
FIFO User Guide

FIFO User Guide

Version 1.0 March 2009

Agate Logic, Inc.

Agate Logic 1

FIFO User Guide

Contents
1.1 Device Family Support ...4
1.2 Introduction...4
1.3 Features ...4
2.1 FIFO Interfaces ..6

2.1.1. Interface Signals: Asynchronous FIFO ...6
2.1.2. Interface Signals: Synchronous FIFO ...9

2.2 FIFO Usage and Control ..14
2.2.1 Asynchronous FIFO Write Operation ...14
2.2.2 Asynchronous FIFO Read Operation..15
2.2.3 Synchronous FIFO Write and Read Operation ..16
2.2.4 Asynchronous FIFO Handshaking flags ..16
2.2.5 Synchronous FIFO Handshaking flags ..19
2.2.5 Asynchronous FIFO programmable flags ..21
2.2.6 Synchronous FIFO Programmable Flags ..25
2.2.7 Asynchronous FIFO Data Counts ...28
2.2.8 Synchronous FIFO Count ...29
2.2.9 Reset Behavior ..29

6.1 Resource Utilization and Performance..40
About Agate Logic ..41

Technical Support Assistance..41

Agate Logic 2

FIFO User Guide

About This Guide
The Agate Logic FIFO IP v1.0 User Guide describes the function and operation of the FIFO, as
well as information about designing, customizing, and implementing the IP.

Agate Logic 3

FIFO User Guide

 About the FIFO IP Core

Section 1

1.1 Device Family Support

 The synchronous or asynchronous FIFO supports the following target Agate Logic device
families:

 Angelo

1.2 Introduction

 As design complexities increase, the vendor-specific IP blocks has become a common design
methodology. Agate Logic provides parameterized IPs that are optimized for Agate Logic
device architecture. Using IP instead of coding your own logic saves your valuable design
time.

 The FIFO is built from EMB9K and can be configured with either asynchronous or
synchronous for both write and read operations. The asynchronous configuration of the FIFO
enables the user to implement unique clock domains on the write and read ports. A
synchronous FIFO implementation optimizes the core for data buffering within a single clock
domain.

1.3 Features

 Support data width up to 36 bits
 Support memory depths of up to 9x1024 locations
 Asynchronous and synchronous reset, high or low active is optional
 Fully synchronous and independent clock domains for the read and write ports
 Support full and empty status flags
 Optional almost_full and almost_empty status flags
 Optional half_full and half_empty status flags, they can be dynamically defined through

half_full_thresh and half_empty_thresh, and you can set an range to control
half_full/half_empty through half_full_assert/half_empty_assert and

Agate Logic 4

FIFO User Guide

half_full_negate/half_empty_negate.
 Invalid read or write requests are rejected without affecting the FIFO state
 Four optional handshake signals (wr_ack, rd_ack, overflow, underflow) provide

feedback (acknowledgment or rejection) in response to write and read requests in the
prior clock cycle

 Optional count vector(s) provide visibility into number of data words currently in the
FIFO, synchronized to either clock domain

 Support different input and output data widths for asynchronous FIFO

Agate Logic 5

FIFO User Guide

 Getting Started

Section 2

2.1 FIFO Interfaces

 The following two sections provide definitions for the FIFO interface signals. Figure 1
illustrates these signals (both the standard and optional ports) for the asynchronous FIFO.

Figure 1 Asynchronous FIFO Interfaces

2.1.1. Interface Signals: Asynchronous FIFO

Table 2 defines the signals for the write interface of an asynchronous FIFO. The write
interface signals are divided into required and optional signals and all signals are synchronous
to the write clock (wr_clk).

Table 2 Write Interface Signals for Asynchronous FIFO

Name Direction Description

Required

wr_clk Input
write clock: All signals on the write domain are

synchronous to this clock.

din[dw1-1:0] Input
data input: The input data bus used when writing the

FIFO.

wr_en Input

write enable: If the FIFO is not full, asserting this signal

causes data to be written to the FIFO. This signal is active

high.

full Input
full flag: When asserted, this signal indicated that the

FIFO is full. Write requests are ignored when is full is

Agate Logic 6

FIFO User Guide

non-destructive to the contents of the FIFO. This signal is

active high.

Optional

almost full Output

almost full: When asserted, this signal indicates that only

one more write can be performed before the FIFO is full.

This signal is active high.

half_full Output

programmable full: This signal is asserted when the

number of words in the FIFO is greater than or equal to

the assert threshold. It is deasserted when the number of

words in the FIFO is less than the negate threshold. This

signal is active high.

wr_count[aw1:0] Output

write data count: This bus indicates the number of words

stored in the FIFO. The count is guaranteed to never

under-report the number of words in the FIFO, to ensure

the user never overflows the FIFO. The exception to this

behavior is when a write operation occurs at the rising

edge of wr_clk, that write operation will only be reflected

on wr_count at the next rising clock edge.

wr_ack Output

write acknowledge: This signal indicates that a write

request (wr_en) during the prior clock cycle succeeded.

This signal is active high.

overflow Output

overflow: This signal indicates that a write request (wr_en)

during the prior clock cycle is rejected, because the FIFO

is full. Overflowing the FIFO is non-destructive to the

contents of the FIFO. This signal is active high.

half_full_thresh[aw1-1:0] Input

programmable full threshold: This signal is used to input

the threshold value for the assertion and deassertion of

the programmable full (half_full) flag. The threshold can

be dynamically set in-circuit during reset. The user can

either choose to set the assert and negate threshold to the

same value (using half_full_thresh), or the user can

control these values independently (using

half_full_thresh_assert and half_full_thresh_negate).

half_full_thresh_assert[aw1-1:0] Input

programmable full threshold assert: This signal is used to

set the upper threshold value for the programmable full

flag, which defines when the signal is asserted. The

threshold can be dynamically set in-circuit during reset.

half_full_thresh_negate[aw1-1:0] Input

programmable full threshold negate: This signal is used to

set the lower threshold value for the programmable full

flag, which defines when the signal is deasserted. The

threshold can be dynamically set in-circuit during reset.

Reset signals

rst_syn Input synchronous reset: A synchronous reset that initializes all

Agate Logic 7

FIFO User Guide

internal pointers and output registers. Active low or high is

optional.

rst_asyn Input

asynchronous reset: An asynchronous reset that

initializes all internal pointers and output registers. Active

low or high is optional.

Table 3 defined the signals on the read interface of an asynchronous FIFO. The read interface
signals are divided into required signals and optional signals, and all signals are synchronous
to the read clock(rd_clk).

Table 3 Read Interface Signals for Asynchronous FIFO
Name Direction Description

Required

rd_clk Input
read clock: All signals on the read domain are synchronous

to this clock.

dout[dw2-1:0] Output
data output: The output data bus is driven when reading the

FIFO.

rd_en Input

read enable: If the FIFO is not empty, asserting this signal

causes data to be read from the FIFO. This signal is active

high.

empty Output

empty flag: When asserted, this signal indicates that the

FIFO is empty. Read requests are ignored when the FIFO is

empty, initialing a read while empty is non-destructive to the

FIFO. This signal is active high.

Optional

almost_empty Output

almost empty flag: When asserted, this signal indicates that

the FIFO is almost empty and one word remains in the

FIFO. This signal is active high.

half_empty Output

programmable empty: This signal is asserted when the

number of words in the FIFO is less than or equal to the

programmable threshold. It is deasserted when the number

of words in the FIFO exceeds the programmable threshold.

This signal is active high.

rd_count[aw2:0] Output

read data count: This bus indicates the number of words

available for reading in the FIFO. The count is guaranteed to

never over-report the number of words available for reading,

to ensure that the user does not underflow the FIFO. The

exception to this behavior is when read operation occurs at

the rising edge of rd_clk, that read operation will only be

reflected on rd_count at the next rising clock edge.

rd_ack Output
rd_ack: This signal indicates that valid data is available on

the output bus. This signal is active high.

underflow Output
underflow: Indicates that the read request during the

previous clock cycle was rejected because the FIFO is

Agate Logic 8

FIFO User Guide

empty. Underflowing the FIFO is not destructive to the FIFO.

This signal is active high.

half_empty_thresh[aw2-1:0] Input

programmable empty threshold: This signal is used to input

the threshold value for the assertion and deassertion of the

programmable empty flag. The threshold can be

dynamically set in-circuit during reset. The user can either

choose to set the assert and negate threshold to the same

value (using half_empty_thresh), or the user can control

these values independent (using half_empty_thresh_assert

and half_empty_thresh_negate).

half_empty_thresh_assert[aw

2-1:0]
Input

programmable empty threshold assert: This signal is used

to set the lower threshold value for the programmable empty

flag, which defines when the signal is asserted. The

threshold can be dynamically set in-circuit during reset.

half_empty_thresh_negate[a

w2-1:0]
Input

programmable empty threshold negate: This signal is used

to set the upper threshold value for the programmable

empty flag, which defines when the signal is de-asserted.

The threshold can be dynamically set in-circuit during reset.

2.1.2. Interface Signals: Synchronous FIFO

Figure 2 Synchronous FIFO Interface

 Table 4 defines the interface signals of a synchronous FIFO with a common write and read
clock. The table is divided into standard and optional interface signals, and all signals (except
rst_asyn) are synchronous to the common clock. Users have the option to select synchronous
or asynchronous reset for the FIFO .

Table 4 Write and Read Interface Signals for Synchronous FIFO

Name Direcion Description

Required

rst_syn Input synchronous reset: An synchronous

Agate Logic 9

FIFO User Guide

reset that initializes all internal

pointers and output registers. Active

low or high is optional.

rst_asyn Input

asynchronous reset: An

asynchronous reset that initializes

all internal pointers and output

registers. Active low or high is

optional.

clk Input

clock: All signals on the write and

read domains are synchronous to

this clock.

din[dw-1:0] Input

data input: The input data bus used

when writing the FIFO.

wr_en Input

write enable: If the FIFO is not full,

asserting this signal causes data to

be written to the FIFO. This signal is

active high.

full Output

full flag: When asserted, this signal

indicates that the FIFO is full. Write

requests are

ignored when the FIFO is full,

initiating a write when the FIFO is

full is non-destructive to the

contents of the FIFO. This signal is

active high.

dout[dw-1:0] Output
data output: The output data bus is

driven when reading the FIFO.

rd_en Input

read enable: If the FIFO is not

empty, asserting this signal causes

data to be read from the FIFO. This

signal is active high.

empty Output

empty flag: When asserted, this

signal indicates that the FIFO is

empty. Read requests are ignored

when the FIFO is empty, initiating a

read while empty is non-destructive

to the FIFO. This signal is active

high.

Optional

count[aw-1:0] Output
data count: This bus indicates the

number of words stored in the FIFO.

almost full Output
almost full: When asserted, this

signal indicates that only one more

Agate Logic 10

FIFO User Guide

write can be performed before the

FIFO is full. This signal is active

high.

half_full Output

programmable full: This signal is

asserted when the number of words

in the FIFO is greater than or equal

to the assert threshold. It is

deasserted when the number of

words in the FIFO is less than the

negate threshold. This signal is

active high.

wr_ack Output

Write acknowledge: This signal

indicates that a write request during

the prior clock cycle succeeded.

This signal is active high.

overflow Output

overflow: This signal indicates that a

write request during the prior clock

cycle was rejected, because the

FIFO is full. Overflowing the FIFO is

non-destructive to the contents of

the FIFO. This signal is active high.

half_full_thresh[aw-1:0] Input

programmable full threshold: This

signal is used to input the threshold

value for the assertion and

deassertion of the programmable

full (half_full) flag. The threshold can

be dynamically set in-circuit during

reset. The user can either choose to

set the assert and negate threshold

to the same value (using

half_full_thresh), or the user can

control these values independently

(using half_full_thresh_assert and

half_full_thresh_negate).

half_full_thresh_assert[aw-1:0] Input

programmable full threshold assert:

This signal is used to set the upper

threshold value for the

programmable full flag, which

defines when the signal is asserted.

The threshold can be dynamically

set in-circuit during reset.

half_full_thresh_negate[aw-1:0] Input
programmable full threshold negate:

This signal is used to set the lower

Agate Logic 11

FIFO User Guide

threshold value for the

programmable full flag, which

defines when the signal is

deasserted. The threshold can be

dynamically set in-circuit during

reset.

almost_empty Output

almost empty flag: When asserted,

this signal indicates that the FIFO is

almost empty and one word remains

in the FIFO. This signal is active

high.

half_empty Output

programmable empty: This signal is

asserted when the number of words

in the FIFO is less than or equal to

the programmable threshold. It is

deasserted when the number of

words in the FIFO exceeds the

programmable threshold. This

signal is active high.

rd_ack Output

rd_ack: This signal indicates that

valid data is available on the output

bus. This signal is active high.

underflow Output

underflow: Indicates that the read

request during the previous clock

cycle was rejected because the

FIFO is empty. Underflowing the

FIFO is not destructive to the FIFO.

This signal is active high.

half_empty_thresh[aw-1:0] Input

programmable empty threshold:

This signal is used to input the

threshold value for the assertion

and deassertion of the

programmable empty flag. The

threshold can be dynamically set

in-circuit during reset. The user can

either choose to set the assert and

negate threshold to the same value

(using half_empty_thresh), or the

user can control these values

independent (using

half_empty_thresh_assert and

half_empty_thresh_negate).

half_empty_thresh_assert[aw-1:0] Input
programmable empty threshold

assert: This signal is used to set the

Agate Logic 12

FIFO User Guide

lower threshold value for the

programmable empty flag, which

defines when the signal is asserted.

The threshold can be dynamically

set in-circuit during reset.

half_empty_thresh_negate[aw-1:0] Input

programmable empty threshold

negate: This signal is used to set

the upper threshold value for the

programmable empty flag, which

defines when the signal is

deasserted. The threshold can be

dynamically set in-circuit during

reset.

Agate Logic 13

FIFO User Guide

2.2 FIFO Usage and Control

2.2.1 Asynchronous FIFO Write Operation

 This section describes the behavior of a asynchronous FIFO write and the associated status
flags. When write enable is asserted and the FIFO is not full, data is added to the FIFO from
the input bus and write acknowledge is asserted. If the FIFO is continuously written to without
being read, it fills with data. Write operations are only successful when the FIFO is not full.
When the FIFO is full and a write is initiated, the request is ignored, the overflow flag is
asserted and there is no change in the state of the FIFO.

Almost_full and Full flags

 The almost_full flag indicates that only one more write can be performed before full is asserted.
This flag is active high and synchronous to the write clock.

 The full flag indicates that the FIFO is full and no more writes can be performed until data is
read out. This flag is active high and synchronous to the write clock. If a writes is initiated when
full is asserted, the write request is ignored and overflow is asserted.

Example Operation

 Figure 3 shows a typical write operation. The user asserts wr_en, causing a write operation to
occur on the next rising edge of the wr_clk. Since the FIFO is not full, wr_ack is asserted,
acknowledging a successful write operation. When only one additional word can be written into
the FIFO, the FIFO asserts the almost_full flag. When almost_full is asserted, one additional
write causes the FIFO to assert full. When a write occurs after full is asserted, wr_ack is
deasserted and overflow is asserted, indicating an overflow condition. Once the user performs
one or more read operations, the FIFO deasserts full, and data can successfully be written to the
FIFO, as is indicated by the assertion of wr_ack and deassertion of overflow.

Figure 3 Write Operation for a Asynchronous FIFO

Agate Logic 14

FIFO User Guide

2.2.2 Asynchronous FIFO Read Operation

 This section describes the behavior of an asynchronous FIFO read operation and the associated
status flags. When read enable is asserted and the FIFO is not empty, data is read from the FIFO
on the output bus, and the rd_ack flag is asserted. If the FIFO is continuously read without
being written, the FIFO empties. Read operation are successful when the FIFO is not empty.
When the FIFO is empty and a read is requested, the read operation is ignored, the underflow
flag is asserted and there is no change in the state of the FIFO.

Almost_empty and Empty flags

 The almost empty flag indicates that the FIFO will be empty after one more read operation.
This flag is active high and synchronous to rd_clk. This flag is asserted when the FIFO has one
remaining word that can be read.

 The empty flag indicates that the FIFO is empty and no more reads can be performed until data
is written into the FIFO. This flag is active high and synchronous to the rd_clk. If a read is
initiated when empty is asserted, the request is ignored and underflow is asserted.

Example Operation

 Figure 4 shows a typical read operation. The user asserts rd_en, causing a read operation to
occur on the next rising edge of the rd_clk. Since the FIFO is not empty, rd_ack is asserted,
acknowledging a successful read operation. When only one additional word can be read out
from the FIFO, the FIFO asserts the almost_empty flag. When almost_empty is asserted, one
additional read causes the FIFO to assert empty. When a read occurs after empty is asserted,
rd_ack is deasserted and underflow is asserted, indicating an underflow condition. Once the
user performs one or more write operations, the FIFO deasserts empty, and data can
successfully be read from the FIFO, as is indicated by the assertion of rd_ack and
deassertion of underflow.

Figure 4 Read Operation for a Asynchronous FIFO

Agate Logic 15

FIFO User Guide

2.2.3 Synchronous FIFO Write and Read Operation

Figure 5 shows a typical write and read operation. A write is issued to the FIFO, resulting in the
deassertion of the empty flag. A simultaneous write and read is then issued, resulting in no
change in the status flags. Once two or more words are present in the FIFO, the almost_empty
flag is deasserted. Write requests are then issued to the FIFO, resulting in the assertion of
almost_full when the FIFO can only accept one more write. A simultaneous write and read is
then issued, resulting in no change in the status flags. Finally one additional write without a
read result in the FIFO asserting full, indicating no further data can be written until a read
request is issued.

Figure 5 Write and Read Operation for a Synchronous FIFO

2.2.4 Asynchronous FIFO Handshaking flags

 Handshaking flags (read acknowledge, underflow, write acknowledge and overflow) are
supported to provide additional information regarding the status of the write and read operations.
The handshaking flags are optional and active high. These flags are illustrated in Figure 6.

Write Acknowledge(wr_ack)

 The write acknowledge flag is asserted at the completion of each successful write operation and
indicates that the data on the din port has been stored in the FIFO. This flags is synchronous to
the write clock.

Example Operation

 Figure 6 illustrates the behavior of the FIFO flags. On the write interface, full is not asserted
and writing to the FIFO is successful. When a write occurs after full is asserted, wr_ack is
deasserted an overflow is asserted, indicating an overflow condition.

Agate Logic 16

FIFO User Guide

Figure 6 Write acknowledge signal for Asynchronous FIFO

Read acknowledge(rd_ack)

 The read acknowledge is asserted at the rising edge of rd_clk for each successful read operation,
and indicates that the data on the dout bus is valid. When a read request is unsuccessful, read
acknowledge is not asserted. This flags is synchronous to the read clock.

Example Operation

 Figure 7 illustrates the behavior of the FIFO flags. On the read interface, once the FIFO is not
empty, the FIFO accepts read requests. In FIFO operation, rd_ack is asserted and dout is
updated on the clock cycle following the read request.

Figure 7 Read Acknowledge Aignal for Asynchronous FIFO

Underflow

 The underflow flag is used to indicate that a read operation is unsuccessful. This occurs when a
read is initiated and the FIFO is empty. This flag is synchrounous with the read clock.
Underflowing the FIFO does change the state of the FIFO.

Agate Logic 17

FIFO User Guide

Example Operation

 On the read interface, once the FIFO is not empty, the FIFO accepts read requests. Following a
read request, rd_ack is asserted and dout is updated. When a read request is issued while empty
is asserted, rd_ack is deasserted and underflow is asserted, indicating an underflow condition.

Figure 8 Underflow Signal for Synchronous FIFO

Overflow

 The overflow flag is used to indicate that a write operation is unsuccessful. This flag is asserted
when a write is initiated to the FIFO while full is asserted. The overflow flag is synchronous to
the write clock. Overflowing the FIFO does not change the state of the FIFO.

Example Operation

On the write interface, full is deasserted and therefore writes to the FIFO are successful. When a
write occurs after full is asserted, wr_ack is deasserted and overflow is asserted, indicating an
overflow condition.

Figure 9 Overflow Signal for Ssynchronous FIFO

Agate Logic 18

FIFO User Guide

2.2.5 Synchronous FIFO Handshaking flags

Handshaking flags (read acknowledge, underflow, write acknowledge and overflow) are
supported to provide additional information regarding the status of the write and read operations.
The handshaking flags are optional and active high. These flags are illustrated in Figure 10.

Write Acknowledge(wr_ack)

 The write acknowledge flag is asserted at the completion of each successful write operation and
indicates that the data on the din port has been stored in the FIFO. This flags is synchronous to
the clock.

Example Operation

 Figure 10 illustrates the behavior of the FIFO flags. On the write interface, full is not asserted
and writing to the FIFO is successful. When a write occurs after full is asserted, wr_ack is
deasserted an overflow is asserted, indicating an overflow condition.

Figure 10 Write Acknowledge Signal for Synchronous FIFO

Read Acknowledge(rd_ack)

 The read acknowledge is asserted at the rising edge of rd_clk for each successful read operation,
and indicates that the data on the dout bus is valid. When a read request is unsuccessful, read
acknowledge is not asserted. This flags is synchronous to the clock.

Example Operation

 Figure 11 illustrates the behavior of the FIFO flags. On the read interface, once the FIFO is not
empty, the FIFO accepts read requests. In FIFO operation, rd_ack is asserted and dout is
updated on the clock cycle following the read request.

Agate Logic 19

FIFO User Guide

Figure 11 Read Acknowledge Signal for Synchronous FIFO

Underflow

 The underflow flag is used to indicate that a read operation is unsuccessful. This occurs when a
read is initiated and the FIFO is empty. This flag is synchrounous with the clock. Underflowing
the FIFO does change the state of the FIFO.

Example Operation

 Once the FIFO is not empty, the FIFO accepts read requests. Following a read request, rd_ack is
asserted and dout is updated. When a read request is issued while empty is asserted, rd_ack is
deasserted and underflow is asserted, indicating an underflow condition.

Figure 12 Underflow Signal for Synchronous FIFO

Overflow

 The overflow flag is used to indicate that a write operation is unsuccessful. This flag is asserted
when a write is initiated to the FIFO while full is asserted. The overflow flag is synchronous to
the write clock. Overflowing the FIFO does not change the state of the FIFO.

Agate Logic 20

FIFO User Guide

Example Operation

Full signal is deasserted and therefore writes to the FIFO are successful. When a write occurs
after full is asserted, wr_ack is deasserted and overflow is asserted, indicating an overflow
condition.

Figure 13 Overflow Signal for Synchronous FIFO

2.2.5 Asynchronous FIFO programmable flags

 The FIFO supports programmable flags to indicate that the FIFO has reached a user-defined fill
level.

 Programmable full (half_full) indicates that the FIFO has reached a user-defined full threshold.
 Programmable empty (half_empty) indicates that the FIFO has reached a user-defined empty

threshold.
 For these thresholds, the user can set a constant value or choose to have dedicated input ports,

enabling the threshold to change dynamically in circuit. Detailed information about these
options is provided below.

Programmable Full

 The FIFO supports four ways to define the programmable full threshold:
 Single threshold constant
 Single threshold with dedicated input port
 Assert and negate thresholds constants
 Assert and negate thresholds with dedicated input ports

 The programmable full flag (half_full) is asserted when the number of entries in the FIFO is
greater than or equal to the user-defined assert threshold. When the programmable full flag is
asserted, the FIFO can continue to be written to until full flag is asserted. If the number of
words in the FIFO is less than the negate threshold, the flag is deasserted.

 Programmable full: single threshold
 This option enables the user to set a single threshold value for the assertion and deassertion of

Agate Logic 21

FIFO User Guide

half_full,. When the number of entries in the FIFO is greater than or equal to the threshold
value, half_full is asserted. When the number of entries in the FIFO is less than the threshold
value, half_full is deasserted.

 There are two options for implementing this threshold:
 Single threshold constant. User specifies the threshold value through the IP WIZARD

GUI. Once the IP is generated, this value can only be changed by regenerating the IP
CORE.

 Single threshold with dedicated input port. User specifies the threshold value through
an input port on the core. This input can be changed while the FIFO is in reset,
providing the user the flexibility to change the programmable full threshold in-circuit
without re-generating the core.

Figure 14 shows the programmable full flag with a single threshold. The user writes to the
FIFO until there are seven words in the FIFO. Since the programmable full threshold is set to
seven, the FIFO asserts half_full once seven word are written into the FIFO. Note that both
write data count and half_full have one clock cycle of delay. Once the FIFO has six or fewer
words in the FIFO, half_full is deasserted.

Figure 14 Half full signal for Threshold: Threshold Set to 7

 Programmable Full: Assert and Negate Threshold
This option enables the user to set separate values for the assertion and deassertion of
half_full. When the number of entries in the FIFO is greater than or equal to the asserted
value, half_full is asserted. When the number of entries in the FIFO is less than the negate
value, half_full is deasserted.
There are two options for implementing these thresholds:

 Assert and negate threshold constants. User specifies the threshold values through the
IP WIZARD GUI. Once the core is generated, these values can only be changed by
re-generating the core.

 Assert and negate threshold with dedicated input ports. User specifies the threshold
values through input ports on the core. These input ports can be changed while the FIFO
is in reset, providing the user the flexibility to change the values of the programmable
full assert and negate thresholds in-circuit without re-generating the core.

Figure 15 shows the programmable full flag with assert and negate thresholds. The user
writes to the FIFO until there are 10 words in the FIFO. Because the assert threshold is set to
10, the FIFO then asserts half_full. The negate threshold is set to seven, and the FIFO
deasserts half_full once six words or fewer are in the FIFO. Both write data count and

Agate Logic 22

FIFO User Guide

half_full have one clock cycle delay.

Figure 15 Half full signal with Assert and Negate Threshold: Assert Set to 10 and
Negate Set to 7

Programmable Empty

 The FIFO supports fours ways to define the programmable empty thresholds:
 Single threshold constant
 Single threshold with dedicated input port
 Assert and negate threshold constants
 Assert and negate threshold with dedicated input ports

 The programmable empty flag is asserted when the number of entries in the FIFO is less than or
equal to the user-defined assert threshold. If the number of words in the FIFO is greater than the
negate threshold, the flag is deasserted.
Programmable empty: single threshold
This option enables the user to set a single threshold value for the assertion and deassertion of
half_empty. When the number of entries in the FIFO is less than or equal to the threshold value,
half_empty is asserted. When the number of entries in the FIFO is greater than the threshold
value, half_empty is deasseerted.
There are two options for implementing this threshold.
Single threshold constant: User specifies the threshold value through the IP WIZARD GUI.
Once the core is generated, this value can only be changed by re-generating the core. This
option consumes fewer resources than the single threshold with dedicated input port.
Single threshold with dedicated input port: User specifies the threshold value through an input
port on the core. This input can be changed while the FIFO is in reset, providing the user the
flexibility to change the programmable empty threshold in-circuit without re-generating the
core.
Figure 16 show the programmable empty flag with a single threshold. The user writes to the
FIFO until there are five words in the FIFO. Since the programmable empty threshold is set to
four, half_empty is asserted until more than four words are present in the FIFO. Once five
words are present in the FIFO, half_empty is deasserted. Both read data count and half_empty
have one clock cycle of delay.

Agate Logic 23

FIFO User Guide

Figure 16 Half empty signal for Threshold: Threshold Set to 4
Programmable empty: Assert and negate threshold
This option enables the user to set separate values for the assertion and deassertion of half_empty.
When the number of entries in the FIFO is less than or equal to the assert value, half_empty is
asserted. When the number of entries in the FIFO is greater than the negate value, half_empty is
deasserted.
There are two options for implementing the assert and negate threshold.

 Assert and negate threshold constants. The threshold values are specified through the IP
WIZARD GUI. Once the core is generated, these values can only be changed by
re-generating the core. This option consumes fewer resources than the assert and negate
thresholds with dedicated input ports.

 Assert and negate thresholds with dedicated input ports. The threshold values are specified
through input ports on the core. These input ports can be changed while the FIFO is in reset,
providing the user the flexibility to change the values of the programmable empty assert and
negate thresholds in-circuit without regenerating the core.

Figure 17 shows the programmable empty flag with assert and negate thresholds. The user writes
to the FIFO until there are eleven words in the FIFO. Since the programmable empty deassert
values is set to ten, half_empty is deasserted when there are more than ten words in the FIFO.
Once the FIFO contains less than or equal to the programmable empty negate value, half_empty is
asserted. Both read data count and half_empty have one clock cycle of delay.

Figure 17 Half full signal with Assert and Negate Threshold: Assert Set to 7 and
Negate Set to 10

Agate Logic 24

FIFO User Guide

2.2.6 Synchronous FIFO Programmable Flags

 The FIFO supports programmable flags to indicate that the FIFO has reached a user-defined fill
level.

 Programmable full (half_full) indicates that the FIFO has reached a user-defined full threshold.
 Programmable empty (half_empty) indicates that the FIFO has reached a user-defined empty

threshold.
 For these thresholds, the user can set a constant value or choose to have dedicated input ports,

enabling the threshold to change dynamically in circuit. Detailed information about these
options is provided below.

Programmable Full

 The FIFO supports four ways to define the programmable full threshold:
 Single threshold constant
 Single threshold with dedicated input port
 Assert and negate thresholds constants
 Assert and negate thresholds with dedicated input ports

 The programmable full flag (half_full) is asserted when the number of entries in the FIFO is
greater than or equal to the user-defined assert threshold. When the programmable full flag is
asserted, the FIFO can continue to be written to until full flag is asserted. If the number of
words in the FIFO is less than the negate threshold, the flag is deasserted.

 Programmable full: single threshold
 This option enables the user to set a single threshold value for the assertion and deassertion of

half_full,. When the number of entries in the FIFO is greater than or equal to the threshold
value, half_full is asserted. When the number of entries in the FIFO is less than the threshold
value, half_full is deasserted.

 There are two options for implementing this threshold:
 Single threshold constant. User specifies the threshold value through the IP WIZARD

GUI. Once the IP is generated, this value can only be changed by regenerating the IP
CORE.

 Single threshold with dedicated input port. User specifies the threshold value through
an input port on the core. This input can be changed while the FIFO is in reset,
providing the user the flexibility to change the programmable full threshold in-circuit
without re-generating the core.

Figure 18 shows the programmable full flag with a single threshold. The user writes to the
FIFO until there are seven words in the FIFO. Since the programmable full threshold is set to
seven, the FIFO asserts half_full once seven word are written into the FIFO. Note that both
write data count and half_full have one clock cycle of delay. Once the FIFO has six or fewer
words in the FIFO, half_full is deasserted.

Agate Logic 25

FIFO User Guide

Figure 18 Half full signal for Threshold: Threshold Set to 7

 Programmable Full: Assert and Negate Threshold
This option enables the user to set separate values for the assertion and deassertion of
half_full. When the number of entries in the FIFO is greater than or equal to the asserted
value, half_full is asserted. When the number of entries in the FIFO is less than the negate
value, half_full is deasserted.
There are two options for implementing these thresholds:

 Assert and negate threshold constants. User specifies the threshold values through the
IP WIZARD GUI. Once the core is generated, these values can only be changed by
re-generating the core.

 Assert and negate threshold with dedicated input ports. User specifies the threshold
values through input ports on the core. These input ports can be changed while the FIFO
is in reset, providing the user the flexibility to change the values of the programmable
full assert and negate thresholds in-circuit without re-generating the core.

Figure 19 shows the programmable full flag with assert and negate thresholds. The user
writes to the FIFO until there are 10 words in the FIFO. Because the assert threshold is set to
10, the FIFO then asserts half_full. The negate threshold is set to seven, and the FIFO
deasserts half_full once six words or fewer are in the FIFO. Both write data count and
half_full have one clock cycle delay.

Figure 19 Half full signal with Assert and Negate Threshold: Assert Set to 10 and
Negate Set to 7

Programmable Empty

 The FIFO supports fours ways to define the programmable empty thresholds:
 Single threshold constant
 Single threshold with dedicated input port

Agate Logic 26

FIFO User Guide

 Assert and negate threshold constants
 Assert and negate threshold with dedicated input ports

 The programmable empty flag is asserted when the number of entries in the FIFO is less than or
equal to the user-defined assert threshold. If the number of words in the FIFO is greater than the
negate threshold, the flag is deasserted.
Programmable empty: single threshold
This option enables the user to set a single threshold value for the assertion and deassertion of
half_empty. When the number of entries in the FIFO is less than or equal to the threshold value,
half_empty is asserted. When the number of entries in the FIFO is greater than the threshold
value, half_empty is deasseerted.
There are two options for implementing this threshold.
Single threshold constant: User specifies the threshold value through the IP WIZARD GUI.
Once the core is generated, this value can only be changed by re-generating the core. This
option consumes fewer resources than the single threshold with dedicated input port.
Single threshold with dedicated input port: User specifies the threshold value through an input
port on the core. This input can be changed while the FIFO is in reset, providing the user the
flexibility to change the programmable empty threshold in-circuit without re-generating the
core.
Figure 20 show the programmable empty flag with a single threshold. The user writes to the
FIFO until there are five words in the FIFO. Since the programmable empty threshold is set to
four, half_empty is asserted until more than four words are present in the FIFO. Once five
words are present in the FIFO, half_empty is deasserted. Both read data count and half_empty
have one clock cycle of delay.

Figure 20 Half empty signal for Threshold: Threshold Set to 4

Programmable empty: Assert and negate threshold
This option enables the user to set separate values for the assertion and deassertion of half_empty.
When the number of entries in the FIFO is less than or equal to the assert value, half_empty is
asserted. When the number of entries in the FIFO is greater than the negate value, half_empty is
deasserted.
There are two options for implementing the assert and negate threshold.

 Assert and negate threshold constants. The threshold values are specified through the IP
WIZARD GUI. Once the core is generated, these values can only be changed by
re-generating the core. This option consumes fewer resources than the assert and negate
thresholds with dedicated input ports.

 Assert and negate thresholds with dedicated input ports. The threshold values are specified
through input ports on the core. These input ports can be changed while the FIFO is in reset,

Agate Logic 27

FIFO User Guide

providing the user the flexibility to change the values of the programmable empty assert and
negate thresholds in-circuit without regenerating the core.

Figure 21 shows the programmable empty flag with assert and negate thresholds. The user writes
to the FIFO until there are eleven words in the FIFO. Since the programmable empty deassert
values is set to ten, half_empty is deasserted when there are more than ten words in the FIFO.
Once the FIFO contains less than or equal to the programmable empty negate value, half_empty is
asserted. Both read data count and half_empty have one clock cycle of delay.

Figure 21 Half full signal with Assert and Negate Threshold: Assert Set to 7 and

Negate Set to 10

2.2.7 Asynchronous FIFO Data Counts

 data_count tracks the number of words in the FIFO. You can specify the width of the data
count bus with a maximum width of log2

(FIFO depth)+1. If the width specified is smaller than the
maximum allowable width, the bus is truncated by removing the lower bits.

Read data count

 Read data count pessimistically reports the number of words available for reading. The count
is guaranteed to never over-report the number of words available in the FIFO to ensure that the
user never underflows the FIFO. The user can specify the width of the read data count bus
width a maximum width of log2

(read depth)+1. If the width specified is smaller than the maximum
allowable width, the bus is truncated width the lower bits removed.

Figure 22 Read Data Count for Asynchronous FIFO

Agate Logic 28

FIFO User Guide

Write data count

 Write data count pessimistically reports the number of words written into the FIFO. The count
is guaranteed to never under-report the number of words in the FIFO to ensure that the user
never overflows the FIFO. The user can specify the width of the write data count bus width a
maximum width of log2

(write depth)+1. If the width specified is smaller than the maximum
allowable width, the bus is truncated with the lower bits removed.

Figure 23 Write Data Count for Asynchronous FIFO

2.2.8 Synchronous FIFO Count

Count

 Count output accurately reports the number of words available in a synchronous FIFO. You can
specify the width of the count bus with a maximum width of log2

(depth). If the width specified is
smaller than the maximum allowable width, the bus it truncated with the lower bits removed.
For example, you can specify to use two bits out of a maximum allowable three bits (provided a
FIFO depth is eigth). These two bits indicate the number of words in the FIFO with a quarter
resolution, providing the status of the contents of the FIFO for read and write operations.

2.2.9 Reset Behavior

 The FIFO IP provides reset input that reset all counters, output registers, and memories when
asserted. There are two reset options: asynchronous and synchronous. The asynchronous reset
port is rst_asyn, the synchronous reset port is rst_syn and they can be active high or low.

 Table 5 defines the FIFO reset values.
Table 5 FIFO reset values

signal Asynchronous reset Synchronous reset

dout 0 0

full 0 0

empty 1 1

Agate Logic 29

FIFO User Guide

wr_ack 0 0

rd_ack 0 0

half_full 0 0

half_empty 1 1

underflow 0 0

overflow 0 0

almost_full 0 0

almost_empty 1 1

wr_count 0 -

rd_count 0 -

count - 0

Agate Logic 30

FIFO User Guide

Section 3

FIFO Parameters

 Customers can set FIFO read and write data width, depth and optional handshaking flags by
some parameters. Table 6 describes the parameters.

Table 6 FIFO Parameters
Asynchronous FIFO

Parameters name comment

dw1 Write data width

aw1 Write FIFO depth

dw2 Read data width

aw2 Read FIFO depth

rst_low Set reset low or high:

1:low active 0:high active.

There are asynchronous and synchronous ports. If

rst_syn or rst_asyn port does not be used, they must be

instantiated to 0.

Half_full_type generate the half full signal type:

0: don’t generate half_full signal

1: set the single constant threshold

2: set the assert and negate constant threshold

3: set the single input threshold

4: set the input assert and negate threshold

Half_empty_type generate the half empty signal type:

0: don’t generate half_empty signal

1: set the single constant threshold

2: set the assert and negate constant threshold

3: set the single input threshold

4: set the input assert and negate threshold

param_half_full_assert Set the assert constant threshold

param_half_full_negate Set the negate constant threshold

If the half_full_type is 1, the param_half_full_negate

equal to the param_half_full_assert decrease 1.

param_half_empty_assert Set the assert constant threshold

param_half_empty_negate Set the negate constant threshold

If the half_empty_type is 1, the

param_half_empty_negate equal to the

param_half_empty_assert add 1.

Asynchronous FIFO

dw Data width

aw FIFO depth

rst_low Set reset low or high:

Agate Logic 31

FIFO User Guide

1:low active 0:high active.

There are asynchronous and synchronous ports. If

rst_syn or rst_asyn port does not be used, they must be

instantiated to 0.

Half_full_type generate the half full signal type:

0: don’t generate half_full signal

1: set the single constant threshold

2: set the assert and negate constant threshold

3: set the single input threshold

4: set the input assert and negate threshold

Half_empty_type generate the half empty signal type:

0: don’t generate half_empty signal

1: set the single constant threshold

2: set the assert and negate constant threshold

3: set the single input threshold

4: set the input assert and negate threshold

param_half_full_assert Set the assert constant threshold

param_half_full_negate Set the negate constant threshold

If the half_full_type is 1, the param_half_full_negate

equal to the param_half_full_assert decrease 1.

param_half_empty_assert Set the assert constant threshold

param_half_empty_negate Set the negate constant threshold

If the half_empty_type is 1, the

param_half_empty_negate equal to the

param_half_empty_assert add 1.

Agate Logic 32

FIFO User Guide

Section 4

FIFO Instantiation

Asynchronous FIFO instantiation:

module ip_module_name(

 din,

 half_full_thresh,

 half_empty_thresh,

 half_empty_assert,

 half_empty_negate,

 half_full_assert,

 half_full_negate,

 rd_clk,

 rd_en,

 rst_syn,

 rst_asyn,

 wr_clk,

 wr_en,

 almost_empty,

 almost_full,

 dout,

 empty,

 full,

 overflow,

 half_empty,

 half_full,

 rd_ack,

 rd_count,

 underflow,

 wr_ack,

 wr_count);

parameter dw1=8; //write data width

parameter aw1=10; //write FIFO depth

parameter dw2=4; //read data width

parameter aw2=11; //read FIFO depth

parameter rst_low = 0; //reset optional 1:low active 0:high active

parameter half_full_type = 0; //set half full type

parameter half_empty_type = 0; //set half empty type

parameter param_half_full_assert = 0; //programmable full signal assert threshold

parameter param_half_full_negate = 0; //programmable full signal negate threshold

Agate Logic 33

FIFO User Guide

parameter param_half_empty_assert = 0; //programmable empty signal assert threshold

parameter param_half_empty_negate = 0; //programmable empty signal negate threshold

input [dw1-1:0] din; //data write into FIFO

input [aw2-1:0] half_empty_assert; //programmable empty signal assert threshold, it is valid port only the

half_empty_type is 4

input [aw2-1:0] half_empty_negate; //programmable empty signal negate threshold, it is valid port only the

half_empty_type is 4

input [aw1-1:0] half_full_assert; //programmable full signal assert threshold, it is valid only the

half_full_type is 4

input [aw1-1:0] half_full_negate; //programmable full signal negate threshold, it is valid port only the

half_full_type is 4

input [aw1-1 0] half_full_thresh; //programmable full signal threshold, it is valid port only the half_full_type

is 3

input [aw2-1:0] half_empty_thresh; //programmable empty signal threshold, it is valid port only the

half_empty_type is 3

input rd_clk; //read clock

input rd_en; //read enable

input rst_syn; //synchronous reset

input rst_asyn; //asynchronous reset

input wr_clk; //write clock

input wr_en; //write enable

output almost_empty; //almost empty signal

output almost_full; //almost full signal

output [dw2-1 : 0] dout; //data out from FIFO

output empty; //empty signal

output full; //full signal

output overflow; //overflow signal

output half_empty; //programmable empty signal

output half_full; //programmable full signal

output rd_ack; //read valid signal

output [aw2 : 0] rd_count; //read availably count

output underflow; //underflow signal

output wr_ack; //write acknowledge

output [aw1 : 0] wr_count; //write data count

 async_fifo inst (

 .din(din),

 . half_full_thresh (half_full_thresh),

 . half_empty_thresh (half_empty_thresh),

 .half_empty_assert (half_empty_assert),

 .half_empty_negate (half_empty_negate),

 .half_full_assert (half_full_assert),

 .half_full_negate (half_full_negate),

Agate Logic 34

FIFO User Guide

 .rd_clk (rd_clk),

 .rd_en (rd_en),

 .rst_syn (rst_syn),

 .rst_asyn (rst_asyn),

 .wr_clk (wr_clk),

 .wr_en (wr_en),

 .almost_empty (almost_empty),

 .almost_full (almost_full),

 .dout (dout),

 .empty (empty),

 .full (full),

 .overflow (overflow),

 .half_empty (half_empty),

 .half_full (half_full),

 .rd_ack (rd_ack),

 .rd_count (rd_count),

 .underflow (underflow),

 .wr_ack (wr_ack),

 .wr_count (wr_count));

 defparam inst.dw1 = dw1; //write data width

 defparam inst.dw2 = dw2; //read data width

 defparam inst.param_half_full_assert = param_half_full_assert; //programmable full signal assert

threshold constant

 defparam inst.param_half_full_negate = param_half_full_negate; //programmable full signal assert

threshold constant

 defparam inst.half_full_type = half_full_type;

 defparam inst.param_half_empty_assert = param_half_empty_assert; //programmable empty signal

assert threshold constant

 defparam inst.param_half_empty_negate=param_half_empty_negate; //programmable empty signal

assert threshold constant

 defparam inst.half_empty_type = half_empty_type;

 defparam inst.aw1 = aw1;//write data depth

 defparam inst.aw2 = aw2;//read FIFO depth

 defparam inst.rst_low = rst_low;//1 low reset,0 high reset

endmodule

Agate Logic 35

FIFO User Guide

Synchronous FIFO instantiation:

module ip_module_name(

 din,

 half_full_thresh,

 half_empty_thresh,

 half_empty_assert,

 half_empty_negate,

 half_full_assert,

 half_full_negate,

 clk,

 rd_en,

 rst_syn,

 rst_asyn,

 wr_en,

 almost_empty,

 almost_full,

 dout,

 empty,

 full,

 overflow,

 half_empty,

 half_full,

 rd_ack,

 underflow,

 wr_ack,

 count);

parameter dw=8; //data width

parameter aw=10; //FIFO depth

parameter rst_low = 0; //reset optional 1:low active 0:high active

parameter half_full_type = 0; //set half full type

parameter half_empty_type = 0; //set half empty type

parameter param_half_full_assert = 0; //programmable full signal assert threshold

parameter param_half_full_negate = 0; //programmable full signal negate threshold

parameter param_half_empty_assert = 0; //programmable empty signal assert threshold

parameter param_half_empty_negate = 0; //programmable empty signal negate threshold

input [dw-1 : 0] din; //data write into FIFO

input [aw-1 : 0] half_empty_assert; //programmable empty signal assert threshold, it is valid port only the

half_empty_type is 4

input [aw-1 : 0] half_empty_negate; //programmable empty signal negate threshold, it is valid port only the

half_empty_type is 4

input [aw-1:0] half_full_assert; // programmable full signal assert threshold, it is valid port only the half_ full

Agate Logic 36

FIFO User Guide

_type is 4

input [aw-1:0] half_full_negate; // programmable full signal negate threshold, it is valid port only the half_

full _type is 4

input [aw-1:0] half_full_thresh; //programmable full signal threshold, it is valid port only the half_full_type

is 3

input [aw-1:0] half_empty_thresh; //programmable empty signal threshold, it is valid port only the

half_empty_type is 3

input clk; //clock

input rd_en; //read enable

input rst_syn; //synchronous reset

input rst_asyn; //asynchronous reset

input wr_en; //write enable

output almost_empty; //almost empty signal

output almost_full; //almost full signal

output [dw-1 : 0] dout; //data out from FIFO

output empty; //empty signal

output full; //full signal

output overflow; //overflow signal

output half_empty; //programmable empty signal

output half_full; //programmable full signal

output rd_ack; //read valid signal

output [aw-1 : 0] count; //data amount of in FIFO

output underflow; //underflow signal

output wr_ack; //write acknowledge

 sync_fifo inst (

 .din(din),

 . half_full_thresh (half_full_thresh),

 . half_empty_thresh (half_empty_thresh),

 .half_empty_assert (half_empty_assert),

 .half_empty_negate (half_empty_negate),

 .half_full_assert (half_full_assert),

 .half_full_negate (half_full_negate),

 .clk (clk),

 .rd_en (rd_en),

 .rst_syn (rst_syn),

 .rst_asyn (rst_asyn),

 .wr_en (wr_en),

 .almost_empty (almost_empty),

 .almost_full (almost_full),

 .dout (dout),

 .empty (empty),

 .full (full),

 .overflow (overflow),

Agate Logic 37

FIFO User Guide

 .half_empty (half_empty),

 .half_full (half_full),

 .rd_ack (rd_ack),

 .underflow (underflow),

 .wr_ack (wr_ack),

 .count (count));

 defparam inst.dw = dw; //write data width

 defparam inst.param_half_full_assert = param_half_full_assert; //programmable full signal assert

threshold constant

 defparam inst.param_half_full_negate = param_half_full_negate; //programmable full signal

assert threshold constant

 defparam inst.half_full_type = half_full_type;

 defparam inst.param_half_empty_assert = param_half_empty_assert; //programmable empty

signal assert threshold constant

 defparam inst.param_half_empty_negate=param_half_empty_negate; //programmable empty

signal assert threshold constant

 defparam inst.half_empty_type = half_empty_type;

 defparam inst.aw = aw;//write data depth

 defparam inst.rst_low = rst_low;//1 low reset,0 high reset

endmodule

Agate Logic 38

FIFO User Guide

Section 5

Simulating Design

The Agate Logic provide the behavioral model to customers for simulation.
 The behavioral models are considered to be zero-delay models, as the modeled write-to-read

latency is nearly zero. The behavioral models are functionally correct, and will represent the
behavioral of the configured FIFO, although the write-to-read latency and the behavioral of the
status flags will differ from the actual implementation of the FIFO design.

Agate Logic 39

FIFO User Guide

Section 6

Performance Information

6.1 Resource Utilization and Performance

 Performance and resource utilization for a FIFO varies depending on the configuration and
features selected when customizing the core. The tables below provide example FIFO
configurations and the maximum performance and resources required.

Table 7 FIFO Performance and Resources
Resources

FIFO Type WidthxDepth Family Performance(MHz)
LUTs FFs EMB9K

1x8k 53 99 47 1

2x4k 47 93 44 1

4x2k 52 85 41 1

8x1k 48 80 38 1

16x512 56 73 35 1

32x256 52 66 32 1

9x1k 44 80 38 1

18x512 57 73 35 1

Synchronous

36x256

Angelo

48 66 32 1

1x8k 30 158 94 1

2x4k 34 148 88 1

4x2k 43 138 82 1

8x1k 50 125 76 1

16x512 41 118 70 1

32x256 58 109 64 1

9x1k 43 125 76 1

18x512 40 118 70 1

Asynchronous

36x256

Angelo

51 109 64 1

Agate Logic 40

FIFO User Guide

About Agate Logic

Agate Logic is the global pioneer and leader of the innovative Adaptable Programmable
Gate Array (APGA) technologies. The company offers a full spectrum of
programmable logic devices, software design tools, intellectual property (IP) and
design services. Focusing on multiple applications such as telecommunication
equipments, industrial control systems and consumer products, we use the Chinese
leading foundry partner, SMIC, to manufacture our chips to offer solutions tailored for
the market in China.

Technical Support Assistance

Tel: +86 10 82150100

E-mail: support@agatelogic.com

Website: www.agatelogic.com.cn

Agate Logic 41

mailto:support@agatelogic.com
http://www.agatelogic.com.cn/

FIFO User Guide

Copyright © 2005-2009 Agate Logic, Inc. All rights reserved. No part of this document may be
copied, transmitted, transcribed, stored in a retrieval system, or translated into any language or
computer language, in any form or by any means, electronic, mechanical, magnetic, optical,
chemical, manual or otherwise, without the written permission of Agate Logic, Inc. All trademarks
are the property of their respective companies.

Agate Logic 42

	
	 Device Family Support
	1.2 Introduction
	1.3 Features
	
	2.1 FIFO Interfaces

	
	
	
	
	About Agate Logic
	Technical Support Assistance

