

Low-Voltage, Dual DPDT/Quad SPDT Analog Switches in QFN

General Description

The MAX4699/MAX4701/MAX4702 are low-voltage, single-supply CMOS analog switches. The MAX4699/ MAX4701 are dual double-pole/double-throw (DPDT) switches with two control inputs that control two single-pole/double-throw (SPDT) switches each. The MAX4702 is a guad SPDT switch with one control input and one low-voltage digital logic power supply.

These devices operate from a single +1.8V to +5.5V power supply. When powered from a +2.7V supply the MAX4699/MAX4701/MAX4702 offer a 75 Ω on-resistance (R_{ON}), with 12Ω max R_{ON} flatness and 4Ω max matching between channels. Each switch has Rail-to-Rail® signal handling, fast switching speeds of toN = 35ns, tOFF = 20ns, and a maximum 1nA of leakage cur-

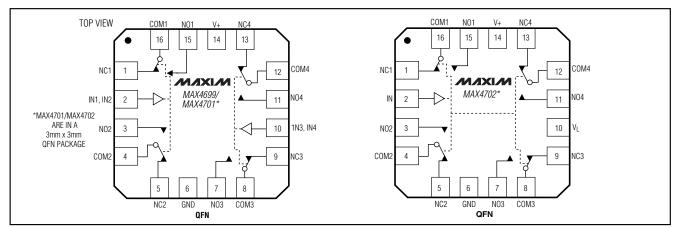
The MAX4699/MAX4701 digital inputs are 1.8V-logic compatible when operated from a +3V supply. The MAX4702's digital inputs feature a 1.0V threshold when powered with a 1.5V logic supply.

The MAX4699 is available in a space-saving 16-lead 4mm x 4mm QFN package. The MAX4701/MAX4702 are available in space-saving 16-lead 3mm x 3mm QFN and 16-pin TSSOP packages.

Applications

Audio and Video Signal Routing Cellular Phones Battery-Operated Equipment Communications Circuits

Modems


Pin Configurations

Features

- ♦ 3mm x 3mm and 4mm x 4mm 16-Pin QFN **Package**
- ♦ Guaranteed On-Resistance: 75 Ω (max) (+3V Supply) 40 Ω (max) (+5V Supply)
- ♦ Guaranteed Match Between Channels: 4Ω max
- ♦ Guaranteed Flatness Over Signal Range: 12 Ω max
- **♦ Low Leakage Currents Over Temperature:** 1nA Max at +85°C
- ♦ Fast Switching: toN = 35ns, toFF = 20ns
- ♦ Guaranteed Break-Before-Make
- ♦ Single-Supply Operation from +1.8V to +5.5V
- ♦ Rail-to-Rail Signal Handling
- ♦ -3dB Bandwidth: 250MHz
- ♦ Low Crosstalk: -79dB (1MHz)
- ♦ High Off-Isolation: -76dB (1MHz)

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX4699EGE	-40°C to +85°C	16 QFN (4mm x 4mm)
MAX4701EUE	-40°C to +85°C	16 TSSOP
MAX4701EGE	-40°C to +85°C	16 QFN (3mm x 3mm)
MAX4702EUE	-40°C to +85°C	16 TSSOP
MAX4702EGE	-40°C to +85°C	16 QFN (3mm x 3mm)

Pin Configurations continued at end of data sheet.

Rail-to-Rail is a registered trademark of Nippon Motorola, Inc.

MIXIM

ABSOLUTE MAXIMUM RATINGS

(Voltages Referenced to GND) V+0.3V to +6V VL, IN_, COM_, NO_, NC_ (Note1)0.3V to (V+ + 0.3V) Continuous Current COM_, NO_, NC	Continuous Power Dissipation (T _A = +70°C) TSSOP (derate 5.6mW/°C above +70°C)
ESD per Method 3015.7>2.5kV	Lead Temperature (soldering, 10s)+300°C

Note 1: Signals on IN_, COM_, NO_, and NC_ exceeding 0 or V+ are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +3V Supply

 $(V+ = +2.7V \text{ to } +3.3V, \text{ GND} = 0, \text{ V}_{\text{IH}} = +1.4V, \text{ V}_{\text{IL}} = +0.5V, (\text{V}_{\text{L}} = +1.5V, \text{V}_{\text{IH}} = +1.0V, \text{V}_{\text{IL}} = +0.4V \text{ for MAX4702 only)}, \text{ T}_{\text{A}} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}. \text{ Typical values are at V+} = +3V \text{ and T}_{\text{A}} = +25^{\circ}\text{C}, \text{ unless otherwise noted.)}$ (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS	
ANALOG SWITCH								
Analog Signal Range	V _{COM} _, V _{NO} _, V _{NC} _			0		V+	V	
On-Resistance	Ron	$V + = +2.7V$, $I_{COM} = 10mA$;	+25°C		60	75	Ω	
OTFI lesistarice	TION	V_{NO} or $V_{NC} = +1.5V$	T _{MIN} to T _{MAX}			85	22	
On-Resistance Match Between	ΔRon	$V+ = +2.7V$, $I_{COM} = 10mA$;	+25°C		2	4	Ω	
Channels (Note 4)	ZITON	V_{NO} or $V_{NC} = +1.5V$	T _{MIN} to T _{MAX}			5	32	
On Desistance Flatness (Note 5)	D	$V + = +2.7V$, $I_{COM} = 10mA$;	+25°C		8	12	Ω	
On-Resistance Flatness (Note 5)	R _{FL} AT (ON)	V_{NO} or V_{NC} = +1V, +1.5V, +2V	T _{MIN} to T _{MAX}			14		
NO_, NC_ Off-Leakage Current	INO (OFF),	$V + = +3.3V, V_{COM} = +1V,$	+25°C	-0.5		+0.5	A	
(Note 6)	INC_(OFF)	$+3V$; V_{NO} or V_{NC} = $+3V$, $+1V$	T _{MIN} to T _{MAX}	-1		1	nA	
		$V + = +3.3V, V_{COM} = +1V,$	+25°C	-0.5		+0.5		
COM_ On-Leakage Current (Note 6)	ICOM_(ON)	$+3V$; V_{NO} or V_{NC} = $+1V$, $+3V$, or floating	T _{MIN} to T _{MAX}	-1		1	nA	
DYNAMIC	•							
Turn-On Time	tou	V_{NO} or V_{NC} = +2V; R_L =	+25°C		27	35	ns	
Turn-On Time	ton	300Ω , C _L = 35 pF, Figure 2	$T_{\mbox{\scriptsize MIN}}$ to $T_{\mbox{\scriptsize MAX}}$			45	115	
Turn-Off Time	torr	V_{NO} or $V_{NC} = +2V$; $R_L =$	+25°C		15	20	ns	
Turr-On Time	toff	300Ω , C _L = 35pF, Figure 2	T _{MIN} to T _{MAX}			25	115	
Break-Before-Make (Note 6)	t _{BBM}	V_{NO} or $V_{NC} = +2V$; $R_L =$	+25°C		15		ns	
Break-Beiore-Make (Note 6)	rBRIM	300Ω , C _L = 35pF, Figure 2	T _{MIN} to T _{MAX}	1			115	
On-Channel -3dB Bandwidth	BW	Signal = 0, 50Ω in and out, Figure 5			250		MHz	
Off-Isolation (Note 7)	V _{ISO}	$f = 1MHz$, $R_L = 50\Omega$, $C_L = 5pF$, Figure 5	+25°C		-76		dB	

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

 $(V+=+2.7V \text{ to } +3.3V, \text{GND}=0, V_{\text{IH}}=+1.4V, V_{\text{IL}}=+0.5V, (V_{\text{L}}=+1.5V, V_{\text{IH}}=+1.0V, V_{\text{IL}}=+0.4V \text{ for MAX4702 only)}, T_{\text{A}}=-40^{\circ}\text{C}$ to +85°C. Typical values are at V+ = +3V and T_{\text{A}}=+25^{\circ}\text{C}, unless otherwise noted.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
Crosstalk (Note 8)	V _{CT}	$f = 1MHz$, $R_L = 50\Omega$, $C_L = 5pF$, Figure 5	+25°C	-79			dB
Charge Injection	Q	$V_{GEN} = 0$, $R_{GEN} = 0\Omega$, $C_L = 1.0$ nF, Figure 4	+25°C 0.5			рС	
NO_, NC_, Off-Capacitance	C _{NO_(OFF)} , C _{NC_(OFF)}	$f = 1MHz, V_{NO_},$ $V_{NC_} = GND, Figure 6$	+25°C	+25°C 8			рF
Switch On-Capacitance	C _(ON)	f = 1MHz, Figure 6	+25°C		20		рF
Total Harmonic Distortion	THD	$f=20Hz$ to $20kHz$, $2.5Vp-p$, $R_L=600\Omega$	+25°C	0.02			%
DIGITAL I/O	•						
	V	MAX4699/MAX4701	AX4699/MAX4701		1.4		V
Input Logic High	VIH	MAX4702 ($V_L = +1.5V$)		1.0			V
Input Logic Low	\/	MAX4699/MAX4701				0.8	V
Input Logic Low V _I		MAX4702 ($V_L = +1.5V$)		(0.4	V
Input Leakage Current	I _{IH} , I _{IL}	$V_{IN} = 0$ to $V+$		-1		1	μΑ
SUPPLY							
Power-Supply Range	V+			1.8		5.5	V
Logic Power-Supply Input	VL	1.5		V+	V		
Positive Supply Current	l+	$V + = +3.3V$, $V_{IN} = 0$ or $V + T_{MIN}$ to $T_{MAX} -1$		1	μΑ		

ELECTRICAL CHARACTERISTICS—Single +5V Supply

 $(V+=+5V\pm10\%, \text{ GND}=0, \text{ V}_{\text{IH}}=+2.4\text{V}, \text{ V}_{\text{IL}}=+0.8\text{V}, (\text{V}_{\text{L}}=+1.5\text{V}, \text{V}_{\text{IH}}=+1.0\text{V}, \text{V}_{\text{L}}=+0.4\text{V} \text{ for MAX4702 only)}, \text{ T}_{\text{A}}=-40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}. \text{ Typical values are at V+}=+5\text{V} \text{ and T}_{\text{A}}=+25^{\circ}\text{C}, \text{ unless otherwise noted.)}$ (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS	
Analog Signal Range	V _{COM} _, V _{NO} _, V _{NC} _			0		V+	V	
On-Resistance	Ron	$V + = +4.5V$, $I_{COM} = 10mA$;	+25°C		30	40		
Of Fnesistatice	UON	V_{NO} or $V_{NC} = +3.5V$	T _{MIN} to T _{MAX}			50	Ω	
On-Resistance Match Between	A.D.o.i	$V+ = +4.5V, I_{COM} = 10mA;$			1	3	Ω	
Channels (Note 4)	ΔRon	V_{NO} or $V_{NC} = +3.5V$	T _{MIN} to T _{MAX}			5	52	
On-Resistance Flatness (Note 5)	R _{FLAT} (ON)	$V+ = +4.5V$, $I_{COM} = 10mA$; V_{NO} or $V_{NC} = +2.0V$,	+25°C		5	8	Ω	
Office istalice flatiless (Note 3)	TIFLAT (ON)	+2.25V, +3.5V	T _{MIN} to T _{MAX}			10	52	
DYNAMIC								
Town On Time	ton	V_{NO} or $V_{NC} = +3V$; $R_L =$	+25°C		15	18	no	
Turn-On Time	ton	300Ω , C _L = 35pF, Figure 2	T _{MIN} to T _{MAX}			20	ns	

ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)

 $(V+=+5V\pm10\%, GND=0, V_{IH}=+2.4V, V_{IL}=+0.8V, (V_{L}=+1.5V, V_{IH}=+1.0V, V_{IL}=+0.4V \text{ for MAX4702 only}), T_{A}=-40^{\circ}\text{C}$ to +85°C. Typical values are at V+ = +5V and T_{A}=+25^{\circ}\text{C}, unless otherwise noted.) (Notes 2, 3)

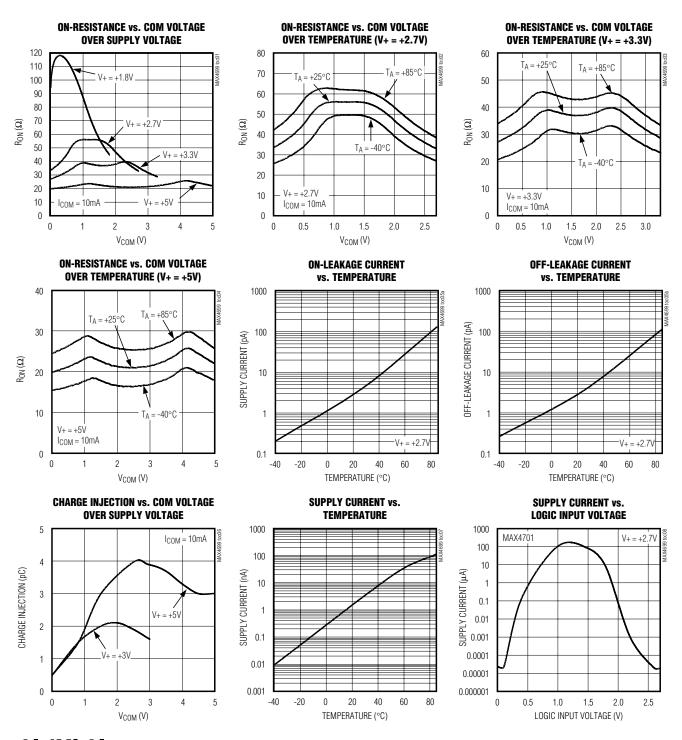
PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
Turn-Off Time	+0==	V_{NO} or V_{NC} = +3V; R_L =	+25°C		7	12	200
Turn-Oil Time	toff	300Ω , C _L = 35pF, Figure 2	T _{MIN} to T _{MAX}			15	ns
Drook Defere Make (Note 6)	too	V_{NO} or V_{NC} = +3V; R_L =	+25°C		10		200
Break-Before-Make (Note 6)	tBBM	300Ω , C _L = 35pF, Figure 2	T _{MIN} to T _{MAX}	o T _{MAX} 2			ns
Charge Injection	Q	$V_{GEN} = 0$, $R_{GEN} = 0$, $C_L = 1.0$ nF, Figure 4	+25°C 0.5			рС	
DIGITAL I/O							
Input Logic High	\/	MAX4699/MAX4701		2.4			V
Input Logic High	V _{IH}	MAX4702 ($V_L = +1.5V$)		1.0			7 V
Input Logic Lou	\/	MAX4699/MAX4701				0.8	V
Input Logic Low	VIL	MAX4702 ($V_L = +1.5V$)				0.4]
Logic Input Current	I _{IH} , I _{IL}	$V_{IN} = 0$ to $V+$		-1	•	1	μΑ

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.

Note 3: -40°C specifications are guaranteed by design.

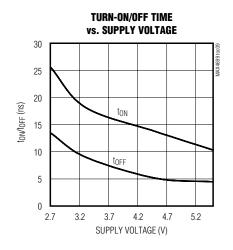
Note 4: $\Delta R_{ON} = R_{ON(MAX)} - R_{ON(MIN)}$.

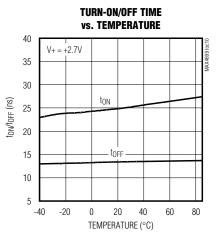
Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

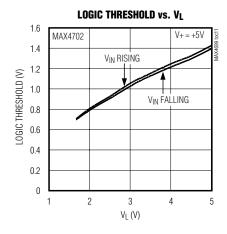

Note 6: Guaranteed by design.

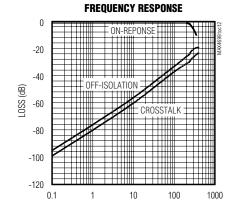
Note 7: Off-Isolation = $20log10 (V_{COM} / V_{NO})$, $V_{COM} = output$, $V_{NO} = input to off switch$.

Note 8: Between any two switches.

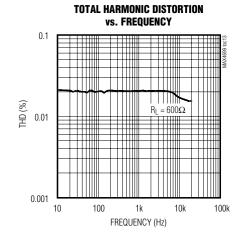

Typical Operating Characteristics


 $(T_A = +25$ °C, unless otherwise noted. $V_L = +1.5V$ for MAX4702 only)




Typical Operating Characteristics (continued)

 $(T_A = +25$ °C, unless otherwise noted. $V_L = +1.5V$ for MAX4702 only)



FREQUENCY (MHz)

Pin Description

QFN	I PIN	TSSO	P PIN		
MAX4699/ MAX4701	MAX4702	MAX4701	MAX4702	NAME	FUNCTION
1	1	3	3	NC1	Analog Switch 1—Normally Closed Terminal
	2	_	4	IN	Digital Control Input Switch 1, 2, 3, and 4
2	_	4	_	IN1, IN2	Digital Control Input Switch 1 and 2
3	3	5	5	NO2	Analog Switch 2—Normally Open Terminal
4	4	6	6	COM2	Analog Switch 2—Common Terminal
5	5	7	7	NC2	Analog Switch 2—Normally Closed Terminal
6	6	8	8	GND	Ground
7	7	9	9	NO3	Analog Switch 3—Normally Open Terminal
8	8	10	10	COM3	Analog Switch 3—Common Terminal
9	9	11	11	NC3	Analog Switch 3—Normally Closed Terminal
_	10	_	12	VL	Logic Power-Supply Input
10	_	12	_	IN3, IN4	Digital Control Input Switch 3 and 4
11	11	13	13	NO4	Analog Switch 4—Normally Open Terminal
12	12	14	14	COM4	Analog Switch 4—Common Terminal
13	13	15	15	NC4	Analog Switch 4—Normally Closed Terminal
14	14	16	16	V+	Positive Supply Voltage Input
15	15	1	1	NO1	Analog Switch 1—Normally Open Terminal
16	16	2	2	COM1	Analog Switch 1—Common Terminal

Detailed Description

The MAX4699/MAX4701 are low-voltage CMOS analog switches that operate from a single +1.8V to +5.5V power supply. The MAX4702 requires an additional logic supply that allows for setting lower logic thresholds. The MAX4699/MAX4701 are double-pole/double-throw (DPDT) devices. The MAX4702 is a quad single-pole/double-throw (SPDT) device. These devices feature a break-before-make switching, fast switching speeds (with V+ = 5V: t_{ON} = 18ns max, t_{OFF} = 9ns max and with V+ = 3V: t_{ON} = 35ns, t_{OFF} = 20) and rail-to-rail signal handling. A logic input on the MAX4702 allows for logic thresholds as low as 1.0V.

Applications Information

Analog Signal Levels

Analog signals that range over the entire supply voltage (V+ to GND) can be passed with very little change in onresistance (see *Typical Operating Characteristics*). The switches are bidirectional, so the NO, NC, and COM pins can be used as either inputs or outputs.

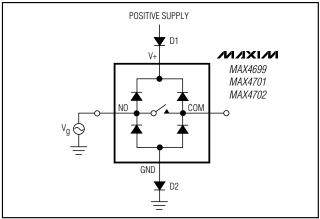


Figure 1. Overvoltage Protection Using Two External Blocking Diodes

Power-Supply Sequencing and Overvoltage Protection

Caution: Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the devices.

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals, especially if the analog signal is not current limited. If this sequencing is not possible, and if the analog inputs are not current limited to <20mA, add a small-signal diode (D1) as shown in Figure 1. If the analog signal can dip below GND, add D2. Adding protection diodes reduces the analog range to a diode drop (about 0.7V) below V+ (for D1), and a diode drop above ground (for D2). On-resistance increases slightly at low supply voltages. Maximum supply voltage (V+) must not exceed +6V.

Adding protection diode D2 causes the logic threshold to be shifted relative to GND. TTL compatibility is not guaranteed when D2 is added.

Protection diodes D1 and D2 also protect against some overvoltage situations. With Figure 1's circuit, if the supply voltage is below the absolute maximum rating, and if a fault voltage up to the absolute maximum rating is applied to an analog signal pin, no damage will result.

V_L Logic Input (MAX4702)

The MAX4702 features a V_L logic input that allows for lower logic input thresholds down to 1.0V min for V_{IH} in the quad SPDT configuration. Power-up V_L after V_T has been powered with a minimum of 1.5V to ensure proper operation of the device.

Test Circuits/Timing Diagrams

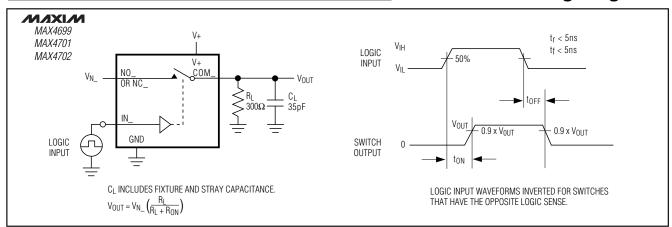


Figure 2. Switching Time

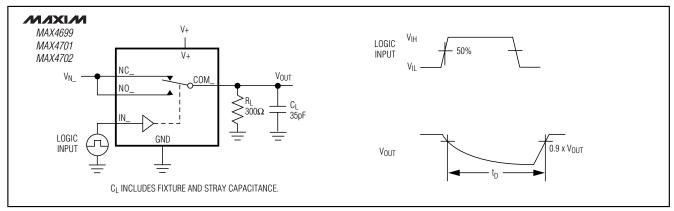


Figure 3. Break-Before-Make Interval

Test Circuits/Timing Diagrams (continued)

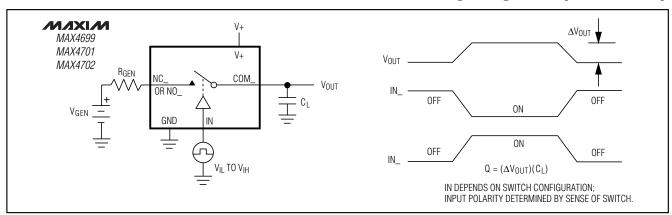


Figure 4. Charge Injection

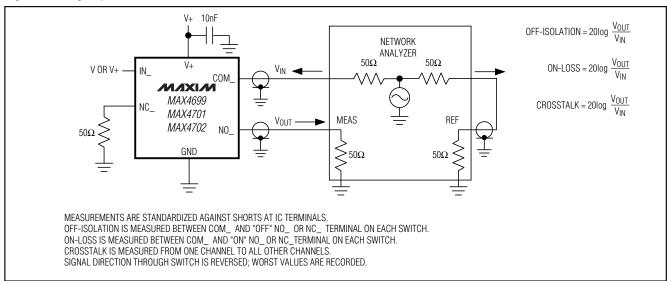


Figure 5. On-Loss, Off-Isolation, and Crosstalk

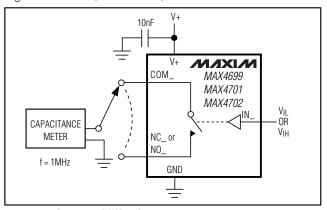
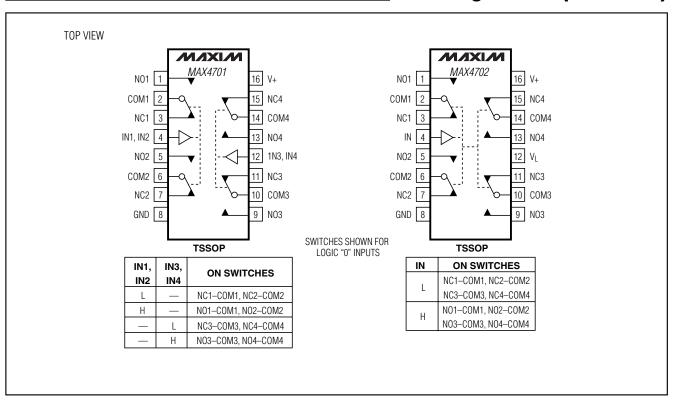
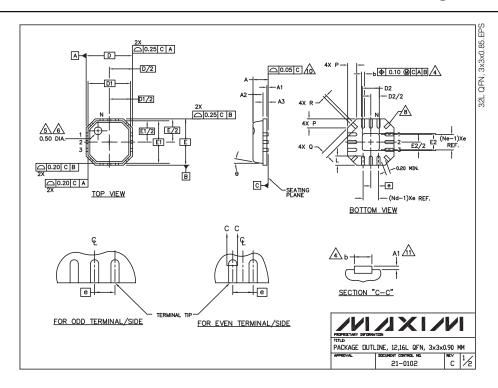
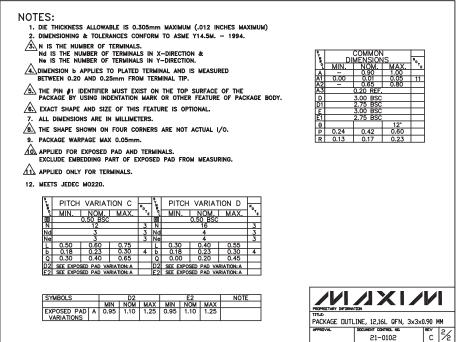
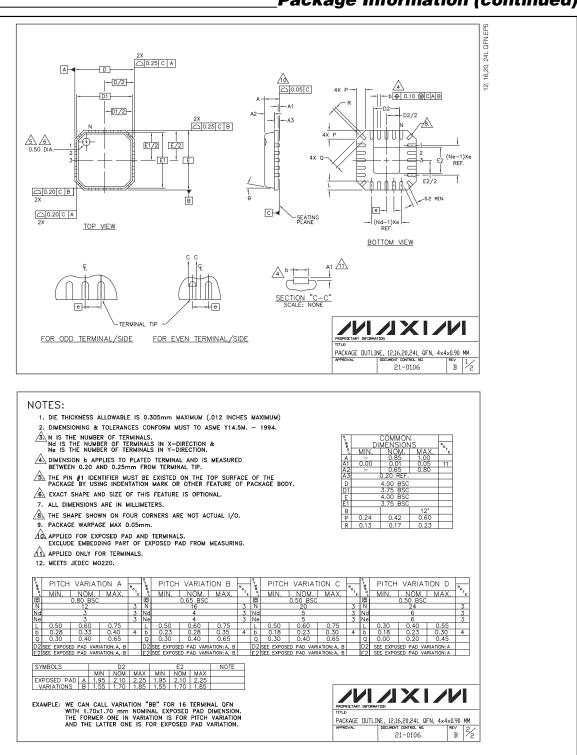



Figure 6. Channel Off/On-Capacitance

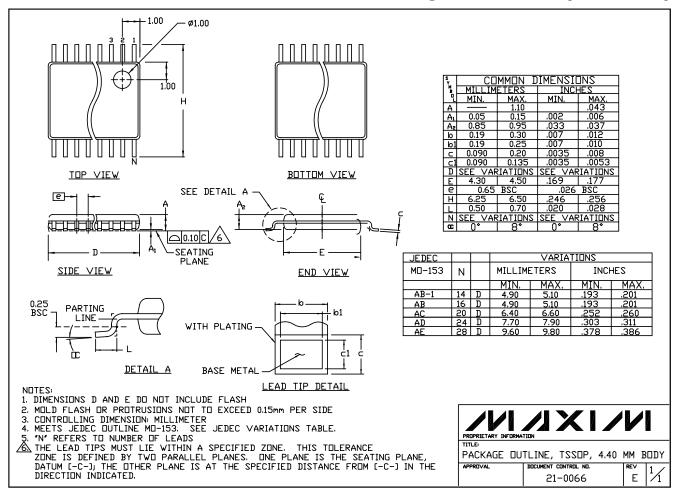

Chip Information


TRANSISTOR COUNT: 269
Substrate connected to GND

Pin Configurations (continued)



Package Information



Package Information (continued)

Package Information (continued)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.