
AT91 ARM®
Thumb®
Microcontrollers

Application
Note

Rev. 1798A–18-Jan-02
Using an AT91EB40 as a Flash Programmer for
AT91F40816 and AT91FR4081

Introduction
This Application Note describes how to use the AT91EB40 Evaluation Board with the
Memory Extension Card AT91MEC01 to upload application software to an AT91
Flash-based microcontroller such as the AT91F40816 or the AT91FR4081. This
method is an improvement over the existing AT91 PC Host Flash loader solution. The
AT91 PC Host Flash loader is limited to a transfer rate of 115200 bit/s, whereas the
AT91EB40 Flash Programmer can reach a transfer rate of 512000 bit/s.

Definitions of Terms
A Flash-based AT91 is a member of the Atmel AT91 microcontroller family based on
the ARM7TDMI processor that combines the microcontroller with a Flash memory in a
single compact 120-ball BGA package. These include (but are not limited to) the
AT91F40816 and AT91FR4081. The Flash-based AT91 is delivered by Atmel with res-
ident boot software able to upload application software into its Flash memory.

The AT91 Flash Programmer is the code described in this Application Note that runs
on the AT91EB40 Evaluation Board. It is supplied as a source code module
(EB40_Flash_Programmer.zip) that can be downloaded and unzipped from Atmel’s
Web site.

A host is any item of equipment with a standard asynchronous serial communication
port able to provide the Rx and Tx signals to the Flash-based AT91 and to upload
application software into this Flash memory using the protocol defined by Atmel and
described in this document. In the context of this Application Note, a host can be a PC
or an AT91EB40 Evaluation Board.

The target board is either the AT91EB40 Evaluation Board or the user’s application
development board incorporating a Flash-based AT91. The latter is not supplied by
Atmel.

The binary code image is the compiled or assembled application software to be
uploaded into the Flash-based AT91.

Warranty
All source code modules supplied with this Application Note are free of charge and
can be copied or modified without authorization. The software is delivered "AS IS"
without warranty or condition of any kind, either express, implied or statutory. This
includes, without limitation, any warranty or condition with respect to merchantability
or fitness for any particular purpose, or against the infringements of intellectual prop-
erty rights of others.
1

Flash Memory
Requirements

The AT91EB40 Flash Programmer is usable with the following Atmel Flash memories:

• AT49BV16x4, as incorporated into the AT91F40816

• AT49BV8011, as incorporated into the AT91FR4081

System
Requirements

The following equipment is required:

• AT91EB40 Evaluation Board including:

- AT91R40807 microcontroller

- AT29LV1024 Flash memory

- AT91EB40 Flash Programmer software (programmed into the AT29LV1024)

• AT91MEC01 Memory Extension Card including:

- AT49BV1604 Flash memory

• PC Host including:

- Connection to AT91EB40 through serial port A (USART0)

- AT91 Host Flash loader software

• Target board with Flash-based AT91 including:

- Connection to AT91EB40 through serial port B (USART1)

- Factory-programmed resident boot software
2 AT91 ARM Thumb
1798A–ATARM–18-Jan-02

AT91 ARM Thumb
AT91EB40 Flash
Programmer

The AT91EB40 Flash Programmer is an improvement on the current AT91 PC Host
Flash Loader used to upload and program an application in the Flash memory of a
Flash-based AT91 microcontroller (refer to the AT91 Host Flash Loader documentation
for more details). The AT91 PC Host Flash Loader is based on an RS232 communica-
tion link between the PC and the target board (Figure 1), using a protocol defined by
Atmel and described later in this Application Note. The RS232 serial link between the
PC and the target board is limited by the PC to a transfer rate of 115200 bit/s.

Figure 1. AT91 Host Flash Loader

As shown in Figure 2 below, the AT91EB40 Flash Programmer is based on the
AT91EB40 Evaluation Board together with the AT91MEC01 Memory Extension Card
(MEC). The procedure consists of downloading a binary code image into the Memory
Extension Card at a transfer baud rate of 115200 bit/s and then uploading the same
binary file into the target board with a transfer baud rate up to 512000 bit/s.

Communication between either the AT91EB40 Flash Programmer or the PC host and
the target board is done via the RS232 serial link, using the protocol defined by Atmel.

Figure 2. AT91EB40 Flash Programming Procedure

PC Host

AT91 Host
Flash Loader

Binary Code Image

Target Board

AT91FXXXXX

AT91 Boot Software

RS232

Atmel
Protocol

115200 bit/s

PC Host

AT91 Host
Flash Loader

Binary Code Image

Target Board

AT91FXXXXX

AT91 Boot Software

RS232

Atmel
Protocol

115200 bit/s

RS232

Atmel
Protocol

512000 bit/s

AT91EB40

AT91R40807
AT91LV1024

AT91EB40 Flash
Programmer

AT91MEC01

AT49BV1604

R
S

23
2

D
riv

er

R
S

23
2

D
riv

er

R
S

23
2

D
riv

er

Phase 1 Phase 2
3
1798A–ATARM–18-Jan-02

The AT91EB40 Flash Programmer operates in two phases:

1. In the first, or download, phase, the AT91EB40 is used to download the binary
code image via the AT91 PC Host Flash loader into the Memory Extension Card
with a transfer baud rate limited to 115200 bit/s as shown Figure 3. In this phase,
the AT91EB40 is considered to be the target board, and the PC is the host sys-
tem. The download phase is done only once, then the user can disconnect the
PC host and start the second phase as described below.

Figure 3. Download Phase

2. In the second, or upload, phase, the user can upload the binary code image pre-
viously downloaded from the Memory Extension Card into the Flash-based AT91
with a transfer baud rate up to 512000 bit/s as shown Figure 4. In this phase, the
AT91EB40 is considered to be the host system, and the Flash-based AT91 is the
target board. The binary code image can be uploaded into several target boards
without repeating the download phase, thus is useful for mass production.

Figure 4. Upload Phase

PC Host

AT91 Host
Flash Loader

Binary Code Image

RS232

Atmel
Protocol

115200 bit/s

AT91EB40

AT91R40807
AT91LV1024

AT91EB40 Flash
Programmer

AT91MEC01

AT49BV1604

R
S

23
2

D
riv

er

R
S

23
2

D
riv

er

Phase 1

Target Board

AT91FXXXXX

AT91 Boot Software

RS232

Atmel
Protocol

512000 bit/s

AT91EB40

AT91R40807
AT91LV1024

AT91EB40 Flash
Programmer

AT91MEC01

AT49BV1604

R
S

23
2

D
riv

er

R
S

23
2

D
riv

er

R
S

23
2

D
riv

er

Phase 2
4 AT91 ARM Thumb
1798A–ATARM–18-Jan-02

AT91 ARM Thumb
AT91EB40 Flash
Programmer Transfer
Protocol

The AT91EB40 Flash Programmer transfer protocol is used for both the upload and the
download phases described previously. It consists of two parts: the first part in the host
to send data, and the second part in the target board to receive and upload the data into
Flash memory.

The main features are:

• Full-duplex RS232 interface

• Automatic speed selection

• High-speed download

The following choices have been made for high-speed Flash uploads:

• Automatic transfer speed detection

• Sector erasing host implementation

• Minimum size of character transfer: 1 start bit, 8 data bits and one stop bit (no parity
check)

• Reception and upload time-sharing using USART in interrupt mode with two data
buffers

Protocol Requirements The AT91EB40 Flash Programmer transfer protocol has the following requirements:

• Full-duplex communication between transmitter and receiver

• Asynchronous bi-directional full-duplex serial link, 1 start bit, 8 data bits and one
stop bit (no parity check)

• No baud rate restriction (only limited by the AT91 MCKI)

Each transmitted data block contains a checksum that enables the receiver to verify the
integrity of the transmitted data.

• The transmitter calculates the checksum and inserts this at the end of the block.

• The receiver calculates the checksum of the received data and compares it to the
received checksum.

Specific characters are defined by the protocol, as shown in Table 1. They introduce a
command block as defined in the section “Protocol Commands” on page 11.

The protocol is implemented by the following functions:

• Protocol speed selection

• Incoming command transfer: from interface

• Incoming data transfer: from interface

• Outgoing data transfer: to interface

• Application transfer and programming, page by page, from interface to chip

• Memory verification checksum.

Table 1. Protocol-specific Characters

Character Hex Code Meaning Source

<SYNC> 0x80 Synchronization Host

<ATS> 0x42 ‘B’ Answer to Synchronization AT91

<ACK> 0x41 ‘A’ Acknowledge AT91/Host

<NACK> 0x4E ‘N’ No Acknowledge AT91/Host

<SPEED> 0x53 ‘S’ Speed Selection Host
5
1798A–ATARM–18-Jan-02

Protocol Procedures All AT91EB40 Flash Programmer transfer protocol procedures as described below are
Atmel-defined.

Transfer Speed Procedure This procedure allows the AT91 in the target board to detect the serial communication
speed of the host system and to send configuration data. The host system sends a sin-
gle-byte <SYNC> synchronization command that enables the AT91 boot software to
detect the transmission speed of the host system. The AT91 boot software waits for the
falling edge on the reception of the start bit before sending an <ATS> Answer to Syn-
chronization. The Answer to Synchronization includes the AT91 and the Flash
specification, clock division factor and chip select base address.

Figure 5. Speed Detection Procedure

If the AT91 sets an incorrect speed, the host rejects the <ATS> command by sending a
single-byte <NACK> command. The host then re-selects a new speed using the
<SYNC> command to which the AT91 responds with an <ATS>. The AT91 stops the
speed select procedure when it receives an <ACK> from the host and responds with an
<ACK>. Otherwise, it re-enters speed selection for the next character.

<ERASE> 0x45 ‘E’ Erase Host

<WRITE> 0x57 ‘W’ Write Host

<READ> 0x52 ‘R’ Read Host

<DATA> 0x44 ‘D’ Data AT91/Host

<VERIFY> 0x56 ‘V’ Verify Host

<ERROR> 0x46 ‘F’ Error AT91

<RESET> 0x5A ‘Z’ Software Reset Host

Table 1. Protocol-specific Characters (Continued)

Character Hex Code Meaning Source

AT91 Host

<SYNC>

<ATS>

<ACK>

<ACK>
6 AT91 ARM Thumb
1798A–ATARM–18-Jan-02

AT91 ARM Thumb
Figure 6. Speed Detection Retry Procedure

At this time it is possible to change the speed for an improved transmission by the com-
mand <SPEED> Speed Selection.

Figure 7. Speed Modification Procedure

Data Programming Procedure When the interface has been synchronized, data programming into the Flash memory of
the target board can begin. This procedure requires the following steps:

• Sector erasing

• Write command

• Data command

AT91 Host

<SYNC>

<ATS>

<NACK>

<SYNC2>

<ATS2>

<ACK>

<ACK>

Speed Detection

No Acknowledge

Speed Detection

Acknowledge

First Attempt

Second Attempt

Speed OK

AT91 Host

<SPEED>

<ACK>

<ACK>

At First Speed

At New Speed
7
1798A–ATARM–18-Jan-02

Figure 8. Data Programming Procedure

During these steps it is possible to use the <DATA> command in a pipelined manner.
The AT91 boot software replies with an <ACK> after the block checksum verification but
before data programming into the Flash. Therefore it is possible to receive a part of
another data block during the Flash write time (for example, writing 128 bytes in Flash
takes 128 * 20 µs = 2,56 ms).

Figure 9. Data Pipeline Procedure

Note: Warning: The AT91 boot software is stored at the beginning of the first Flash sector. It is
selected by the Chip select 0 (see the EBI feature in the AT91 Datasheet). This Flash is
selected at reset for the startup program. If this sector is overwritten, the boot software is
erased.

AT91 Host

<ERASE>

<ACK>

<WRITE>

<ACK>

<DATA1>

<ACK>

200 ms

AT91 Host

<DATA1>

<ACK>

<DATA2>Write DATA1 to Flash

<ACK>

Pipeline Command 1

Pipeline Command 2

Write DATA2 to Flash
8 AT91 ARM Thumb
1798A–ATARM–18-Jan-02

AT91 ARM Thumb
Verification Procedures There are two ways to check the contents of the Flash memory: the first is to use the
<VERIFY> command, the second is to use the <READ> command. In addition, when a
word is written into the Flash, the Flash programmer driver checks it.

Figure 10. Verify Command

Figure 11. Verify by Read Command

Reset Procedure The reset procedure allows the host to request an internal AT91 hardware reset in the
target board via the watchdog timer. Before the watchdog reset, the target board sends
an <ACK> to acknowledge this command to the host system.

Figure 12. Reset Procedure

AT91 Host

<VERIFY>

<ACK> or <NACK>

AT91 Host

<READ>

<DATA>

AT91 Host

<RESET>

<ACK>
9
1798A–ATARM–18-Jan-02

Acknowledgment Procedure The acknowledgement procedure consists of an exchange of <ACK> commands
between the host and the AT91 target board

Figure 13. Acknowledgement Procedure

AT91 Host

<ACK>

<ACK>
10 AT91 ARM Thumb
1798A–ATARM–18-Jan-02

AT91 ARM Thumb
Protocol Commands

Synchronization (SYNC) Sent by the host after power-up to synchronize the interface at the correct baud rate.

Answer To
Synchronization (ATS)

Sent by the AT91 after the synchronization procedure. The ATS frame consists of global
boot software information.

Speed Selection (SPEED) Sent by the host for an update of the clock divisor. This frame consists of the clock divi-
sor value selected by the host.

Acknowledgement(ACK
and NACK)

Command acknowledgement consists of transmitting the <ACK> command code when
the command has been executed.

For the <DATA> command, the acknowledgement is transmitted if the integrity of the
receive buffer is verified. This integrity is checked by comparing the calculated check-
sum with the received checksum. Otherwise, the <NACK> command is transmitted.

First Byte
Number (Hex)

Size
(Bytes) Name Hex Value Content

00 1 <SYNC> 0x80 ‘S’ Command code

First Byte
Number (Hex)

Size
(Bytes) Name Hex Value Content

00 1 <ATS> 0x42 ‘B’ Command code

01 1 Chip Type of AT91

02 2 Manufacturer 0x001F Manufacturer Code

04 2 Flash Flash Code

06 2 Version Upload Version

08 2 CD Clock Divisor

10 4 ADDR Base Address Chip Select
0

First Byte
Number (Hex)

Size
(Bytes) Name Hex Value Content

00 1 <SPEED> 0x53 ‘S’ Command code

01 2 CD Clock divisor

First Byte
Number (Hex)

Size
(Bytes) Name Hex Value Content

00 1 <ACK> 0x41 ‘A’ Command code

First Byte
Number (Hex)

Size
(Bytes) Name Hex Value Content

00 1 <NACK> 0x4E ‘N’ Command code
11
1798A–ATARM–18-Jan-02

Sector Erase (ERASE) Sector Erase command consists of erasing a sector of the Flash at the specific address.

Target Reset (RESET) Target Reset command consists of setting the watchdog timer and putting the hardware
in wait mode. After reception of this command, the target sends an <ACK>

Data Write (WRITE) Data Write command consists of sending the write address and the block length to the
AT91 boot loader.

Data Read (READ) Data Read command consists of sending the read address and the block length to the
AT91 boot loader.

Data Block (DATA) Data Block is used to transfer data from host to AT91 and from AT91 to the host.

First Byte
Number (hex)

Size
(Bytes) Name Hex Value Content

00 1 <ERASE> 0x45 ‘E’ Command code

01 4 SECT Address of Sector to erase

First Byte
Number (Hex)

Size
(Bytes) Name Hex Value Content

00 1 <RESET> 0x5A ‘Z’ Command code

First Byte
Number (Hex)

Size
(Bytes) Name Hex Value Content

00 1 <WRITE> 0x57 ‘W’ Command code

01 4 ADDR Start address to write

05 1 LEN Next Data Block length

First Byte
Number

Size
(Bytes) Name Hex Value Content

00 1 <READ> 0x52 ‘R’ Command code

01 4 ADDR Start address to read

05 1 LEN Next Data Block length

First Byte
Number

Size
(Bytes) Name Hex Value Content

00 1 <DATA> 0x44 ‘D’ Command code

02 LEN value D0..Dn Data LEN defined in R/W
12 AT91 ARM Thumb
1798A–ATARM–18-Jan-02

AT91 ARM Thumb
Memory Verification
(VERIFY)

Memory Verification consists of receiving a start address, a size and a checksum, and
comparing it to the checksum calculated in memory. The checksum is a 32-bit sum that
is calculated by adding all bytes from BASE to BASE + SIZE-1 of the memory space and
is used as a check. Failure of checksum verification causes <NACK>.

Error Notification
(ERROR)

Error Notification is sent by the AT91 to notify an error.

The Error Codes are as follows:

First Byte
Number

Size
(Bytes) Name Hex Value Content

00 1 <VERIFY> 0x56 ‘V’ Command code

01 4 ADDR Start address to verify

05 4 LNG Size of code to verify

09 4 CHK Checksum

First Byte
Number

Size
(Bytes) Name Hex Value Content

00 1 <ERROR> 0x46 ‘F’ Command code

01 1 Error Error Code

Hex Value Content

1 Flash write error

2 Flash read error

3 Flash erase sector error

4 Unrecognized command
13
1798A–ATARM–18-Jan-02

AT91EB40 Flash
Programmer
Software

The AT91 Flash Programmer provided with this Application Note is intended to be run on
the AT91EB40 Evaluation Board together with the AT91MEC01 Memory Extension
Card. Once programmed, the AT91 Flash Programmer remains permanently in the
AT29LV1024 Flash memory of the AT91EB40 Evaluation Board.

The binary code image is the application code to be programmed in the target Flash
memory by the AT91 Flash Programmer . The AT91 Flash Programmer is first used to
download the binary code image into the AT49BV16x4 Flash memory of the Memory
Extension Card connected to the AT91EB40 Evaluation Board and then to upload the
binary code image into the target Flash memory.

Software Implementation It is advised to install the AT91 Flash Programmer by downloading the zip file
EB40_Flash_Programmer.zip from Atmel’s Web site so as to be compatible with the
AT91 library. After extracting this file, the project files for the software development tools
used a re now ava i l ab le i n the d i rec to ry C: \AT91 \so f t -
ware\projects\EB40_Flash_Programmer and the source files in the directory
C:\AT91\software\projects\EB40_Flash_Programmer\source. See Figure 14.

Project files:

• EB40_Flash_Programmer.apj project file for ARM Software Development
Toolkit V2.51

• EB40_Flash_Programmer.bld project file for Green Hills Multi 2000 V3.0

• EB40_Flash_Programmer.mcp project file for ARM Developer Suite V1.1

Figure 14. Project Workspace
14 AT91 ARM Thumb
1798A–ATARM–18-Jan-02

AT91 ARM Thumb
Software Memory
Mapping

After a reset, the AT91 Flash Programmer must always be executed first. To ensure this,
the AT91 Flash Programmer must be located in the same Flash memory sector as the
reset vector. On the AT91EB40 Evaluation Board, this is the AT29LV1024 Flash mem-
ory selected by Chip Select 0. The AT29LV1024 Flash memory is mapped at address
0x01000000 of the AT91EB40 platform memory mapping. When the AT91 Flash Pro-
grammer starts, it re-copies itself into the internal SRAM to run faster. The SRAM used
by the AT91 Flash Programmer is mapped at address 0x00100000. The large 128K byte
on-chip SRAM memory of the AT91R40807 is used because the AT91 Flash Program-
mer code size is greater than 8K bytes. See Figure 15.

Figure 15. AT91EB40 Flash Programmer Memory Mapping

MEC01
Flash 0

AT49BV16x4
2 Mbytes

AT91EB40
External SRAM

2 Mbytes

AT91EB40
Flash

AT29LV1024

AT91EB40
On-chip SRAM

8 Kbytes

AT91EB40
On-chip SRAM

128 Kbytes

User
64 Kbytes

AT91EB40 Boot
64 Kbytes

>0x01010000

0x03200000

0x03000000

0x02200000

0x02000000

0x0101FFFF

0x01000000

0x00302000

0x00300000

0x00120000

0x00100000
15
1798A–ATARM–18-Jan-02

The cstartup file must be modified to enable access to the large SRAM memory by set-
ting the bit RAMWU of the Special Function Mode register as shown below:

Cstartup File IF :DEF:AT91_DEBUG_NONE; {

INCLUDE ../../targets/cstartup_flash.arm

;--

; Call __low_level_init to perform initialization before initializing

; AIC and calling main.

; Diasable all peripherial clock

;--

SF_MMR EQU 0xFFF0000C ;SF_MMR Address

PtSF_MMR DCD 0xFFF0000C ;SF_MMR Base Address

__low_level_init

;values (relative)

ldr r1,PtSF_MMR

mov r0, #1

str r0,[R1]

mov pc,r14 ;Return

ENDIF ;AT91_DEBUG_NONE }

The cstartup_flash file must be modified to copy Flash code to internal SRAM as shown
below:

Cstartup Flash File ;- Copy Flash to Ram (ARM SDT or ARM ADS examples)

;- Get the Area Base and Limit

mov r0, #0 ;read Flash at 0

ldr r1, =|Image$$RW$$Base| ;Get pointer to bottom of data

ldr r2, =0x00100000 ;Internal RAM address

CopyLoop

ldr r10,[r0],#4

str r10,[r2],#4

cmp r2, r1

blo CopyLoop

;- Copy Flash to Ram (Green Hills Multi 2000 example)

;- Get the Area Base and Limit

mov r0, #0 ;read Flash at 0

ldr r1, =__ghsbegin_data ;Get pointer to bottom of data

ldr r2, =0x00100000 ;Internal RAM

CopyLoop

ldr r10,[r0],#4

str r10,[r2],#4

cmp r2, r1

blo CopyLoop
16 AT91 ARM Thumb
1798A–ATARM–18-Jan-02

AT91 ARM Thumb
Detailed Implementation

Bootloader.c Module The bootloader.c module is the main module of the AT91EB40 Flash Programmer soft-
ware. It has two parts: initialization and interrupt routine. Initialization includes EBI
initialization, LED initialization and the interrupt configuration. The interrupt routine
involves checking the interrupt controller to verify which interrupt occurred and calling
the corresponding functions; memory_download() or memory_upload() as defined in
the fmu.c file. The interrupt routine is based on two external interrupt sources FIQ and
IRQ0 from SW3 and SW5, respectively.

void main (void)

This is the main function of the bootloader.c module. After initialization, this function
enters an endless loop while(1) and waits for an interrupt sources from external inter-
rupts FIQ or IRQ0.

void Init_Led(void)

void Init_Ebi(void)

void Init_Interrupt(void)

These functions initialize the LEDs for the user interface, the External Bus Interface to
configure the Memory Extension Card and interrupts.

void at91_IRQ0_handler(void)

void FIQ_handler (void)

These interrupt handler functions set the corresponding interrupt flags.

Fmu.c Module The fmu.c module handles the downloading sequence between the host PC and the
AT91EB40 and the uploading sequence between the AT91EB40 and the target board
according to the protocol defined by Atmel and described previously.

u_char memory_download (void)

u_char memory_upload (void)

These functions are the main functions of the fmu.c module and are called by the main
function depending on the interrupt source. The memory_download function enters the
download phase between the host PC and the AT91EB40, allowing the AT91MEC01
Flash memory to be programmed using the AT91 PC loader, whereas the
memory_upload function enters the upload phase between the AT91EB40 and the tar-
get. These functions return TRUE if the corresponding phase has been carried out
without error, otherwise return FALSE.

void Init_Terminal(void)

This function initializes the USART0 and USART1 communication terminals and also
the terminal buffers.

void pio_c_irq_handler (void)

This interrupt handler function handles the PIO IRQ interrupt on the USART0 to detect
the SYNC command from the host.

u_char do_synchronization (void)
17
1798A–ATARM–18-Jan-02

This function is called by the memory_download function and returns TRUE when the
synchronization has been done with the host.

u_int speed_detection (void)

This function is called by the do_synchronisation function and returns the transfer baud
rate detection.

u_char send_synchro(void)

u_char send_speed(void)

u_char send_erase(unsigned int addr)

u_char send_write(unsigned int addr, unsigned char len)

u_char send_data(unsigned char *buffer, unsigned int len)

u_char send_verify(unsigned int addr, unsigned int len, unsigned int
checksum)

These functions are used during the memory upload phase and send the corresponding
commands to the target board. They return TRUE after receiving the acquisition com-
mand from the target board, otherwise they return FALSE.

void send_command (char command_id, char length)

This function is called by the functions defined above and configure the terminal before
transmission.

u_char get_command_status(void)

This function is also called by the functions defined above. It gets the acquisition com-
mand from the target board and returns TRUE, otherwise it returns FALSE.

Term1.c Module The term1.c module manages the USART communication interface terminal using
USART interrupt to transfer and receive commands.

void at91_term1_c_handler (TerminalDesc *term_desc)

This interrupt handler function is the main function of the term1.c module and handles
the interrupts on USART0 and USART1 during the reception and transmission
procedures.

void at91_term1_open (TerminalDesc *term_desc)

void at91_term1_close (TerminalDesc *term_desc)

These functions open and close the USART communication interface.
18 AT91 ARM Thumb
1798A–ATARM–18-Jan-02

AT91 ARM Thumb
lib_flash_at49.c Module This module handles Flash operations during downloading and uploading sequences.

static int at91_wait_flash_ready (flash_word *address, flash_word data)

void at91_flash_identify (flash_word *base_addr, flash_word *manuf_code,

flash_word *device_code)

int at91_erase_sector (flash_word *base_addr, flash_word *sector_addr)

int at91_write_flash (flash_word *base_addr, flash_word *load_addr,

flash_word data)

void at91_init_flash_table (FlashAt49BVDef *FlashTable)

unsigned int at91_check_erase_sector (FlashAt49BVDef *FlashTable,unsigned
int sector_id)

void at91_set_erase_sector (FlashAt49BVDef *FlashTable,unsigned int
sector_id)

flash_word at91_get_flash_sector_size (FlashAt49BVDef *FlashTable, unsigned
int sector)

int at91_get_flash_sector (FlashAt49BVDef *FlashTable,unsigned int
load_addr,

unsigned int base_addr)

u_char check_flash_sector(unsigned int current_add)

These functions are used during the memory download phase and operate on the Flash
AT91MEC01 memory.

u_char Flash_upload(void)

This function is called by the memory_upload function and executes the Flash uploading
routine.

void Init_FlashTable(void)

This function is called by the memory_upload function and initializes the user Flash
table according to the target.

u_char write_flash(unsigned int *current_add,unsigned int *current_size_send,
unsigned int max_size, unsigned int *checksum, unsigned char *input)

This function is called by the Flash_upload function and is used to write data in target
Flash.

unsigned int verifyChecksum(unsigned char *buffer, unsigned int size)

This function is called by the Flash_upload function and returns the checksum memory.
19
1798A–ATARM–18-Jan-02

AT91EB40
Configuration

The EB40 Flash programmer uses the following features of the AT91EB40:

• AT91R40807

• AT29LV1024

• Two serial ports (Serial A and B)

• Reset button (SW2)

• Three LEDs (LED1, LED2, LED3)

• Two application-dedicated buttons (SW3, SW5)

• External Bus Interface

As described above, the AT91 Flash Programmer must be downloaded into the
AT29LV1024 Flash memory that has been selected by Chip select 0 after reset. To do
this, the user can use any Flash downloader solution. The AT29LV1024 Flash memory
is mapped at address 0x01000000 of the AT91EB40 platform memory mapping. The
switch SW1 drives the bit A15 of this Flash and allows the user to reach or not the entire
Flash. For this application, it is advised to use the switch SW1 as shown in Figure 16 in
"UPPER MEM" space from 0x01010000 up to 0x0101FFFF. The upper 64K of the Flash
can be overwritten regardless of the position of the switch SW1. The lower 64K are
write-protected, regardless of the position of the switch SW1. This is to prevent the boot
and Angel software stored in the lower 64K bytes from being erased. Nevertheless, it is
always possible to make this space unprotected by setting a jumper or a link on the foot-
print J7.

Figure 16. AT29LV1024 Flash Memory Space Selection.

The Serial A port (USART0) is used to link the AT91EB40 platform to the PC host loader
during the downloading phase, whereas the Serial B port (USART1) is used to link the
AT91EB40 to the target board during the upload phase. Special care must be taken as
to avoid any inversion.

If the External Bus Interface connector has not been fitted at the factory, the user must
fit any 32 x 2 connector to the Memory Extension Card.

AT91R40807 AT29LV1024SW1

Upper Memory

Lower Memory
20 AT91 ARM Thumb
1798A–ATARM–18-Jan-02

AT91 ARM Thumb
AT91MEC01
Configuration

As described previously, the AT91 Flash Programmer uses the 2-Mbyte AT49BV1604
Flash memory of the AT91MEC01 memory extension card to download the binary file
for upload in the target board. The External Bus Interface (EBI) must be configured to
support the AT91MEC01 memory extension card and integrate the additional memory
into the AT91EB40 platform memory mapping. The base addresses of the memory
banks can be configured as required by the user.

In the AT91 Flash Programmer software, the EBI is configured in the function Init_Ebi()
of the bootloader.c module and the base address of the AT49BV1604 Flash memory
called Flash 0 is 0x03000000 and selected by NCS2 when Jumper E3 is closed. So care
must be taken to close the Jumper E3 on the Memory Extension Card as shown in Fig-
ure 17.

Figure 17. Layout of the AT91MEC01.

MN7
AT49BV1604 MN6

512K
x 8

SRAM

MN4
512K
x 8

SRAM

MN5
512K
x 8

SRAM

MN3
512K
x 8

SRAM
MN2

AT49BV8011

MN1

J1

E5 E4 E3 E2 E1 E6 E7 E8 E9
21
1798A–ATARM–18-Jan-02

To connect the AT91MEC01 Memory Extension Card to the AT91EB40 evaluation
board, solder the connector on the Evaluation Board. Plug in the Memory Extension
Card slot into the connector on the Evaluation Board. Take care to match Pin 1 as
shown in Figure 18.

Figure 18. Connecting the AT91MEC01 to the AT91EB40.

MN1

AT91MEC01

1

J1

1

J1
EBI

Extension
Slot

AT91EB40
Evaluation

Board

Pow

JTA
ICE
22 AT91 ARM Thumb
1798A–ATARM–18-Jan-02

AT91 ARM Thumb
How to Use the AT91 Flash Programmer

AT91 Flash Programmer
Customization

The purpose of this section is to help users customize the AT91 Flash Programmer
according to their application needs. In most cases, only the header file version.h avail-
able in the directory C:\AT91\software\projects\EB40_Flash_Programmer\source needs
to be modified by the user in order to configure the parameters as described below.

As stated at the beginning of this Application Note, the AT91EB40 Flash programmer
can be used with specific Atmel Flash memory devices. Because all the Flash memory
information (chip ID, organization, ...) is already defined as constants in the
lib_flash_at49.c module, the user has to select the corresponding Flash device available
on his target application and all the information corresponding to this device will be
defined.

//* Select target Flash to program

#define AT49BV8011 0

#define AT49BV8011T 0

#define AT49BV16X4 1

#define AT49BV16X4T 0

Now, the user has to configure the communication interface between the AT91EB40
and the target board during the uploading phase to upload the binary file previously
downloaded in the AT49BV1604 by setting the corresponding Clock Divisor (CD) value
"EB40_CD".

According to this EB40_CD value, the user also has to adjust the corresponding
"TARGET_CD" to have the same baud rate between the AT91EB40 Flash programmer
(defined by "EB40_CD") and the target board (defined by "TARGET_CD").

Example The target board is running at 16Mhz and the binary code image is to be uploaded with
a transfer baud rate of 256000 bit/s. The corresponding CD values have to be chosen as
shown below.

//* EB40 CD value to select transfer baud rate

//* EB40 MCK = 32.768 MHz

//* Transfer Baud rate = EB40_MCK/(16 x EB40_CD)

//* Baud rate = 512000 ----> CD = 4

//* Baud rate = 256000 ----> CD = 8

//* Baud rate = 128000 ----> CD = 16

#define EB40_CD 8

//* Target CD value to reach transfer baud rate from EB40 + MEC

//* baud rate target must be equal to transfer baud rate!!

//* baud rate target = MCK_target/(16 x TARGET_CD)

#define TARGET_CD 4

Next, the user has to define the base address of the Target Flash and the load address
to upload the image binary file.

#define BASE_ADDRESS (0x01000000) //* Target flash base address

#define LOAD_ADDRESS (0x01010000) //* Target flash load address
23
1798A–ATARM–18-Jan-02

The user can also define the "FILE_ADDRESS" of the AT49BV1604 of the AT91MEC01
where he wants to download the binary file. However, it is advised to keep this value
fixed to 0x3000000 to prevent confusion and also to reach up to 2 Mbytes.

#define FILE_ADDRESS ((u_char *)0x03000000) //Flash MEC address

The last parameter is called "FILE_SIZE_DEFAULT". It defines the file size of the binary
code image to upload in the target board. This value is important due to the fact there is
no way to know the binary file size. If the user has previously downloaded the binary file
into the AT91MEC01 Flash, the binary file size is automatically calculated by the pro-
gram. Otherwise the value defined by the user is taken by default. After reset, the AT91
Flash Programmer takes this FILE_SIZE_DEFAULT value by default.

#define FILE_SIZE_DEFAULT (0x80000)//Default File size to upload

After modifying the version.h file according to the user application (target Flash, transfer
baud rate, as described above), the entire project must be compiled and a new binary
file generated to download the AT91 Flash Programmer software into the Flash
AT29LV1024 (upper memory at address 0x1010000) using any Flash downloader.

Board-level Interface The Board-level interface between the user and the AT91EB40 Flash Programmer is
created by using the three LEDs (LED1, LED2 and LED3) and two application-dedicated
buttons, SW3 and SW5 (FIQ and IRQ0). The three LEDs display the state of the pro-
gramming sequence and the two application-oriented buttons are used to select the
corresponding programming sequence as shown in Figure 19.
24 AT91 ARM Thumb
1798A–ATARM–18-Jan-02

AT91 ARM Thumb
Figure 19. Board-level User Interface.

After Reset, The AT91EB40 Flash programmer software is started and the three LEDs
(LED1, LED2 and LED3) are lit up. At this time the software is waiting for an interrupt
from one of two different sources, SW3 (FIQ) and SW5 (IRQ0).

If the user presses SW3, the program enters download phase and can download a
binary code image through Serial port A in the AT91MEC01 Flash AT49BV1604 by run-
ning the AT91 PC Host Flash loader.

If the user presses SW5, the program enters in uploading phase and can upload the
binary code image through Serial B port to the target board.

During the downloading or uploading phase LED2 (Yellow) is lit up and LED1, LED3 are
extinguished. When the phase is finished and verified LED3 (Green) is lit up. However if
an error occurs during the programming phase LED1 (Red) is lit up. See Figure 20.

Power Supply Serial A
USART0

Connect to PC

Serial B
USART1

Connect to
Target Board

EBI

AT91EB40

AT91R40807 AT29LV1024

Upper Mem

Lower Mem

SW1

Reset

SW2

Power
Supply

LED TIOB1

SW4

FIQ

SW3

IRQ0

SW5

Reset Download
PC to

AT91EB40

Upload
AT91EB40 to
Target Board
25
1798A–ATARM–18-Jan-02

Figure 20. AT91EB40 LED Indications

Benchmark The AT91EB40 Flash Programmer was used to program the AT49BV1614 Flash device
available on the AT91EB55 Evaluation Board. This benchmark was realized at MCK =
32.768 Mhz. Compared to the AT91 PC Host Flash Loader, the programming time can
be improved by 4 with the AT91EB40 Flash Programmer running at 512000 bit/s.

References AT91MEC01 Memory Extension Card User Guide (Literature No. 1387)

AT91EB40 Evaluation Board User Guide (Literature No. 1706)

Program Yellow

Red

Green

Fail

Pass

Table 2. Benchmark Transfer Times

Baud Rate (Bits/sec) Clock Divisor 1 Mbyte 2 Mbytes

113700 18 100 s 200 s

256000 8 60 s 95 s

341333 6 40 s 75 s

512000 4 30 s 55 s

AT91 PC Host Flash Loader 18 115 s 215 s
26 AT91 ARM Thumb
1798A–ATARM–18-Jan-02

AT91 ARM Thumb
Document Details

Title Application Note: Using an AT91EB40 as a Flash Programmer for AT91F40816 and
AT91FR4081

Literature Number 1798

Revision History

Version A Publication Date: 18-Jan-02
27
1798A–ATARM–18-Jan-02

 Printed on recycled paper.

© Atmel Corporation 2002.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel SarL
Route des Arsenaux 41
Casa Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Memory
Atmel Corporate
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 436-4270
FAX 1(408) 436-4314

Microcontrollers
Atmel Corporate
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 436-4270
FAX 1(408) 436-4314

Atmel Nantes
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Atmel Rousset
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01

Atmel Colorado Springs
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Atmel Smart Card ICs
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive
Atmel Heilbronn
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

Atmel Colorado Springs
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Atmel Grenoble
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

1798A–ATARM–18-Jan-02 0M

Atmel® and the Atmel logo are the registered trademarks of Atmel.

ARM® and Thumb® are the registered trademarks of ARM Ltd.

Other terms and product names may be the trademark of others.

	Introduction
	Definitions of Terms
	Warranty
	Flash Memory Requirements
	System Requirements
	AT91EB40 Flash Programmer
	AT91EB40 Flash Programmer Transfer Protocol
	Protocol Requirements
	Protocol Procedures
	Transfer Speed Procedure
	Data Programming Procedure
	Verification Procedures
	Reset Procedure
	Acknowledgment Procedure

	Protocol Commands
	Synchronization (SYNC)
	Answer To Synchronization (ATS)
	Speed Selection (SPEED)
	Acknowledgement(ACK and NACK)
	Sector Erase (ERASE)
	Target Reset (RESET)
	Data Write (WRITE)
	Data Read (READ)
	Data Block (DATA)
	Memory Verification (VERIFY)
	Error Notification (ERROR)

	AT91EB40 Flash Programmer Software
	Software Implementation
	Software Memory Mapping
	Cstartup File
	Cstartup Flash File

	Detailed Implementation
	Bootloader.c Module
	Fmu.c Module
	Term1.c Module
	lib_flash_at49.c Module

	AT91EB40 Configuration
	AT91MEC01 Configuration
	How to Use the AT91 Flash Programmer
	AT91 Flash Programmer Customization
	Example

	Board-level Interface
	Benchmark
	References

	Document Details
	Title
	Literature Number
	Revision History
	Version A

