
© July 2008 Altera Corporation

TU-N2060305-1.1
Using Tightly Coupled Memory with the
Nios II Processor Tutorial
This document teaches you how to use tightly coupled memory in designs that
include a Nios® II processor and discusses some possible applications. This document
guides you through the process of building a Nios II system with tightly coupled
memory.

The Nios II architecture provides tightly coupled master ports that deliver
guaranteed, fixed, low-latency access to on-chip memory for performance critical
applications. Tightly coupled masters can connect to instruction memory and data
memory allowing fixed, low-latency read access to executable code as well as fixed
low-latency read, write, or read and write access to data. Tightly coupled masters are
additional instruction or data master ports on the Nios II core, separate from the
embedded processor's instruction and data master ports.

f This document assumes you are familiar with the Nios II tightly coupled memory. For
details, see the Processor Architecture chapter in the Nios II Processor Reference Handbook.

Reasons for Using Tightly Coupled Memory
You can implement a wide variety of functions or modules using tightly coupled
memories. If you use tightly coupled memory to implement the following hardware
features, you enhance the performance of your system:

■ Separate exception stack for use only while handling interrupts

■ Fast data buffers

■ Fast sections of code

■ Fast interrupt handler

■ Critical loops

■ Constant access time; guaranteed not to have arbitration delays

For programs with modest memory requirements, all of the code and data can be held
in a tightly coupled memory pair.

Tradeoffs
Cache memory provides a generalized speed enhancement for all code. On the other
hand, tightly coupled memory uses a dedicated memory block, guaranteeing a
particular section of code or data has fast access times and achieves high performance.
Locating code within tightly coupled memory eliminates cache overhead such as
cache flushing, loading, or invalidating. You must divide on-chip memory equitably
to provide the best overall combination of tightly coupled instruction memory, tightly
coupled data memory, instruction cache, and data cache.

Guidelines for Using Tightly Coupled Memory
This section provides guidelines and limitations which you need to understand when
you design hardware and software with tightly coupled memory.
Using Tightly Coupled Memory with the Nios II Processor Tutorial

http://www.altera.com/literature/lit-nio2.jsp

1–2 Using Tightly Coupled Memory with the Nios II Processor Tutorial
Guidelines for Using Tightly Coupled Memory
Hardware Guidelines
The following guidelines apply to Nios II hardware designs that include tightly
coupled memory:

■ Tightly coupled masters are presented as additional master ports on the CPU.

■ An on-chip memory SOPC Builder component is the only memory that can
connect to a tightly coupled master port on the Nios II core.

■ A tightly coupled master on a processor must connect to exactly one on-chip
memory slave port. This slave port cannot be shared by any other master port.

■ Each on-chip memory can be connected to at most one tightly coupled master
even if it is a dual port memory.

■ Whether data or instruction tightly coupled masters are available depends on the
type of Nios II core.

■ When using the On-Chip Memory component as a tightly coupled memory for
Nios II, you must always configure it as a RAM, and not a ROM. Tightly coupled
memories configured as ROM fail.

■ To conserve logic elements, it is better to have one 2 KByte tightly coupled
memory, than 2 tightly coupled memories of size 1 KByte.

Figure 1 is a block diagram of a simple Nios II system, which includes tightly coupled
memories and other SOPC Builder components.

Software Guidelines
The following two guidelines apply to Nios II software that uses tightly coupled
memory:

■ Software accesses tightly coupled memory addresses just like any other addresses.

■ Cache operations have no effect when targeting tightly coupled memory.

Figure 1. Nios II System with Tightly Coupled Instruction and Data Memory

Nios II
Processor

Core

Tightly
Coupled

Instruction
Master

Port

Tightly
Coupled

Data
Master

Port

Avalon
Instruction

Master
Port

Avalon
Slave
Port

Tightly
Coupled

Slave
Port

Tightly
Coupled

Slave
Port

Avalon
Data

Master
Port

Avalon
Slave
Port

Tightly Coupled
Instruction Memory

Avalon
Slave
Port

Tightly Coupled Data Memory

Other Avalon Component

Avalon Memory Component

Avalon
Switch
Fabric

Tightly Coupled Memory Interface

Tightly Coupled Memory Interface
Using Tightly Coupled Memory with the Nios II Processor Tutorial © July 2008 Altera Corporation

Using Tightly Coupled Memory with the Nios II Processor Tutorial 1–3
Tightly Coupled Memory Interface
Locating Functions in Tightly Coupled Memory
Assigning data to a tightly coupled data memory also involves using a section
attribute. Alternatively, you can include the tightly coupled memory as a #define in
the system.h file. The name of the memory is followed by _BASE and is used as a
pointer to reference the tightly coupled data memory.

The software example in this tutorial provides a source code example showing how to
locate a particular source code function in a particular linker section. A function is
declared to reside within a linker section with the C section attribute in the file
timer_interrupt_latency.h. This C header file locates
timer_interrupt_latency_irq() in the .exceptions section as follows:

extern void timer_interrupt_latency_irq (void* base, alt_u32 id)
attribute ((section (".exceptions")));

SOPC Builder creates linker sections for each memory module in the system. A source
code function can be located within a particular tightly coupled instruction memory
simply by assigning that function to the linker section created for that tightly coupled
instruction memory.

SOPC Builder creates additional linker sections with address mappings that are
controlled by SOPC Builder. For the case of the .exceptions section, the physical
address offset and memory module in which to base that linker section is
manipulated through SOPC Builder. You locate .exceptions section in a memory
module covered by a tightly coupled data memory using the Exception Vector field
found on the Core Nios II tab of the configuration wizard.

f For additional details on the C section attribute, see the Developing Programs Using the
Hardware Abstraction Layer chapter in section 2 of the Nios II Software Developer's
Handbook.

Tightly Coupled Memory Interface
The term tightly coupled memory interface refers to an Avalon®-like interface that
connects one master to one slave. Refer to Figure 1. Tightly coupled memory
interfaces connect tightly coupled masters to their tightly coupled slaves. Tightly
coupled memory interfaces are designed to be connected to one port of an on-chip
memory device.

Restrictions
You must observe a the following restrictions when designing with tightly coupled
memories:

■ Tightly coupled slaves must be on-chip memories.

■ Only one master and one slave can be connected to a given tightly coupled
memory interface, which makes the tightly coupled memory interface a
point-to-point connection.

■ Tightly coupled slaves have a data width of 32 bits. Tightly coupled memory
interfaces do not support dynamic bus sizing.

■ Tightly coupled slaves have a read latency of 1 cycle, a write latency of 0 cycles,
and no wait states.
© July 2008 Altera Corporation Using Tightly Coupled Memory with the Nios II Processor Tutorial

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

1–4 Using Tightly Coupled Memory with the Nios II Processor Tutorial
Building a Nios II System with Tightly Coupled Memory
When tightly coupled memory is present, the Nios II core decodes addresses
internally to determine if requested instructions or data reside in tightly coupled
memory. If the address resides in tightly coupled memory, the Nios II core accesses
the instruction or data through the tightly coupled memory interface. Accessing
tightly coupled memory bypasses cache memory. The processor core functions as if
cache were not present for the address span of the tightly coupled memory.
Instructions for managing the cache do not affect the tightly coupled memory, even if
the instruction specifies an address in the range occupied by a tightly coupled
memory.

Dual Port Memories
Each tightly coupled master connects to one tightly coupled slave over a tightly
coupled interface. For this reason, it is helpful to use dual port memories with the
tightly coupled instruction master as Figure 1 illustrates. The tightly coupled
instruction master is incapable of performing writes, because it accesses code for
execution only. Without a second memory port connected to an Avalon
Memory-Mapped (Avalon-MM) data master, the system does not have write access to
the tightly coupled instruction memory. Without write access, code cannot be
downloaded into the tightly coupled memory by the Nios II Embedded Design Suite
(EDS) which makes development and debugging difficult. Without a second port on
the tightly coupled instruction memory, no data master has access to the memory,
meaning the user has no way of viewing the contents. By making the tightly coupled
instruction memory dual port, the embedded processor's data master can be
connected to the second port, allowing both reading and writing of data.

Building a Nios II System with Tightly Coupled Memory
This section provides a detailed list of instructions to create a Nios II system in SOPC
Builder that uses two tightly coupled memories, one instruction and one data. These
two tightly coupled memories are connected to the Nios II processor as shown in
Figure 1. Additionally, instructions are provided to build a software project to exercise
these tightly coupled memories. The output of the software shows that the tightly
coupled memories have much faster access times than other on-chip memories.

In this section you perform the following steps:

1. Modify an existing reference design to include tightly coupled memories.

2. Create the tightly coupled memories in SOPC Builder.

3. Connect the tightly coupled memories to masters.

4. Position the tightly coupled memories in the Nios II processor's address map.

5. Specify the Nios II exception address to access tightly coupled instruction
memory.

6. Add a performance counter.

7. Generate the hardware system.

8. Create a software project to exercise the tightly coupled memories.

9. Execute the software on your hardware design.

10. Change the Tcl scripts and recompile to demonstrate how the timer settings work.
Using Tightly Coupled Memory with the Nios II Processor Tutorial © July 2008 Altera Corporation

Using Tightly Coupled Memory with the Nios II Processor Tutorial 1–5
Building a Nios II System with Tightly Coupled Memory
Hardware and Software Requirements
The following hardware and software are required to perform this exercise:

■ Nios II EDS version 8.0 or later

■ Quartus® II software version 8.0 or later

■ Any Nios II development board

Modify the Example Design to Include Tightly Coupled Memories
First, you create a new hardware reference design with tightly coupled memories that
is based on any of the standard reference designs installed with the Nios II EDS. To
create this modified reference design, perform the following steps:

1. In your host computer file system, locate the standard design directory for your
chosen development board and HDL. For example, on a Windows PC
C:\altera\<version>\nios2eds\examples\verilog\
niosII_cycloneII_2c35\standard contains the Verilog HDL design files for the
Nios Development Board, Cyclone II Edition.

2. Copy all the files from the standard directory to a new directory named
standard_tcm.

3. Choose Programs > Altera > Quartus II <version> (Windows Start menu) to run
the Quartus II software. You can also use the Quartus II Web Edition software.

4. On the File menu, click Open Project and browse to the
standard_tcm\<board_name>.qpf project file.

5. On the Tools menu, click SOPC Builder. The SOPC Builder standard design
appears in SOPC Builder.

6. Double-click the cpu component in the list of available components on the System
Contents tab to open the Nios II Processor configuration wizard.

7. On the Core Nios II tab, select Nios II/f.

8. Click the Caches and Memory Interfaces tab.

9. Turn on Include tightly coupled instruction master port(s).

10. Turn on Include tightly coupled data master port(s).

11. Click Finish to close the Nios II Processor configuration wizard.

Two new master ports now appear under the cpu component called
tightly_coupled_instruction_master_0 and
tightly_coupled_data_master_0. These master ports are not yet connected to
slave ports.

Create the Tightly Coupled Memories
In this section you create two types of tightly coupled memories: a tightly coupled
instruction memory and a tightly coupled data memory.

1. In the System Contents tab, double-click On-Chip Memory in the On-Chip
subfolder of the Memories and Memory Controllers folder. The On-Chip
Memory configuration wizard appears.
© July 2008 Altera Corporation Using Tightly Coupled Memory with the Nios II Processor Tutorial

1–6 Using Tightly Coupled Memory with the Nios II Processor Tutorial
Building a Nios II System with Tightly Coupled Memory
2. To complete the configuration of this memory, specify the settings listed in Table 1.

3. Click Finish to close the configuration wizard.

4. On the System Contents tab, right-click the onchip_mem component.

1 In this tutorial, you must name the components exactly. If your component
names differ from the names printed here, the software example will not
work.

5. Right-click onchip_mem and rename the component to
tightly_coupled_instruction_memory.

6. To configure a second on-chip memory, in the list of available memory
components, double-click On-Chip Memory. The On-Chip Memory configuration
wizard appears.

7. Specify the settings listed in Table 2. Unlike the tightly coupled instruction
memory, this memory is single-port. Total memory size for tightly coupled data
memory is twice the size of tightly coupled instruction memory at 8 KBytes.

Table 1. On-Chip Memory Default Settings

Properties Configuration Settings

Memory type

ROM Select this option

Dual-port access Turn this option on

Read During Write Mode Select DONT_CARE

Block type Select Auto

Initialize memory content Turn this option on

Size
Data width Select 32

Total memory size Specify 4 KBytes

Read latency
Slave s1 Select 1

Slave s2 Select 1

Memory
initialization

Enable non-default initialization file Leave this option turned off

Enable In-System Memory Content Editor feature Leave this option turned off

Table 2. On-Chip Memory Default Settings

Properties Configuration Settings

Memory type

RAM Select this option

Dual-port access Turn this option off

Read During Write Mode Select DONT_CARE

Block type Select Auto

Initialize memory content Turn this option off

Size
Data width Specify 32

Total memory size Specify 8 KBytes

Read latency
Slave s1 Select 1

Slave s2 Select 1
Using Tightly Coupled Memory with the Nios II Processor Tutorial © July 2008 Altera Corporation

Using Tightly Coupled Memory with the Nios II Processor Tutorial 1–7
Building a Nios II System with Tightly Coupled Memory
8. Click Finish to close the On-Chip Memory configuration wizard.

9. Rename the onchip_mem component to tightly_coupled_data_memory.

Connect and Position the Tightly Coupled Memories
To associate masters with the tightly coupled memories, perform the following steps:

1. To simplify creating connections between the tightly coupled memory and the
Nios II processor, click each new tightly coupled memory and click Move Up to
move the individual memories just below the cpu component.

2. If necessary, click + to expand the tightly_coupled_instruction_memory
component.

3. Using the patch-panel connection matrix in SOPC Builder, disconnect the s1 port
of tightly_coupled_instruction_memory from all masters except for the
tightly_coupled_instruction_master_0 component listed under the cpu
component. To disconnect a port, click on the filled dot at the intersection of the s1
port and the port you need to disconnect. The remaining connection is the tightly
coupled memory interface shown in Figure 1 for the tightly coupled instruction
memory, connecting the tightly coupled instruction master port to the tightly
coupled slave port on the tightly coupled instruction memory. Figure 2 illustrates
the connections for the s1 port.

4. Similarly, disconnect the s2 port of the tightly_coupled_instruction_memory
from all masters except the cpu data_master port. This connection is shown in
Figure 1 as the Avalon-MM connection between the Avalon-MM data master port
and the Avalon-MM slave port on the tightly coupled instruction memory. Port s2
of this dual-port memory is an Avalon-MM slave port, not a tightly coupled slave
port, because s2 connects to an Avalon-MM master, rather than a tightly coupled
master.

Memory
initialization

Enable non-default initialization file Leave this option turned off

Enable In-System Memory Content Editor feature Leave this option turned off

Table 2. On-Chip Memory Default Settings

Properties Configuration Settings

Figure 2. Connections for the s1 Port
© July 2008 Altera Corporation Using Tightly Coupled Memory with the Nios II Processor Tutorial

1–8 Using Tightly Coupled Memory with the Nios II Processor Tutorial
Building a Nios II System with Tightly Coupled Memory
5. Click + to expand the tightly_coupled_data_memory component.

6. Disconnect the s1 port of tightly_coupled_data_memory from all masters except
tightly_coupled_data_master_0. The remaining connection is the tightly coupled
memory interface shown in Figure 1 for the tightly coupled data memory,
connecting the tightly coupled data_master port to the tightly coupled s1 port
on the tightly coupled data memory.

7. To change the tightly coupled memories to the same clock domain as the cpu,
complete following these steps:

a. Click in the Clock column next to the s1 and s2 ports. A list of available clock
signals appears.

b. Select pll_c0 from the list of available clocks to connect this clock the slave
ports.

8. In the Base column, enter the base addresses in Table 3 for all tightly coupled
memories:

The end addresses automatically update to reflect the memory size that you specify in
the configuration wizard. The base address specification is important. Tightly coupled
memories must be mapped so that their addresses do not overlap with the embedded
processor's memories and peripherals that are connected to its Avalon-MM
instruction and data masters.

Figure 4 on page 9 illustrates the complete system.

To simplify address decoding, you can map the high-order address bit to a unique
location. By limiting the decoding logic to one bit, you minimize the effect of address
decoding on fMAX. The Nios II processor works correctly even if the address map is not
optimal; however, a warning is displayed during system generation.

As an example of optimal address mapping, if all the normal memories and
peripherals in your system occupy addresses below 0x2000000, mapping your tightly
coupled memories at addresses from 0x2000000 and above satisfies this requirement.

1. To set the exception address, on the Core Nios II tab, in the Exception Vector:
Memory: list, select tightly_coupled_instruction_memory_s1.

Table 3. Base Addresses for Tightly Coupled Memories

Port Base

tightly_coupled_instruction_memory s1 0x08000000

tightly_coupled_instruction_memory s2 0x08000000

tightly_coupled_data_memory s2 0x08004000

Figure 3. Connections for tightly coupled memories
Using Tightly Coupled Memory with the Nios II Processor Tutorial © July 2008 Altera Corporation

Using Tightly Coupled Memory with the Nios II Processor Tutorial 1–9
Generate the SOPC Builder System
2. Note that the address Offset fields are specified automatically and are indexed
from the base address specified for the memory module on the System Contents
tab.

Add a Performance Counter
Next, you add a performance counter peripheral so you can compare the performance
of reads and writes to tightly coupled memory to other memories. To add the
performance counter, complete the following steps:

1. Click the System Contents tab.

2. In the list of available components, click Peripherals to expand the list of available
components.

3. Under Debug and Performance, double-click Performance Counter Unit to open
the Performance Counter configuration wizard.

4. Click Finish, accepting the default setting of the 3 simultaneously-measured
sections.

5. Make sure that the component is named performance_counter.

6. Use the Move Up button to move the component up just below the tightly coupled
memory components. The control_slave port of the performance_counter is
automatically connected to the tightly_coupled_instruction_memory s2 port, and
the cpu’s data_master and jtag_debug_module ports. Figure 4 illustrates
these connections.

7. Connect the control_slave port to the pll_c0 clock.

Generate the SOPC Builder System
To generate and compile the hardware system, perform the following steps:

1. In SOPC Builder, click Next.

2. On the System Generation tab, click Generate. After SOPC Builder reports
successful system generation, save the system.

3. In the Quartus II software, on the Processing menu, click Start Compilation.

Figure 4. Connections for the Performance Counter
© July 2008 Altera Corporation Using Tightly Coupled Memory with the Nios II Processor Tutorial

1–10 Using Tightly Coupled Memory with the Nios II Processor Tutorial
Run the Tightly Couple Memories Examples from Nios II Command Shell
4. When the Quartus II compilation is complete, on the Tools menu click
Programmer to open the Programmer that allows you to program the newly
generated standard.sof into an FPGA.

Run the Tightly Couple Memories Examples from Nios II Command Shell
1. To open a Nios II command shell under Windows, in the Start menu, point to

Programs > Altera > Nios II EDS <version>, and click Nios II Command Shell
<version>.

2. Navigate to the working directory for your project. The following steps refer to
this directory as <project_directory>.

3. Ensure that the working directory and all subdirectories are writable, by typing
the following command:

chmod -R +w . r

4. Download and unzip the tcm.zip file into the <project_directory> directory. A
hyperlink to the tcm.zip appears next to this application note on the Application
Notes web page. Figure 5 illustrates the directory structure for the unzipped files.

5. Change to the software_examples/app/tcm_isr subdirectory of your
<project_directory> by typing the following command:

cd software_examples/app/tcm_isr r

6. Create and build the application by typing the following command:

./create-this-app r

7. The linker script file, linker.x in the bsp/timer_hal directory includes a new
isrs_region located in tightly coupled instruction memory which is adjacent to
the tightly_coupled_instruction_memory region. Example 1 shows the
new region.

Figure 5. Project Directory after Unzipping the Files

standard_tcm

software_examples

app

bsp

tcm_isr

timer_hal
Using Tightly Coupled Memory with the Nios II Processor Tutorial © July 2008 Altera Corporation

http://www.altera.com/literature/lit-an.jsp
http://www.altera.com/literature/lit-an.jsp

Using Tightly Coupled Memory with the Nios II Processor Tutorial 1–11
Program and Run TCM Project
8. The tcm_isr.objdump file in the app/tcm_isr directory defines the .isrs section
located in the tightly coupled instruction memory. Example 2 shows an excerpt
from of this file.

Program and Run TCM Project
1. You need a second command shell to capture messages from the Nios II processor.

(Programs > Altera > Nios II EDS <version>, then click Nios II Command Shell
<version>). Type the following command:

nios2-terminal r

If your development board includes more than one JTAG cable you must specify
which cable you are communicating with as an argument to the
nios2-terminal command. To do so, type the following commands:

a. jtagconf r

Example 1. isrs_region Listing in linker.x File

MEMORY
{
.
.
tightly_coupled_instruction_memory : ORIGIN = 0x8000020, LENGTH = 2016
timer_isrs_region : ORIGIN = 0x8000800, LENGTH = 2048
.
.
}

Example 2. isrs section listing in tcm_isr.objdump file

Sections:
Idx Name Size VMA LMA File off Algn
0 .entry 00000000 00000000 00000000 000000d4 2**5
CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .exceptions 000001a8 08000020 08000020 000128c8 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE
2 .text 00010110 04000000 04000000 000000d4 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE
3 .rodata 00000934 04010110 04010110 000101e4 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA
4 .rwdata 00001db0 04010a44 04010a44 00010b18 2**2
CONTENTS, ALLOC, LOAD, DATA, SMALL_DATA
5 .bss 00000108 040127f4 040127f4 000128c8 2**2
ALLOC, SMALL_DATA
6 .isrs 000000c0 08000800 08000800 00012a70 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE

Figure 6. jtagconfig Output
© July 2008 Altera Corporation Using Tightly Coupled Memory with the Nios II Processor Tutorial

1–12 Using Tightly Coupled Memory with the Nios II Processor Tutorial
Understanding the Tcl Scripts
Figure 6 gives sample output from the jtagconfig command. This output
shows that the active JTAG cable is number 2. Substitute the number of your JTAG
for the <cable_number> variable in the following command:

b. nios2-terminal -c <cable_number> r

2. In your first shell, type the following command if you have a single JTAG cable:

nios2-download -g tcm.elf r

or

nios2-download -c <cable_number> -g tcm.elf r

for development boards with more than one JTAG cable.

Figure 7 is a printout of the statistics that illustrate the higher speeds obtained by
leveraging tightly coupled memories. Note that the number of clock cycles for tightly
coupled memory is very similar to that of the cached memory. The result
demonstrates that tightly coupled memories allow fixed low-latency read access to
executable code as well as fixed low-latency read, write, or read and write access to
data.

1 The timing numbers output varies between Nios development boards.

Understanding the Tcl Scripts
The following sections discuss creating special memory regions for the timer memory
interrupt service routines and timer definitions.

Timer Memory
The timer_memory_section.tcl script is located in the bsp/timer_hal directory. This
Tcl script reserves 2048 bytes of the tightly coupled instruction memory. The reserved
space is used to store the timer interrupt service routines.

The timer_memory_section.tcl script takes the tightly_coupled_instruction memory
region and separates out 2048 bytes of the memory region into a new region called
timer_isr_region. The next line of code adds a section mapping the .isrs
section to the timer_isr_region defined above. Example 3 shows this code.

Figure 7. Tightly Coupled Memory versus Cache Example Real-Time Measures
Using Tightly Coupled Memory with the Nios II Processor Tutorial © July 2008 Altera Corporation

Using Tightly Coupled Memory with the Nios II Processor Tutorial 1–13
Understanding the Tcl Scripts
The timer_interrupt_latency.h file is also updated to reflect the change in the section
mapping of timer_interrupt_latency_irq() timer interrupt service routine to
.isrs instead of .exceptions. The timer interrupt service routines are now be
stored in the timer_isr_region.

The interrupt service routines must be located in the new .isrs section. Otherwise,
the linker uses the default setting which defeats the purpose of declaring a special
memory section for the interrupt service routine.

To locate the interrupt service routines in the new .isrs section, complete the
following steps:

1. Add a section mapping to map the .isrs section to the newly added memory
region.

2. Edit your source files to make sure that the isrs are mapped to the new memory
section.

3. Compile your project files by typing the following command in the bsp/timer_hal
directory:

./create-this-bsp r

4. Check the bsp/timer_hal/linker.x and app/tcm_isr/tcm_isr.objdump files to
ensure that the section mapping and memory regions are declared correctly and
contain the interrupt service routine.

f For more information about linker memory regions, refer to Section 1: Nios II Software
Development in the Nios II Software Developer's Handbook.

Timer Definitions
The following sections discuss the sys_clk_timer and high_res_timer.

sys_clk_timer
The timer_definition.tcl script is located in the bsp/timer_hal directory. The script
defines the timers as follows:

set_setting hal.sys_clk_timer sys_clk_timer
set_setting hal.timestamp_timer none

This script is essential for the clocks definitions. The software driver
hal.sys_clk_timer must be driven by the hardware clock named
sys_clk_timer. Connecting hal.sys_clk_timer to any other hardware timer
results in a compilation error. The following exercise demonstrates this point.

1. Delete or rename the Makefile in the app/tcm_isr folder. Then delete or rename
public.mk from the bsp/timer_hal folder.

Example 3. Timer ISR Region

Create tightly_couple_memory region.add_memory_region tightly
coupled_instruction_memory $slave $offset $new_span
Create a second region called timer_isr memory_region.
add_memory_region timer_isrs_region $slave $split_offset $split_span
Create memory mapping to map .isrs to timer_isr_region.
add_section_mapping .isrs timer_isrs_region
© July 2008 Altera Corporation Using Tightly Coupled Memory with the Nios II Processor Tutorial

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_01.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_01.pdf

1–14 Using Tightly Coupled Memory with the Nios II Processor Tutorial
Understanding the Tcl Scripts
2. Open the timer_definition.tcl file and change the sys_clk_timer to the
high_res_timer as follows:

set_setting hal.sys_clk_timer high_res_timer
set_setting hal.timestamp_timer none

3. Save timer_definition.tcl.

4. Return to your shell and recreate the application by typing:

./create-this-app r

5. Figure 8 illustrates the error that you see. Setting the hal.sys_clk_timer to any
other timers except for sys_clk_timer results in the same error message.

high_res_timer
The hardware timer called high_res_timer calculates interrupt latency.
Timer_interrupt_latency_init(), defined in timer_interrupt_latency.c,
installs an interrupt service routine to handle the high_res_timer. Therefore,
high_res_timer should not be tied to the software timestamp driver,
hal.timestamp_timer; it is set to none. As the sys_clk_timer is used for
hal.sys_clk_timer, it should not be used for the hal.timestamp_timer.

The following exercise illustrates this point:

1. If you have not already done so, delete or rename the Makefile in the app/tcm_isr
folder. Delete or rename public.mk in the bsp/timer_hal folder.

2. Open the timer_definition.tcl file and change the setting of
hal.timestamp_timer from none to high_res_timer as follows:

set_setting hal.sys_clk_timer sys_clk_timer
set_setting hal.timestamp_timer high_res_timer

3. Save timer_definition.tcl.

4. Change to the app/tcm_isr and recreate the application by typing the following
command:

./create-this-app r

Figure 9 illustrates the error that you see. Setting the hal.timestamp_timer to
sys_clk_timer or high_res_timer results in the same error message. Setting
hal.timestamp_timer to other hardware timers in the system prevents the
error message below.

Figure 8. Error Message after Changing the sys_clk_timer
Using Tightly Coupled Memory with the Nios II Processor Tutorial © July 2008 Altera Corporation

Copyright © 2008 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

References
This application note references the following documents:

Nios II Processor Reference Handbook

Nios II Software Developer's Handbook

Document Revision History
Table 4 shows the revision history for this application note.

Figure 9. Error Message after Changing the timestamp_timer

Table 4. Document Revision History

Date Changes Made Summary of Changes

July 2008, v1.1 Updated to use Quartus II 8.0 and SOPC Builder 8.0. Revised
design example instructions to the Software Build Tools
instead of the Nios II IDE.

Updated to reflect current state
of tools.

July 2005, v1.0 Initial release —

http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

	Using Tightly Coupled Memory with the Nios II Processor Tutorial
	Reasons for Using Tightly Coupled Memory
	Tradeoffs
	Guidelines for Using Tightly Coupled Memory
	Hardware Guidelines
	Software Guidelines

	Tightly Coupled Memory Interface
	Restrictions
	Dual Port Memories

	Building a Nios II System with Tightly Coupled Memory
	Hardware and Software Requirements
	Modify the Example Design to Include Tightly Coupled Memories
	Create the Tightly Coupled Memories
	Connect and Position the Tightly Coupled Memories
	Add a Performance Counter

	Generate the SOPC Builder System
	Run the Tightly Couple Memories Examples from Nios II Command Shell
	Program and Run TCM Project
	Understanding the Tcl Scripts
	Timer Memory
	Timer Definitions

	References
	Document Revision History

