessor
collections. Multiprocessor collections are groups of debug
configurations for individual processors that are combined under one
configuration name. The benefit of a multiprocessor collection is that any
time the collection is launched; the Nios II IDE individually launches
each of the single debug configurations in the background. This allows
users to launch debug sessions for multiprocessor systems without
having to manually launch a session for each processor. Multiprocessor
collections can also be stopped with one operation, however pausing and
resuming multiprocessor collections together is not currently supported.

The launching and stopping of multiprocessor collections is not
simultaneous, meaning the processors in the collection do not start
executing code on the same clock cycle. In fact, there might be a delay of
a few seconds between the individual processors being started. The
purpose of multiprocessor collections is to make it more convenient to
launch debug sessions for multiprocessor systems, not to synchronize the
processors. If you require the multiple processors to start within a shorter
period of time, a separate hardware or software mechanism must be
constructed.

http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf

Altera Corporation 1–17
December 2007

Creating Multiprocessor Nios II Systems Tutorial Design Example

Design Example The following exercise shows you how to build a three-processor Nios II
system with SOPC Builder, starting with the standard example design as
a template. You create three software projects in the Nios II IDE, one for
each processor. The software for all three CPUs generates messages to be
displayed and uses the hardware mutex core to put those messages in a
shared message buffer. cpu1 continually checks the message buffer for
new messages, and if it finds one, prints it using the jtag_uart.

Hardware and Software Requirements

To use this design example you must have the following:

■ Quartus®II Software version 7.1 or higher – Both Quartus II Web
Edition and the fully licensed version work with the example design.

■ Nios II Development Kit version 7.1 or higher – Each of the five
available kits includes a Nios development board and an Altera USB
Blaster download cable. You can use any of the following Nios II
Development Kits:

● Stratix II Edition
● Stratix Edition
● Stratix Professional Edition
● Cyclone II Edition
● Cyclone Edition

If you do not have a development board, you can follow the hardware
development steps, but you will not be able to download the complete
system to a working board.

f You can download the Quartus II Web Edition software and the Nios II
EDS for free from the Altera Download Center at
www.altera.com/download. Before you begin creating the design, you
must install both the Quartus II software and the Nios II EDS.

Creating the Hardware System

In the following steps you create a multiprocessor system by starting with
the standard hardware example design included in the Nios II EDS, and
adding two additional processors, two additional timers, and a hardware
mutex component. You can use the standard hardware example design
for any of the Nios development boards, and the resulting system runs on
that development board. If you do not have a Nios development board,
you can still follow these steps to learn how to design multiprocessor
hardware.

http://www.altera.com/download

1–18 Altera Corporation
December 2007

Design Example Nios II Hardware Development Tutorial

Getting Started with a Standard Example Design

To begin building a multiprocessor system sharing resources, perform the
following steps:

2. Using an external file management tool (such as Windows
Explorer), browse to the examples directory for your board. Each
board-specific project file resides in the <Nios II EDS install path>/
examples/<hdl>/<development board>/standard directory.

3. Copy the standard example design project directory for the board
you are using to a working directory of your choice. Make sure the
pathname has no spaces.

4. Open the Quartus II software.

5. On the File menu, click Open Project (not Open).

6. Browse and load the Quartus II Project File (.qpf) from the newly-
created directory.

7. On the Tools menu, click SOPC Builder.

c In this tutorial, you must name the hardware components
exactly according to the instructions. If your component names
differ from the names printed here, the software example will
not work.

8. Right-click cpu and click Rename.

9. Type cpu1 to rename the processor then press Enter.

10. Right-click sys_clk_timer and click Rename.

11. Type cpu1_timer and press Enter. This is the timer for cpu1.

12. If cpu1_timer is not immediately under cpu1, click Move Up several
times to move cpu1_timer under cpu1.

Adding a Second Processor

In the next series of steps, you add a second Nios II processor to the
system. You use a Nios II/s processor because it is a good general-
purpose choice.

To add a second processor, perform the following steps:

Altera Corporation 1–19
December 2007

Creating Multiprocessor Nios II Systems Tutorial Design Example

1. In the list of available components (on the left-hand side of the
System Contents tab), select Nios II Processor.

2. Click Add. The Nios II Processor MegaWizard interface appears,
displaying the Nios II Core page.

3. Specify the following settings:

● Nios II Core: Nios II/s
● Hardware Multiply: None
● Hardware Divide: Off
● Reset Vector: Memory: ext_flash Offset: 0x100000
● Exception Vector: Memory: sdram Offset: 0x100020

1 Recall from “Program Memory” on page 1–10 that the
exception addresses determine how code memory is
partitioned between processors. In this tutorial, each of the
three processors runs its software from 1 Mbyte of SDRAM,
so you set each processor's exception address within
SDRAM, each separated by 0x100000 (1 Mbyte).

4. Click JTAG Debug Module. The JTAG Debug Module page
appears.

5. Select Level 1 as the debugging level for this processor.

6. Click Finish. You return to the SOPC Builder System Contents tab,
and an instance of the Nios II core named cpu now appears in the
table of available components.

1 Error messages appear in the SOPC Builder messages
window. This is because SOPC Builder does not know that
you plan to connect this processor with other components
in the system. Ignore the error messages for now. You will
fix these errors in later steps.

7. Right-click the newly-added processor and click Rename.

8. Type cpu2 and press Enter.

9. Click Move Up several times to move cpu2 under cpu1_timer.

Adding a Third Processor

In the next series of steps, you add a third Nios II processor to the system.
Use a Nios II/e processor to demonstrate that you can use any
combination of Nios II processors in a multiprocessor system.

1–20 Altera Corporation
December 2007

Design Example Nios II Hardware Development Tutorial

To add the third processor, perform the following steps:

1. In the list of available components, select Nios II Processor.

2. Click Add. The Nios II Processor MegaWizard interface appears,
displaying the Nios II Core page.

3. Specify the following settings:

● Nios II Core: Nios II/e
● Hardware Multiply: None
● Hardware Divide: Off
● Reset Vector: Memory: ext_flash Offset: 0x200000
● Exception Vector: Memory: sdram Offset: 0x200020

4. Click JTAG Debug Module. The JTAG Debug Module page
appears.

5. Select Level 1 as the debugging level for this processor.

6. Click Finish. You return to the SOPC Builder System Contents tab,
and an instance of the Nios II core named cpu now appears in the
table of available components.

7. Right-click the newly-added processor and click Rename.

8. Type cpu3 and press Enter.

9. Click Move Up several times to move cpu3 under cpu2.

Adding a Timer for cpu2

As mentioned earlier, it is typically not recommended for multiple
processors to share non-memory peripherals, so in this section you add
separate timer peripherals for each processor in this system.

To add a timer for cpu2, perform the following steps:

1. In the list of available components, expand Peripherals, expand
Microcontroller Peripherals, and then click Interval Timer.

2. Click Add. The Interval Timer MegaWizard interface appears.

3. In the Presets list, select Full-featured.

Altera Corporation 1–21
December 2007

Creating Multiprocessor Nios II Systems Tutorial Design Example

4. Click Finish. You return to the SOPC Builder System Contents tab,
and an instance of the interval timer named timer now appears in
the table of available components.

5. Right-click timer and click Rename.

6. Type cpu2_timer and press Enter. This is the timer for cpu2.

7. Click Move Up to move cpu2_timer under cpu2.

8. Using the connection matrix, connect cpu2_timer to the data master
for cpu2 only. Disconnect cpu2_ timer from all other masters.

1 If you do not see the connection matrix when you move the
mouse over the SOPC Builder connections, click Show
Connections Column on the View menu.

9. Type 0 in the IRQ column for the cpu2/cpu2_timer connection.
This value allows cpu2_timer to interrupt cpu2 with a priority
setting of 0, which is the highest priority.

Adding a Timer for cpu3

To add a timer for cpu3, perform the following steps:

1. In the list of available components, expand Peripherals, expand
Microcontroller Peripherals, and then click Interval Timer.

2. Click Add. The Interval Timer MegaWizard interface appears.

3. In the Presets list, select Full-featured.

4. Click Finish. You return to the SOPC Builder System Contents tab,
and an instance of the interval timer named timer now appears in
the table of available components.

5. Right-click timer and click Rename.

6. Type cpu3_timer and press Enter. This is the timer for cpu3.

7. Click Move Up to move cpu3_timer under cpu3.

8. Using the connection matrix, connect cpu3_timer to the data master
for cpu3 only. Disconnect cpu3_timer from all other masters.

1–22 Altera Corporation
December 2007

Design Example Nios II Hardware Development Tutorial

9. Type 0 in the IRQ column for the cpu3/cpu3_timer connection.
This allows cpu3_timer to interrupt cpu3 with a priority setting of
0, which is the highest priority.

Adding a Hardware Mutex

You are building a multiprocessor system that shares a data memory
between processors, so it is essential that you include a hardware mutex
component to protect that memory from data corruption.

To add the hardware mutex, perform the following steps:

1. In the list of available components, expand Peripherals, expand
Multiprocessor Coordination, and then click Mutex.

2. Click Add. The Mutex MegaWizard interface appears.

3. Click Finish to accept the defaults. You return to the SOPC Builder
System Contents tab, and an instance of the mutex named mutex
now appears in the table of available components.

4. Right-click mutex and click Rename.

5. Type message_buffer_mutex and press Enter.

Adding a Message Buffer Memory

In this section, you add an on-chip memory to the system that is used as
a message buffer to pass messages between processors. This memory is
shared by all processors in the system. The processors use the mutex core
added in the previous steps to protect the memory's contents from
corruption.

 To add a message buffer memory perform the following steps:

1. In the list of available components, expand Memories and Memory
Controllers, expand On-Chip, and then click On-Chip Memory
(RAM or ROM).

2. Click Add. The On-Chip Memory (RAM or ROM) MegaWizard
interface appears.

3. In the Total memory size box, type 1 and select KBytes to specify a
memory size of 1 KByte.

Altera Corporation 1–23
December 2007

Creating Multiprocessor Nios II Systems Tutorial Design Example

4. Click Finish. You return to the SOPC Builder System Contents tab,
and an instance of the on-chip memory named onchip_mem now
appears in the table of available components.

5. Right-click onchip_mem and click Rename.

6. Type message_buffer_ram and press Enter. This memory is used
as a message buffer for the three processors in your multiprocessor
system.

Connecting Shared Resources

Now you need to properly connect all the resources that are shared
between processors in the system using SOPC Builder's connection
matrix and IRQ connection matrix.

To properly connect all the resources in the system shared by the multiple
processors, perform the following steps:

1. In the connection matrix, ensure that each cpu_timer is connected
only to the data master for its CPU component.

2. Using the connection matrix, connect sdram to the instruction and
data masters for each processor, allowing all three processors to
access sdram. All the connection dots for sdram should be solid
black.

3. Using the connection matrix, connect ext_ram_bus to the
instruction and data masters for each processor, allowing all three
processors to access external RAM and flash memory. All the
connection dots for ext_ram_bus should be solid black.

4. Using the connection matrix, connect message_buffer_mutex to the
data masters for all three processors and disconnect all three
instruction masters, allowing all three processors to access
message_buffer_mutex.

5. Using the connection matrix, connect message_buffer_ram to the
data masters for all three processors and disconnect all three
instruction masters, allowing all three processors to access that
memory only as data memory. No software instructions run from
message_buffer_ram.

6. Using the connection matrix, disconnect high_res_timer from all
instruction and data masters except for the cpu1 data master. The
high_res_timer should only be connected to the data master for
cpu1.

1–24 Altera Corporation
December 2007

Design Example Nios II Hardware Development Tutorial

7. Using the connection matrix, disconnect uart1 from all instruction
and data masters except for the cpu1 data master. The uart1 should
only be connected to the data master for cpu1.

8. Using the connection matrix, disconnect led_pio from all instruction
and data masters except for the cpu1 data master. The led_pio
should only be connected to the data master for cpu1.

1 In practice, none of the I/O components should be connected to
multiple CPUs. This tutorial runs successfully without further
component disconnecting because the tutorial code does not
attempt to access the other I/O components. Additionally,
unused connections consume Avalon resources and FPGA logic
elements, possibly affecting system fMAX.

9. Using the IRQ connection matrix (on the right-hand side of the
System Contents tab), erase the default IRQ numbers to disconnect
all lines involving cpu2, cpu3, cpu2_timer and cpu3_timer from all
resources, except for the two cpu2/cpu2_timer and cpu3/
cpu3_timer IRQs you set in step 9 in “Adding a Timer for cpu2” on
page 1–20 and in step 9 in “Adding a Timer for cpu3” on page 1–21.

10. On the System menu, click Auto-Assign Base Addresses to give
every peripheral a unique base address.

Figure 1–8 shows a system in SOPC Builder after these changes. It shows
the new components that implement the message buffer and the required
connectivity for the system. Because this tutorial runs on several different
development boards, the complete component list might not match
yours.

Altera Corporation 1–25
December 2007

Creating Multiprocessor Nios II Systems Tutorial Design Example

Figure 1–8. Shared Resource Connections

Generating and Compiling the System

In this section, you generate HDL for the system you just constructed in
SOPC Builder, and then compile the project in the Quartus II software to
produce a programming file. To generate and compile the system,
perform the following steps:

1. Click the System Generation tab.

2. Turn off Simulation. Create project simulator files. System
generation executes much faster when simulation is off.

3. Click Generate. This might take a few moments. A Stop button
replaces the Generate button, indicating generation is taking place.

4. When generation is complete, the Generate button replaces the Stop
button, and a SUCCESS: SYSTEM GENERATION COMPLETED.
message displays. Click Exit in SOPC Builder to return to the
Quartus II software.

1–26 Altera Corporation
December 2007

Creating Software for the Multiprocessor System Nios II Hardware Development Tutorial

5. On the Quartus II Processing menu, click Start Compilation to
compile the project in the Quartus II software.

6. When compilation completes and displays the Full compilation
was successful message box, click OK.

7. Click Programmer on the Tools menu.

8. Turn on the Program/Configure checkbox for the SRAM Object File
(.sof) in the Quartus II Programmer.

9. Click Start to download the FPGA configuration data to your target
hardware.

Creating
Software for the
Multiprocessor
System

In the following steps you create one application project and one system
library project for each processor in the system using the Nios II IDE, a
total of six separate software projects for the multiprocessor system. You
then build, run and debug the software projects.

The software you run on this system uses the hardware mutex to share a
message buffer. All three processors write messages to the message
buffer. cpu1 then reads the messages and prints them to the jtag_uart.
The same executable file runs on each processor, but the processors are
doing slightly different things. In this particular application, the software
running on each CPU decides what to do based on whether or not the
CPU is connected to the jtag_uart component. In Nios II processor
systems, a processor locks the mutex by writing the value of its cpuid
control register to the OWNER field of the mutex register. The cpuid
register holds a static value that uniquely identifies the processor in a
multi-processor system. The software checks the processor's cpuid
before executing any functions that are specific to a particular processor.
If the cpuid is correct, it executes the function.

Starting the Nios II IDE

In this section, you start the Nios II IDE and begin creating software
projects for the three processors in the system. To start the Nios II IDE
from SOPC Builder, perform the following steps:

1. On the Tools menu in the Quartus II software, click SOPC Builder.

2. In SOPC Builder, click the System Generation tab.

3. Click Nios II IDE. The Nios II IDE starts.

Altera Corporation 1–27
December 2007

Creating Multiprocessor Nios II Systems Tutorial Creating Software for the Multiprocessor System

1 If the Workspace Launcher dialog box appears, click OK to
accept the default workspace. If the Nios II IDE welcome
screen appears, click Workbench to continue.

Creating a Software Project for cpu1

To create a software project for cpu1, perform the following steps:

1. On the File menu, point to New, and then click Nios II C/C++
Application. The New Project wizard for Nios II C/C++
application projects appears, pre-selecting the newly-created SOPC
Builder System PTF File for you.

2. In the Name field, type hello_multi_cpu1.

3. Under Select Target Hardware, select cpu1 as the CPU.

4. In Select Project Template list, select Blank Project as shown in
Figure 1–9.

Figure 1–9. New Project for cpu1

1–28 Altera Corporation
December 2007

Creating Software for the Multiprocessor System Nios II Hardware Development Tutorial

5. Click Finish. The Nios II IDE generates a new Nios II C/C++
application project, and a corresponding system library project for
cpu1.

6. Download the file hello_world_multi.c to a known location on your
host PC.

f You can find this file with this tutorial on the Nios II
Processor Literature page at www.altera.com/literature/
lit-nio2.jsp.

7. Using an external file management tool (such as Windows
Explorer), drag hello_world_multi.c from its known location into
the Nios II C/C++ Projects view of the Nios II IDE, and drop it onto
the hello_multi_cpu1 project folder.

8. Right-click the system library project hello_multi_cpu1_syslib.

9. Select Properties.

10. In the left-hand pane, select System Library.

11. Verify jtag_uart is selected for stdin, stderr, and stdout.

12. Verify cpu1_timer is selected for System clock timer.

13. Verify that sdram is selected for Program Memory, Read-only data
memory, Read/write data memory, Heap memory, and Stack
memory. See Figure 1–10 for an example of system library property
settings.

14. Click OK.

http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/lit-nio2.jsp

Altera Corporation 1–29
December 2007

Creating Multiprocessor Nios II Systems Tutorial Creating Software for the Multiprocessor System

Figure 1–10. System Library Property Settings

Creating a Software Project for cpu2

To create a software project for cpu2, perform the following steps:

1. On the File menu, point to New, and then click Nios II C/C++
Application. The New Project wizard for Nios II C/C++
application projects appears, pre-selecting the newly-created SOPC
Builder System PTF File for you.

2. In the Name field, type hello_multi_cpu2.

3. Under Select Target Hardware, select cpu2 as the CPU.

4. In Select Project Template, choose Blank Project.

5. Click Finish. The Nios II IDE generates a new Nios II C/C++
application project, and a corresponding system library project for
cpu2.

1–30 Altera Corporation
December 2007

Creating Software for the Multiprocessor System Nios II Hardware Development Tutorial

6. In the Nios II C/C++ Projects view, expand the hello_multi_cpu1
project folder. Right-click hello_world_multi.c and click Copy.

7. Right-click the hello_multi_cpu2 project folder and click Paste. A
copy of hello_world_multi.c appears under the hello_multi_cpu2
project.

8. Right-click the system library project hello_multi_cpu2_syslib.

9. Select Properties.

10. Select System Library in the left-hand pane.

11. Verify null is selected for stdin, stderr, and stdout. Only cpu1 is
connected to the jtag_uart.

12. Select cpu2_timer as System clock timer.

13. Verify that sdram is selected for Program Memory, Read-only data
memory, Read/write data memory, Heap memory, and Stack
memory.

14. Click OK.

Creating a Software Project for cpu3

To create a software project for cpu3, perform the following steps:

1. On the File menu, point to New, and then click Nios II C/C++
Application. The New Project wizard for Nios II C/C++
application projects appears, pre-selecting the newly-created SOPC
Builder System PTF File for you.

2. In the Name field, type hello_multi_cpu3.

3. Under Select Target Hardware, select cpu3 as the CPU.

4. In Select Project Template, choose Blank Project.

5. Click Finish. The Nios II IDE generates a new Nios II C/C++
application project, and a corresponding system library project for
cpu3.

6. In the Nios II C/C++ Projects view, expand the hello_multi_cpu1
project folder. Right-click hello_world_multi.c and click Copy.

Altera Corporation 1–31
December 2007

Creating Multiprocessor Nios II Systems Tutorial Creating Software for the Multiprocessor System

7. Right-click the hello_multi_cpu3 project folder and click Paste. A
copy of hello_world_multi.c appears under the hello_multi_cpu3
project.

8. Right-click system library project hello_multi_cpu3_syslib.

9. Select Properties.

10. Select System Library in the left-hand pane.

11. Verify null is selected for stdin, stderr, and stdout. Only cpu1 is
connected to the jtag_uart.

12. Select cpu3_timer as System clock timer.

13. Verify that sdram is selected for Program memory, Read-only data
memory, Read/write data memory, Heap memory, and Stack
memory.

14. Click OK.

Building the Software Projects

In this section, you build the three software projects you just created so
they can be run on the processors in the system.

To build the three software projects, perform the following steps:

1. In the Nios II C/C++ Projects view, right-click the project
hello_multi_cpu1 and click Build Project.

2. Right-click the project hello_multi_cpu2 and click Build Project.

3. Right-click the project hello_multi_cpu3 and click Build Project.

If you encounter any errors in the builds, you must correct them and
rebuild before continuing.

Setting up the Nios II IDE for Multiprocessor Debug

By default, the Nios II IDE is set to not allow multiple active debug
sessions. To enable multiple debug sessions, perform the following steps:

1. In the Nios II IDE, on the Window menu, click Preferences.

2. Select Nios II and turn on Allow multiple active run/debug
sessions as shown in Figure 1–11.

1–32 Altera Corporation
December 2007

Creating Software for the Multiprocessor System Nios II Hardware Development Tutorial

3. Click OK.

Figure 1–11. Multiple Active Run/Debug Sessions

Creating a Run/Debug Configuration for Each Processor

In this section, you create a run/debug configuration for each of the target
processors. These configurations enable you to run and debug the three
software projects you just built on the processors in the system.

To create run/debug configurations for each processor, perform the
following steps:

1. In the Nios II C/C++ Projects view, click the hello_multi_cpu1
project.

2. On the Run menu, click Run.

3. Right-click Nios II Hardware in the configurations list.

4. Click New. A new run/debug configuration is created for the
project.

5. On the Main tab, click Load JDI File and browse to the system’s JDI
file located in the Quartus II project directory.

6. Click the Target Connection tab.

7. Ensure the download cable you are using is selected in the JTAG
cable field as shown in Figure 1–12.

Altera Corporation 1–33
December 2007

Creating Multiprocessor Nios II Systems Tutorial Creating Software for the Multiprocessor System

If the field reads Automatic<currently (your correct download cable)>,
you do not need to change it.

Figure 1–12. Run/Debug Configuration

8. Click Close.

9. Repeat steps 1–8 to create a run/debug configuration for each of the
target processors.

1 Be sure you have selected the appropriate project when you
create the run/debug configuration.

You have created a run/debug configuration for each processor in the
system. You can now download, execute, and debug code on each of the
processors individually, using the normal flow for running or debugging.

Creating a Multiprocessor Collection

In this section, you create a multiprocessor collection which enables the
launching and stopping of multiple processors as a single unit.

1–34 Altera Corporation
December 2007

Creating Software for the Multiprocessor System Nios II Hardware Development Tutorial

 To create this multiprocessor collection, perform the following steps:

1. On the Run menu, click Run.

2. In the configurations list, right-click Nios II Multiprocessor
Collection.

3. Click New.

4. In the Name field, type hello_cpu_collection as the name for
this new multiprocessor collection.

5. Turn on hello_multi_cpu1 Nios II HW configuration,
hello_multi_cpu2 Nios II HW configuration, and
hello_multi_cpu3 Nios II HW configuration as shown in
Figure 1–13.

6. Click Apply.

Figure 1–13. Multiprocessor Collection Example

Altera Corporation 1–35
December 2007

Creating Multiprocessor Nios II Systems Tutorial Creating Software for the Multiprocessor System

Starting the Multiprocessor Collection

Now you can start all the processors with a single mouse click. To start all
the processors, perform the following steps:

1. Select the hello_cpu_collection configuration, and click Run. The
Nios II IDE downloads the software to each processor, and then
runs the software.

Each processor begins executing code as soon as its code is
downloaded; the processors do not start in unison.

2. After the launch finishes, you should see messages from all three
processors displaying in the Console view as shown in Figure 1–14.

Figure 1–14. Multiprocessor Collection Messages

3. When you are done observing the Console output, click Terminate
(the square red button on the Console view toolbar) to close the
terminal connection.

4. If no Console output appeared, erase the flash memory and try
again:

a. In SOPC Builder, on the System Contents tab, verify the base
address of flash memory.

b. Open the Nios II IDE Command Shell.

c. In the Nios II IDE Command Shell, type

nios2-flash-programmer --base=<flash base address> --erase-all --instance “0”

d. Repeat steps 1–3.

1–36 Altera Corporation
December 2007

Creating Software for the Multiprocessor System Nios II Hardware Development Tutorial

Debugging the Software Projects on the Board

In this section, you start all the processors using the multiprocessor
collection, and set breakpoints on individual processors. To start the
processors and set individual breakpoints, perform the following steps:

1. On the Run menu, click Debug.

2. In the configurations list, select the new collection you created
under Nios II Multiprocessor Collection in the previous section.

3. Click Debug.

1 !If a dialog box appears and asks you to switch to the Debug
perspective, click Yes.

Again, the Nios II IDE downloads and launches each software
project on its respective processor, then pauses each one at a
breakpoint set on main().

In the Debug view, you see the processor collection listed at the top
with each individual debug session listed below it, including the call
stack.

4. Click the main() call stack entry under the cpu1 debug session.

5. Click Step Over in the toolbar menu to see cpu1 step through the
software code.

Figure 1–15 shows the Debug view with the main() call stack entry
highlighted and the mouse pointer pointing to the Step Over icon in
the toolbar menu.

Altera Corporation 1–37
December 2007

Creating Multiprocessor Nios II Systems Tutorial Creating Software for the Multiprocessor System

Figure 1–15. Debug View

6. Click the Resume icon in the toolbar menu to let cpu1 run freely.

You see that only messages from cpu1 appear on the terminal as
shown in Figure 1–16.

Figure 1–16. cpu1 Debug Messages

7. Click the main() call stack entry under the cpu2 debug session.

8. Click the Resume icon in the toolbar menu to let cpu2 run
uninterrupted.

You now see messages from both cpu1 and cpu2 appear on the
terminal as shown in Figure 1–17.

1–38 Altera Corporation
December 2007

Creating Software for the Multiprocessor System Nios II Hardware Development Tutorial

Figure 1–17. cpu1 and cpu2 Debug Messages

9. Repeat steps 7 and 8 for cpu3 to see messages from all three CPUs.

10. Click Terminate (the square red button) to stop the debug sessions
for all three processors.

You're done! You've now constructed, built software projects for, and
debugged software on your first Nios II multiprocessor system. You have
also learned how to use the Mutex component to share system resources
between processors. Feel free to experiment with the system you've
created and find interesting new ways of using multiple processors in an
Altera FPGA.

Altera recommends saving this system to use as a starting point next time
you wish to create a multiprocessor system.

	Creating Multiprocessor Nios II Systems
	Contents
	About This Tutorial
	Revision History
	How to Contact Altera
	Referenced Documents
	Typographic Conventions

	1. Creating Multiprocessor Nios II Systems
	Introduction
	Benefits of Multiprocessor Systems
	Nios II Multiprocessor Systems
	Hardware Design Considerations
	Autonomous Multiprocessors
	Multiprocessors that Share Resources

	Sharing Resources in a Multiprocessor System
	Sharing Memory
	The Hardware Mutex Core
	Nios II Systems Without a Mutex Core
	Sharing Peripherals Between Multiple Processors
	Multiprocessors and Overlapping Address Space

	Software Design Considerations
	Program Memory
	Boot Addresses
	Running and Debugging Multiprocessor Systems from the Nios II IDE

	Design Example
	Hardware and Software Requirements
	Creating the Hardware System
	Getting Started with a Standard Example Design
	Adding a Second Processor
	Adding a Third Processor
	Adding a Timer for cpu2
	Adding a Timer for cpu3
	Adding a Hardware Mutex
	Adding a Message Buffer Memory
	Connecting Shared Resources
	Generating and Compiling the System

	Creating Software for the Multiprocessor System
	Starting the Nios II IDE
	Creating a Software Project for cpu1
	Creating a Software Project for cpu2
	Creating a Software Project for cpu3
	Building the Software Projects
	Setting up the Nios II IDE for Multiprocessor Debug
	Creating a Run/Debug Configuration for Each Processor
	Creating a Multiprocessor Collection
	Starting the Multiprocessor Collection
	Debugging the Software Projects on the Board

