
AT91
ARM® Thumb®

Microcontrollers

Application
Note

Rev. 2644A–ATARM–06/02
AT91 Assembler Code Startup Sequence for C
Code Applications Software

Introduction
For reasons of modularity and portability most application code for the AT91 ARM-
based microcontrollers is written in C. However, the startup sequence required to ini-
tialize the ARM processor and certain key peripherals is heavily dependent on the
register architecture and memory mapping processor, and the memory remap opera-
tion. For this reason the C startup sequence is written in assembler.

This Application Note describes an example of the AT91 C startup sequence. It is
based on the C startup sequence for the AT91 Evaluation Board working with the
ARM ADS V1.1 Development Tools. Further examples of C startup sequences are
available in the AT91 Library. The C startup sequence is activated on power-up and
after a reset.
1

C-Startup Sequence A major consideration in the design of an embedded ARM application is the layout of the
memory map, in particular the memory that is situated at address 0x0. Following reset,
the processor starts to fetch instructions from 0x0, therefore there must be some execut-
able code accessible from that address. In an embedded system, this requires NVM to
be present, at least initially, at address 0x0.

The simplest layout is accomplished by locating the application in ROM at address 0 in
the memory map. The application can then branch to the real entry point when it exe-
cutes its first instruction at the reset vector at address 0x0. But, there are disadvantages
with this layout. ROM is typically narrow (8 or 16 bits) and slow compared to RAM,
requiring more wait states to access it. This slows down the handling of processor
exceptions, especially interrupts, through the vector table. Moreover, if the vector table
is in ROM, it cannot be modified by the code.

Since RAM is normally faster and wider than ROM, it is better for the vector table and
interrupt handlers if the memory at 0x0 is RAM. Although It is necessary that RAM be
located at 0x0 during normal execution, if RAM is located at address 0x0 on power-up,
there is not a valid instruction in the reset vector entry. Therefore, ROM must be located
at 0x0 at power-up to assure that there is a valid reset vector. The changeover from
reset to the normal memory map is normally accomplished by performing the remap
command.

Many applications written for ARM-based systems are embedded applications that are
contained in ROM and execute on reset. There are a number of factors that must be
considered when writing embedded operating systems, or embedded applications that
execute from reset without an operating system, including:

• Remapping ROM to RAM, to improve execution speed.

• Initializing the execution environment, such as exception vectors, stacks, I/Os.

• Initializing the application.

– For example, copying initialization values for initialized variables from ROM
to RAM and resetting all other variables to zero.

• Linking an embedded executable image to place code and data in specific locations
in memory.

For an embedded application without an operating system, the code in ROM must pro-
vide a way for the application to initialize itself and start executing. No automatic
initialization takes place on reset, therefore the application entry point must perform
some initialization before it can call any C code.

The initialization code, located at address zero after reset, must:

• Mark the entry point for the initialization code.

• Set up exception vectors.

• Initialize the memory system.

• Initialize the stack pointer registers.

• Initialize any critical I/O devices.

• Initialize any RAM variables required by the interrupt system.

• Enable interrupts (if handled by the initialization code).

• Change processor mode if necessary.

• Change processor state if necessary.

After the environment has been initialized, the sequence continues with the application
initialization and should enter the C code.
2 AT91 ARM Thumb
2644A–ATARM–06/02

AT91 ARM Thumb
The C-startup file is the first file executed at power on and performs initialization of the
microcontroller from the reset vector up to the calling of the application main routine.
The main program should be a closed loop and should not return.

The ARM core begins executing instructions from address 0 at reset. For an embedded
system, this means that there must be ROM at address 0 when the system is reset.
Because of ROM limitations, the speed of exception handling is affected and the excep-
tion vectors cannot be modified. A common strategy is to remap ROM to RAM and copy
the exception vectors from ROM to RAM after startup.

C - Startup Example A generic start-up file is included within this Application Note and others are available in
the AT91 software library. The example described is based on the AT91 Evaluation
Board C-startup sequence working with ARM ADS V1.1 Development Tool and debug-
ging in external Flash Memory. This file must be modified in order to fit the needs of the
user application.

Each AT91 Evaluation Board is described in the AT91 Library inside a subdirectory of
the directory\software\targets. Each of these subdirectories contains the following files:

• The <target>.h file, defines the components of the boards in C.

• The <target>.inc file, defines the components of the boards in assembly.

• One or more cstartup.s files, define standard boot for the boards according to the
software development tools used: ARM SDT, ARM ADS and Green Hills MULTI®

2000 for example.

The AT91 Library provides C-Startup files that explain how to boot an AT91 part and
how to branch on the main C function. The C-Startup file provides an example of how to
boot an AT91 part, taking into account the part specific features, the board specific char-
acteristics and the debug level required.

Note: The software example is delivered "As Is" without warranty or condition of any kind, either
express, implied or statutory. This includes without limitation any warranty or condition
with respect to merchantability or fitness for any particular purpose, or against the
infringements of intellectual property rights of others.

Area Definition and Entry
Point for the Initialization
Code

In an ARM assembly language source file, the start of a section is marked by the AREA
directive. This directive names the section and sets its attributes. The attributes are
placed after the name, separated by commas. The code example referenced above
defines a read-only code section named reset.

An executable image must have an entry point. An embedded image that can be placed
in ROM usually has an entry point at 0x0. An entry point can be defined in the initializa-
tion code by using the assembler directive ENTRY.

;---

;- Area Definition

;---

AREA reset, CODE, READONLY

;---

;- Define the entry point

;---

ENTRY
3
2644A–ATARM–06/02

Setup Exception Vectors Exception Vectors are setup sequentially through the address space with branches to
nearby labels or branches and links to subroutines. During the normal flow of execution
through a program, the program counter increases enable the processor to handle
events generated by internal or external sources. Processor exceptions occur when the
normal flow of execution is diverted. Examples of such events are:

• Externally generated interrupts.

• An attempt by the processor to execute an Undefined Instruction.

It is necessary to preserve the previous processor status when handling such excep-
tions, so that execution of the program that was running when the exception occurred
can resume when the appropriate exception routine has completed.

The initialization code must set up the required exception vectors (see Table 1). If the
ROM is located at address 0, the vectors consist of a sequence of hard-coded instruc-
tions to branch to the handler for each exception. These vectors are mapped at address
0 before remap. They must be in relative addressing mode in order to guarantee a valid
jump. After remap, these vectors are mapped at address 0x01000000 and can only be
changed back by an internal reset or NRST assertion.

Table 1. Exception Vectors

Exception Description

Reset Occurs when the processor reset pin is asserted. This exception
is only expected to occur for signalling power-up, or for resetting
as if the processor has just powered up. A soft reset can be
done by branching to the reset vector (0x0000).

Undefined Instruction Occurs if neither the processor, or any attached coprocessor,
recognizes the currently executing instruction.

Software Interrupt (SWI) This is a user-defined synchronous interrupt instruction. It
allows a program running in User mode, for example, to request
privileged operations that run in Supervisor mode, such as an
RTOS function.

Prefetch Abort Occurs when the processor attempts to execute an instruction
that has prefetched from an illegal address.

Data Abort Occurs when a data transfer instruction attempts to load or store
data at an illegal address.

IRQ Occurs when the processor external interrupt request pin is
asserted (LOW) and the I bit in the CPSR is clear.

FIQ Occurs when the processor external fast interrupt request pin is
asserted (LOW) and the F bit in the CPSR is clear.
4 AT91 ARM Thumb
2644A–ATARM–06/02

AT91 ARM Thumb
Processor exception handling is controlled by a vector table. The vector table is a
reserved area of 32 bytes, usually at the bottom of the memory map. It has one word of
space allocated to each exception type, and one word that is currently reserved as
shown in Figure 1. Because there is not enough space to contain the full code for a han-
dler, the vector entry for each exception type contains a branch instruction or load pc
instruction to continue execution with the appropriate handler.

;---

;- Exception vectors (before Remap)

;---

B InitReset ; reset

undefvec

B undefvec ; Undefined Instruction

swivec

B swivec ; Software Interrupt

pabtvec

B pabtvec ; Prefetch Abort

dabtvec

B dabtvec ; Data Abort

rsvdvec

B rsvdvec ; reserved

irqvec

B irqvec ; reserved

fiqvec

B fiqvec ; reserved

Figure 1. Exception Vectors Mapping

0x00000000

0x00000004

0x00000008

0x0000000C

0x00000010

0x00000014

0x00000018

0x0000001C

0x00000020

0x00000038

0x00300000

B InitReset

B undefvec

B swivec

 B pabtvec

B dabtvec

 B rsvdvec

 B irqvec

 B fiqvec

InitReset
(linked @ 0x01000038)

Internal RAM
5
2644A–ATARM–06/02

External Bus Interface
Initialization Table

The EBI Table is used to configure the memory controller. The EBI values depend on
target, clock and external memory access time. These values are defined in an “include
file” corresponding to the target, for example eb55.inc for AT91EB55 Evaluation Board.

;---

;- EBI Initialization Data

;---

InitTableEBI

DCD EBI_CSR_0

DCD EBI_CSR_1

DCD EBI_CSR_2

DCD EBI_CSR_3

DCD EBI_CSR_4

DCD EBI_CSR_5

DCD EBI_CSR_6

DCD EBI_CSR_7

DCD 0x00000001 ; REMAP command

DCD 0x00000006 ; 6 memory regions, standard read

PtEBIBase

DCDEBI_BASE; EBI Base Address

Reset Handler From here, the code is executed from address 0. Caution should be taken, as it is linked
to 0x100 0000.

;---

;- Reset Handler before Remap

;---

InitReset

Speed Up the Boot
Sequence

After reset, the External Bus Interface is not configured apart from the chip select 0 and
the number of wait states on chip select 0 is 8. Before the remap command, the chip
select 0 configuration can be modified by programming the EBI_CSR0 with exact boot
memory characteristics. The base address becomes effective after the remap com-
mand, but the new number of wait states can be changed immediately. This is desirable
if a boot sequence needs to be faster.

;---

;- Speed up the Boot sequence

;---

;- Load System EBI Base address and CSR0 Init Value

ldr r0, PtEBIBase

ldr r1, InitTableEBI ; values (relative)

;- Speed up code execution by disabling wait state on Chip Select 0

str r1, [r0]
6 AT91 ARM Thumb
2644A–ATARM–06/02

AT91 ARM Thumb
Low Level Initialization Peripherals that must be initialized before enabling interrupts should be considered as
critical. If these peripherals are not initialized at this point, they might cause spurious
interrupts when interrupts are enabled.

;---

;- Low level init

;---

bl __low_level_init

Example: Start PLL on the AT91EB55 Evaluation Board.

At reset, the AT91M55800A microcontroller starts with the slow clock oscillator (32.768
kHz) to minimize the power required to start up the system and the main oscillator is dis-
abled. The PLL can be started by configuring the Advanced Power Management
Controller to run with the main oscillator to speed up the startup sequence.

The __low_level_init function is defined in the assembly file from the AT91 software
library associated to the corresponding evaluation board.
7
2644A–ATARM–06/02

Advanced Interrupt
Controller Configuration

After reset, the Advanced Interrupt Controller (AIC) is not configured. The C-startup file
initializes the AIC by setting up the default interrupt vectors. The default Interrupt han-
dler functions are defined in the AT91 library. These functions can be redefined in the
application code. To view interrupt default handler initialization, see Figure 2 on page 9.

;---

;- Advanced Interrupt Controller configuration

;---

;- Set up the default vectors

;---

;- Load the AIC Base Address and the default handler addresses

add r0, pc,#-(8+.-AicData) ; @ where to read values (relative)

ldmia r0, {r1-r4}

;- Setup the Spurious Vector

str r4, [r1, #AIC_SPU] ; r4 =spurious handler

;- Set up the default interrupt handler vectors

str r2, [r1, #AIC_SVR]; SVR[0] for FIQ

add r1, r1, #AIC_SVR

mov r0, #31 ; counter

LoopAic1

str r3, [r1, r0, LSL #2]; SVRs for IRQs

subs r0, r0, #1 ; do not save FIQ

bhi LoopAic1

b EndInitAic

;---

;- Default Interrupt Handler

;---

AicData

DCD AIC_BASE; AIC Base Address

IMPORT at91_default_fiq_handler

IMPORT at91_default_irq_handler

IMPORT at91_spurious_handler

PtDefaultHandler

DCD at91_default_fiq_handler

DCD at91_default_irq_handler

DCD at91_spurious_handler

EndInitAic
8 AT91 ARM Thumb
2644A–ATARM–06/02

AT91 ARM Thumb
Figure 2. Interrupt Default Handler Initialization

Advanced Interupt Controller

at91_default_fiq_handler

at91_default_irq_handler

at91_default_irq_handler

at91_default_irq_handler

at91_default_irq_handler

at91_default_irq_handler

at91_default_irq_handler

at91_default_irq_handler

at91_spurious_handler

0xFFFFF080

0xFFFFF084

0xFFFFF088

0xFFFFF08C

0xFFFFF090

0xFFFFF100

0xFFFFF0FC

0xFFFFF134

0xFFFFF094

AIC_SVR0

AIC_SVR1

AIC_SVR2

AIC_SVR3

AIC_SVR31

AIC_SPU
9
2644A–ATARM–06/02

Copy Exception Vectors
in Internal RAM

The exception vectors must be copied into internal RAM. It is important to perform this
operation before remap in order to guarantee that the core is provided valid vectors dur-
ing the remap operation. There are only five offsets as the vectoring is used. See Figure
3 on page 11

;---

;-Setup Exception Vectors in Internal RAM before Remap

;---

b SetupRamVectors

VectorTable

ldr pc, [pc, #&18] ; SoftReset

ldr pc, [pc, #&18] ; UndefHandler

ldr pc, [pc, #&18] ; SWIHandler

ldr pc, [pc, #&18] ; PrefetchAbortHandler

ldr pc, [pc, #&18] ; DataAbortHandler

nop ; Reserved

ldr pc, [pc,#-0xF20] ; IRQ : read the AIC

ldr pc, [pc,#-0xF20] ; FIQ : read the AIC

;- There are only 5 offsets as the vectoring is used.

DCD SoftReset

DCD UndefHandler

DCD SWIHandler

DCD PrefetchAbortHandler

DCD DataAbortHandler

;- Vectoring Execution function run at absolute address

SoftReset

b SoftReset

UndefHandler

b UndefHandler

SWIHandler

b SWIHandler

PrefetchAbortHandler

b PrefetchAbortHandler

DataAbortHandler

b DataAbortHandler

SetupRamVectors

mov r8, #RAM_BASE_BOOT ; @ of the hard vector in RAM 0x300000

add r9, pc,#-(8+.-VectorTable) ; @ where to read values (relative)

ldmia r9!, {r0-r7} ; read 8 vectors

stmia r8!, {r0-r7} ; store them on RAM

ldmia r9!, {r0-r4} ; read 5 absolute handler addresses

stmia r8!, {r0-r4} ; store them on RAM
10 AT91 ARM Thumb
2644A–ATARM–06/02

AT91 ARM Thumb
Figure 3. Map to Copy Exception Vectors in Internal RAM

Memory Controller
Initialization and Remap
Command

After a reset the internal RAM of the AT91 is mapped at address 0x00300000. The
memory connected to the Chip Select line 0 is mapped at address 0. When the Remap
command is performed, the external memory is mapped at the address defined by the
user in the Chip Select Register 0. The Internal RAM is then mapped at address 0 allow-
ing ARM7TDMI exception vectors between 0x0 and 0x20 to be modified by the
software.

;---

;- Memory Controller Initialization

;---

;- Copy the Image of the Memory Controller

sub r10, pc,#(8+.-InitTableEBI) ; get the address of the chip

; select register image

ldr r12, PtInitRemap ; get the real jump address

; (after remap)

;- Copy Chip Select Register Image to Memory Controller and command remap

ldmia r10!, {r0-r9,r11} ; load the complete image and the

; EBI base

stmia r11!, {r0-r9} ; store the complete image with

; the remap command

B InitReset

B undefvec

Ldr pc, [pc, #&18]

Ldr pc, [pc, #&18]

Ldr pc, [pc, #&18]

Ldr pc, [pc, #&18]

Ldr pc, [pc, #&18]

Ldr pc, [pc, #&18]

Ldr pc, [pc, #&18]

DCD SoftReset
@0x01005348

DCD SoftReset
@0x01005348

DCD UndefHandler
@0x01005634

DCD SWIHandler
@0x01005694

Internal RAM

Jump to
Absolute @

External Flash

0x00000000

0x00000004

0x00000008

0x00000070

0x00000074

0x00000078

0x0000007C

0x00000090

0x00000094

0x00000098

0x00300000
11
2644A–ATARM–06/02

;- Jump to ROM at its new address

mov pc, r12 ; jump and break the pipeline

PtInitRemap

DCD InitRemap ; address where to jump after REMAP

;---

;- From here, the code is executed from its link address, ie. 0x100 0000.

;---

InitRemap

The ARM Processor Pipeline assures that the instruction "mov pc, r12" will be read
before remap is executed. After remap, the next instruction is fetched in internal RAM
and the instruction "mov pc, r12" is executed to perform jump in ROM at the previously
loaded address in r12 (0x0100011C) thus simultaneously breaking the pipeline as
shown in Figure 4. The subsequent “new” memory mapping after remap is described in
Figure 5 on page 13.

Figure 4. ARM Core Pipeline During Remap Command

After Remap

Pipeline

Fetch

Decode

Execute

PC

mov PC

mov PC

mov PC

InitRemap

InitRemap

Idmia stmia

Idmia stmia

Idmia stmia

Before Remap After mov PC, r12

RAM@11C ldr r0

ldr r0break

break break

Msr CPSR_c

Internal
SRAM

Internal
SRAM

Internal
SRAM

Flash
NCSO

Flash
NCSO

Flash
NCSO

NCSO select @ 0x00000000
Internal RAM

@ 0x0000 NCSO select @ 0x01000000

0x10C 0x110 0x114 0x118 0x11C 0x100011C 0x1000120

0x01000000 0x01000000

0x00000000 0x00000000

Memory

0x00300000

0x00000000

PC

PCPC
12 AT91 ARM Thumb
2644A–ATARM–06/02

AT91 ARM Thumb
Figure 5. Memory Map After Remap

Initialize Stack Registers Fast Interrupt, Interrupt, Abort, Undefined and Supervisor Stack are located at the top of
internal memory in order to speed up the exception handling context. User (Application,
C) Stack is located at the top of the external memory.

The initialization code initializes the stack pointer registers. Depending on the interrupts
and exceptions desired, some or all of the following stack pointers may require
initialization:

• Supervisor stack must always be initialized.

• IRQ stack must be initialized if IRQ interrupts are used. It must be initialized before
interrupts are enabled.

• FIQ stack must be initialized if FIQ interrupts are used. It must be initialized before
interrupts are enabled.

• Abort-status stack must be initialized for Data and Prefetch Abort handling.

• Undefined Instruction stack must be initialized for Undefined Instruction handling.

Generally, Abort-status and Undefined Instruction stacks are not used in a simple
embedded system. However, it might be preferable to initialize them for debugging
purposes.

Ldr pc, [pc,#&18]

Ldr pc, [pc,#&18]

Ldr pc, [pc,#&18]

Ldr pc, [pc,#&18]

Ldr pc, [pc,#&18]

NOP

Ldr pc, [pc,#-0xF20]

Ldr pc, [pc,#-0xF20]

SoftReset

UndefHandler

B InitReset

B undefyec

B swiyec

InitRemap

stmia r11, (r0-r9)

 mov pc, r12

Ldr r0, =TOP_..._STACK

Internal RAM

PC

External Memory

Selected by CSR0

Previous ARM Vectors

(Not Used)

New ARM Vectors

0x00000000

0x00000004

0x00000008

0x0000000C

0x00000010

0x00000014

0x00000018

0x0000001C

0x00000020

0x01000000

0x01000110

0x01000114

0x01000118

0x0100011C

0x01 000004
13
2644A–ATARM–06/02

The user stack pointer can be set up when changing to User mode to start executing the
application.

;---

;- Stack sizes definition

;---

IRQ_STACK_SIZE EQU (3*8*4) ; 3 words

FIQ_STACK_SIZE EQU (3*4) ; 3 words

ABT_STACK_SIZE EQU (1*4) ; 1 word

UND_STACK_SIZE EQU (1*4) ; 1 word

Assuming that the IRQ_ENTRY/IRQ_EXIT macro is used, Interrupt Stack requires 3
words x 8 priority level x 4 bytes when using the vectoring. The Interrupt Stack must be
adjusted depending on the interrupt handlers. Fast Interrupt requires 3 words x 4 bytes
without priority level. Other stacks are defined by default to save one word each. The
system stack size is not defined and is limited by the free internal SRAM. User stack
size is not defined and is limited by the free external SRAM.

;---

;- Top of Stack Definition

;---

TOP_EXCEPTION_STACK EQU RAM_LIMIT ; Defined in part

TOP_APPLICATION_STACK EQU EXT_SRAM_LIMIT ; Defined in Target

;---

;- Setup stack for each mode

;---

ldr r0, =TOP_EXCEPTION_STACK

;- Set up Fast Interrupt Mode and set FIQ Mode Stack

msr CPSR_c, #ARM_MODE_FIQ:OR:I_BIT:OR:F_BIT

mov r13, r0 ; Init stack FIQ

sub r0, r0, #FIQ_STACK_SIZE

;- Set up Interrupt Mode and set IRQ Mode Stack

msr CPSR_c, #ARM_MODE_IRQ:OR:I_BIT:OR:F_BIT

mov r13, r0 ; Init stack IRQ

sub r0, r0, #IRQ_STACK_SIZE

;- Set up Abort Mode and set Abort Mode Stack

msr CPSR_c, #ARM_MODE_ABORT:OR:I_BIT:OR:F_BIT

mov r13, r0 ; Init stack Abort

sub r0, r0, #ABT_STACK_SIZE

;- Set up Undefined Instruction Mode and set Undef Mode Stack

msr CPSR_c, #ARM_MODE_UNDEF:OR:I_BIT:OR:F_BIT

mov r13, r0 ; Init stack Undef

sub r0, r0, #UND_STACK_SIZE

;- Set up Supervisor Mode and set Supervisor Mode Stack

msr CPSR_c, #ARM_MODE_SVC:OR:I_BIT:OR:F_BIT

mov r13, r0 ; Init stack Sup
14 AT91 ARM Thumb
2644A–ATARM–06/02

AT91 ARM Thumb
Change Processor Mode
and Enable Interrupts

The initialization code can now enable interrupts if necessary, by clearing the interrupt
disable bits in the CPSR. This is the earliest point that it is safe to enable interrupts. At
this stage the processor is still in Supervisor mode. If the application runs in User mode,
change to User mode and initialize the User mode stack.

;---

;- Setup Application Operating Mode and Enable the interrupts

;---

msr CPSR_c, #ARM_MODE_USER ; set User mode

ldr r13, =TOP_APPLICATION_STACK ; Init stack User

Initialize Software
Variable and Branch to
Main Function

The next task is to initialize the data memory by entering a loop that writes zeroes into
allocations used for data storage. This may seem superfluous, but there are two rea-
sons for this:

1. In C language, any non-initialized variable is supposed to contain zero as an ini-
tial value.

2. This makes the program behavior reproducible, even if not all variables are ini-
tialized explicitly.

– The table of initial values for the initialized variable (in the C language sense)
is copied to the location in RAM where the variables are positioned.

– The linker puts the initial values in the same order as the variables in RAM,
so a mere block copy is sufficient for this initialization.

The initial values for any initialized variables must be copied from ROM to RAM. All
other variables must be initialized to zero.

When the compiler compiles a function called main(), it generates a reference to the
symbol __main to force the linker to include the basic C run-time system from the ANSI
C library.The library initialization code called at __main performs the copying and initial-
ization. The function main() should be a closed loop and should not return.

;---

;- Branch on C code Main function (with interworking)

;---

IMPORT __main

ldr r0, =__main

bx r0

END
15
2644A–ATARM–06/02

Printed on recycled paper.

© Atmel Corporation 2002.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

2644A–ATARM–06/02 0M

ATMEL® is the registered trademark of Atmel.

ARM®, ARM® Thumb® and ARM Powered® are the registered trademarks of ARM Ltd. MULTI® 2000 is the reg-
istered trademark of Green Hills Software, Inc.

	Introduction
	C-Startup Sequence
	C - Startup Example
	Area Definition and Entry Point for the Initialization Code
	Setup Exception Vectors
	External Bus Interface Initialization Table
	Reset Handler
	Speed Up the Boot Sequence
	Low Level Initialization
	Advanced Interrupt Controller Configuration
	Copy Exception Vectors in Internal RAM
	Memory Controller Initialization and Remap Command
	Initialize Stack Registers
	Change Processor Mode and Enable Interrupts
	Initialize Software Variable and Branch to Main Function

