Interfacing a 4x4 Keyboard to an AT91
Microcontroller

Introduction

This Application Note describes programming techniques implemented on the AT91
ARM-based microcontroller for scanning a 4x4 Keyboard matrix usually found in both
consumer and industrial applications for numeric data entry.

AT91 Keyboard interface

In this application, a 4x4 matrix keypad requiring eight Input/Output ports for interfac-
ing is used as an example.

Rows are connected to Peripheral Input/Output (P1O) pins configured as output. Col-
umns are connected to PIO pins configured as input with interrupts. In this
configuration, four pull-up resistors must be added in order to apply a high level on the
corresponding input pins as shown in Figure 1. The corresponding hexadecimal value
of the pressed key is sent on four LEDs.

Figure 1. Keyboard Interface

Vee Vee Vee Vee
100K 100Kﬁ 100Kﬁ 100Kﬁ
ATI1
(" PIO
[l l l
PIO
l l l l
Rows< 0',_8._5._2._
(Output)
PIO
THE RN
_PIO I [
F ',_ E'._ D'L C'L
("PIO
Columns < PIO
(Input with Interrupt) } PIO
\PIO

ATMEL

I)

Y ()

AT91 ARM®
Thumb®
Microcontrollers

Application
Note

Rev. 2669A-ATARM-01/03

AT91 Configuration

I/0 configuration

Timer Counter
Configuration

Interrupt

Keyboard Scan

ATMEL

Rows are connected to four PIO pins configured as outputs.

Columns are connected to four PIO pins configured as inputs with interrupts. The idle
state of these pins is high level due to four pull-up resistors. PIO interrupt is generated
by a low level applied to these pins (caused by a key pressed).

Four additional PIO pins are configured as outputs to send the value of the pressed key
to LEDS.

The Timer Counter is configured in waveform operating mode with RC compare inter-
rupt. The Timer Counter is initialized to be incremented on internal clock cycles. The
debouncing time is programmable by initializing the RC compare register value accord-
ing to the clock source selected. A software trigger is used to reset the timer counter and
start the counter clock.

When a key is pressed, a low level is applied to the pin corresponding to the column
associated to the key (pins configured as inputs with interrupts). A falling edge applied
to a column pin creates a PIO interrupt. Then, the processor executes the PIO interrupt
subroutine (debouncing) and comes back to its previous state (in the main program).
After debouncing time, a RC compare timer interrupt occurs and the processor then
executes the timer interrupt subroutine (decoding the pressed key) and comes back to
its previous state (in the main program).

The Keyboard used is a 4x4 matrixed Keyboard. Columns are connected to pins config-
ured as inputsand having the input change interrupt enabled. The initial state of these
pins is high level due to four external pull-up resistors.

The state machine is initialized to start with fast scan which outputs zeroes to all rows
and detects all keys at the same time. When a key is pressed, a low level is applied to
the corresponding column and causes a PIO interrupt to detect the first edge.

Once any key is detected, debouncing is started. The attempt to press a key on a phys-
ical keypad and have this activity detected can fail as a result of several noise sources,
glitches, spikes, etc., to mention some of the possible causes of debounce problems.
The timer is used to eliminate all noise of less than a few milliseconds. Normally this is
dependent on the mechanical characteristics of the keys. In this application example, a
20ms programmable debouncing time is used.

After debouncing is completed, a detailed scan is executed. A second fast scan is done
to assure that any detection made during the first fast scan stage was not just noise.
(Refer to Figure 2 below.) Then, rows are configured as inputs. When a key is pressed a
high level is applied in the corresponding row. .

Figure 2. Keyboard Scan Method

PIO Columns

1. First Edge Detection | N2
2. Fast Scan and ;

Start Debouncing !
3. Encode Key Pressed

Debouncing time = 20 ms

2 Interfacing a 4x4 Keyboard to an AT91 Microcontroller =

2669A-ATARM-01/03

== |INterfacing a 4x4 Keyboard to an AT91 Microcontroller

Flow Charts The flow charts shown in Figure 3 and in Figure 4, demonstrate the flow of initialization
and interrupt service routine respectively.

Figure 3. Main Program

Initialization

Infinite Loop Wait for Interrupt

Figure 4. PIO and Timer Interrupts

PIO Interrupt Timer Interrupt

Any Key
Pressed?

Any Key
Pressed?

Yes
Start Timer Encode and Display
Debouncing Key Pressed
Exit P1O Interrupt Kill Timer

Exit Timer Interrupt

AIMEL 3

2669A-ATARM-01/03 I ©

ATMEL

Software Modules This application example is written in C and Assembly language and has been validated
on the AT91EB40A Evaluation Board using the AT91 software library V2.0.

Irq_pio.arm The Irg_pio.arm file defines the PIO and Timer 0 assembler interrupt handlers. The
macros IRQ_ENTRY and IRQ_EXIT defined in the irg.mac file from the AT91 software
library are used to save and restore the context respectively.

Software Delivery The software is delivered "As Is" without warranty or condition of any kind,
either express, implied or statutory. This includes without limitation any
warranty or condition with respect to merchantability or fitness for any
particular purpose, or against the infringements of intellectual property
rights of others.

;- File source: irg pio.arm

;- Object: Assembler Interrupt Handler.

AREA Irg, CODE, READONLY, INTERWORK
INCLUDE ../../periph/aic/irg.mac
INCLUDE ../../periph/pio/pio.inc

;- Function: pio_asm_irqg handler

;- Treatments: Parallel IO Controller Interrupt Handler.
;- Called Functions: Keyboard_pioHandlerInt

;- Called Macros: IRQ_ENTRY, IRQ_EXIT

IMPORT Keyboard_pioHandlerInt

EXPORT pio_asm_irqg handler

pio_asm_irqg handler

;- Manage Exception Entry
IRQ_ENTRY
;- Call the PIO Interrupt C handler

1dr r0, =Keyboard_pioHandlerInt
mov rld, pc
bx r0

;- Manage Exception Exit

IRQ_EXIT

;- Function: timer0O_asm_irqg handler

;- Treatments : Timer 0 interrupt handler.
;- Called Functions : Keyboard_timerOHandlerInt
;- Called Macros : IRQ_ENTRY, IRQ_EXIT
EXPORT timer0_asm_irqg handler

IMPORT Keyboard_timerOHandlerInt
IMPORTTCO_DESC

4 Interfacing a 4x4 Keyboard to an AT91 Microcontroller =

2669A-ATARM-01/03

== |INterfacing a 4x4 Keyboard to an AT91 Microcontroller

timerO_asm_irg handler

;- Manage Exception Entry
IRQ_ENTRY
;- Call the timer Interrupt C handler

1dr rl, =Keyboard_timerOHandlerInt
ldr r0, =TCO_DESC

mov rld, pc

bx rl

;- Manage Exception Exit
IRQ_EXIT
END

AIMEL 5

2669A-ATARM-01/03 I ®

AIMEL
Keyboard.h The Keyboard.h file defines the keyboard flags and variables.

//* File Name: Keyboard.h
//* Object: Keyboard Definition File
//* ___

//* ___
//* Keyboard

//* ___
//* EBA4OA

//* Vcc Vcc Vcc Vcc

/% | | | |

//* R R R R

/% | | | |

/% | | | |

P A - R e |

/1% [[[[

//* A | 7] 4 | 1]

/1% [[[[

/1> - - - -

/% | | | |

/1% P2 mmm e |

/1% [[[[

/1% 0| 8 | 5 | 2|

/1% [[[[

/1> - - - -

/% | | | |

//* P3 e |

/1% [[[[

/1% B | 9 | 6 | 3|

/1% [[[[

7 -1 -1 - -

/7% | | | |

/1% P4 e |

/1% [[[.

/% F | E | D | c | |

/7% [[| |
/1* -1 -1 - |
/1% | | |
/7% | | |
//* P5 mmmmmmmm e | | |
/1% P6 mmmmmmmmm oo | |
/1% PT e | |
[/* P8 e~ |

#define NB_COLUMN4
#define NB_ROW4

6 Interfacing a 4x4 Keyboard to an AT91 Microcontroller =

2669A-ATARM-01/03

== |INterfacing a 4x4 Keyboard to an AT91 Microcontroller

Keyboard.c

2669A-ATARM-01/03

//* Keyboard Rows definition

#define KEYBOARD_ROWO (1<<1)//* on P1
#define KEYBOARD_ROWI1 (1<<2)//* on P2
#define KEYBOARD_ROW2 (1<<3)//* on P3
#define KEYBOARD_ROW3 (1l<<4)//* on P4

#define KEYBOARD_ROW_MASK
(KEYBOARD_ROWO | KEYBOARD_ROW1 | KEYBOARD_ROW2 | KEYBOARD_ROW3)

//* Keyboard Columns definition

#define KEYBOARD_COLUMNO (1<<5)//* on P5
#define KEYBOARD_COLUMNI (1<<6)//* on P6
#define KEYBOARD_COLUMN2 (1<<7)//* on P7
#define KEYBOARD_COLUMN3 (1<<8)//* on P8

#define KEYBOARD_COLUMN_MASK
(KEYBOARDfCOLUMNO|KEYBOARD7COLUMN1|KEYBOARD7COLUMN2|KEYBOARD7COLUMN3)

//* Keyboard translation
#define COLUMNOO
#define COLUMN11
#define COLUMN22
#define COLUMN33

#define ROWOO
#define ROW11l
#define ROW22
#define ROW33

#define New_Key_ Pressed 0x01

The Keyboard.c file is the main file. An interrupt method establishes the processor ser-
vicing activities beyond the control of the keypad program. When a key is pressed, an
interrupt is called, and the key stroke is processed. After the interrupt, the processor is
released to return to its own service routines.

//* File Name: keyboard.c
//* Object: Keyboard 4x4 matrix

#include "parts/r40008/1ib_r40008.h"
#include "parts/r40008/reg_r40008.h"
#include "targets/eb40a/ebd0a.h"

#include"keyboard.h"

extern void pio_asm_irqg handler (void);

extern void timer(O_asm_irqg_handler (void);

/* Global Variables */
u_char Keyboard_Row;

u_char Keyboard_Column;

AIMEL 7

Y R

ATMEL

u_char Key_ Pressed;

//* define translation table
const u_char KeyboardTable[NB_ROW] [NB_COLUMN] =
{
{('A','70, 40,1,
{'0','8','5",'2"},
{'B','9','6"','3"},
{'F','E','D",'C"}
}i

const int led_mask[NB_ROW] [NB_COLUMN] =

{LED1|LED3, LED2|LED3|LED4, LED2, LED4},
{0, LED1l, LED2|LED4, LED3},
{LED1|LED3 |LED4, LED1|LED4, LED2|LED3, LED3|LED4}

//* Function Name: Get_Keyboard_ Column
//* Object: Translate the Key buffer column
//* Input Parameters: read- PIO read value

//* Output Parameters: col- Active column value

u_char Get_Keyboard_Column (u_int read)
{ //* Begin
u_char col;
col = 0;
if ((~read & KEYBOARD_COLUMNO) == KEYBOARD_COLUMNO)
{
col = COLUMNO;

}
else if ((~read & KEYBOARD_COLUMN1) == KEYBOARD_COLUMNI1)
{
col = COLUMNL1;
}
else if ((~read & KEYBOARD_COLUMN2) == KEYBOARD_COLUMN2)
{
col = COLUMNZ;
}
else if ((~read & KEYBOARD_COLUMN3) == KEYBOARD_COLUMNS3)
{
col = COLUMNS3;
}
return col;
}Y//* End
)) * oo

//* Function Name: Get_Keyboard_ Row

8 Interfacing a 4x4 Keyboard to an AT91 Microcontroller =

2669A-ATARM-01/03

== |INterfacing a 4x4 Keyboard to an AT91 Microcontroller

//* Object: Translate the Key buffer Row
//* Input Parameters: read- PIO read value

//* Output Parameters: row- Active row value

u_char Get_Keyboard_Row(u_int read)
{ //* Begin
u_char row;
row = 0;
if ((read & KEYBOARD_ROW0) == KEYBOARD_ROWO)
{
row = ROWO;
}
else if ((read & KEYBOARD_ROW1l) == KEYBOARD_ROW1)
{
row = ROW1;
}
else if ((read & KEYBOARD_ROW2) == KEYBOARD_ROW2)
{
row = ROW2;
}
else if ((read & KEYBOARD_ROW3) == KEYBOARD_ROW3)
{
row = ROW3;
}
return row;

}//* End

//* Function Name: Read_Keyboard
//* Object: Encode and Display Key pressed
//* Input Parameters: none

//* Output Parameters: none

void Read_Keyboard (void)
{ //* Begin

//* Check if Keyboard PIO interrupt
if (~at91_pio_read (&PIO_DESC) & KEYBOARD_COLUMN_MASK) != 0)
{
//* All PIO Rows are actived

Keyboard_Column = Get_Keyboard_Column (at9l_pio_read(&PIO_DESC)) ;

//* Rows configured as PIO input

at91_pio_open (&PIO_DESC, KEYBOARD_ROW_MASK, PIO_INPUT) ;
//* Columns configured as PIO input
at91_pio_open (&PIO_DESC,KEYBOARD_COLUMN_MASK,PIO_INPUT) ;

at91_pio_write (&PIO_DESC,KEYBOARD_COLUMN_MASK, PIO_CLEAR_OUT) ;

//* All PIO columns are actived

AIMEL 9

2669A-ATARM-01/03 I ®

ATMEL

Keyboard_Row = Get_Keyboard_Row (at9l_pio_read (&PIO_DESC)) ;

//* Initialise PIO for next Keyboard scan
at91_pio_open (&PIO_DESC, KEYBOARD_ROW_MASK, PIO_OUTPUT) ;
at91_pio_write (&PIO_DESC, KEYBOARD_ROW_MASK, PIO_CLEAR_OUT);

at91_pio_open (&PIO_DESC, KEYBOARD_COLUMN_MASK, PIO_INPUT_IRQ BIT);

//* Encode and Display Key pressed

Key_ Pressed = KeyboardTable[Keyboard_Row] [Keyboard_Column];at9l_pio_write
(&PIO_DESC, LEDL |LED2 |LED3 |LED4, LED_OFF) ;

at91_pio_write (&PIO_DESC, led_mask[Keyboard_Row] [Keyboard_Column],
LED_ON) ;

}

}Y//* End

//* Function Name: Keyboard_timer(OHandlerInt

//* Object: C Interrupt Handler called by assembly timer
//* interrupt handler.

//* Input Parameters: none

//* Output Parameters: none

void Keyboard_timerOHandlerInt (void)
{//* Begin

u_char dummy;

//* acknowledge interrupt status

dummy = TCO_SR;
Read_Keyboard() ;

//* Disable RC compare interrupt

TCO_IDR = TC_CPCS;

}//* End

//* Function Name: KeyBoard_pioHandlerInt

//* Object: C Interrupt Handler called by assembly PIO interrupt
//* handler.

//* Input Parameters: none

//* Output Parameters: none

void Keyboard_pioHandlerInt (void)
{//* Begin

//* Check if Keyboard PIO interrupt

u_int tmp;

10 Interfacing a 4x4 Keyboard to an AT91 Microcontroller =

2669A-ATARM-01/03

== |INterfacing a 4x4 Keyboard to an AT91 Microcontroller

if ((~at91l_pio_read (&PIO_DESC) & KEYBOARD_COLUMN_MASK) != 0)
{

//* Trig the timer

TCO_CCR = TC_SWTRG;

//* Enable RC compare interrupt

TCO_IER = TC_CPCS;

}
//* enable the next PIO IRQ
tmp = PIO_ISR;
}Y//* End
//* ___

//* Function Name: Keyboard_Initialization
//* Object: Keyboard initialization
//* Input Parameters: none

//* Output Parameters: none

void Keyboard_Initialization (void)

{//* Begin

//* Rows configured as PIO output
at91_pio_open (&PIO_DESC, KEYBOARD_ROW_MASK, PIO_OUTPUT) ;
at91_pio_write (&PIO_DESC, KEYBOARD_ROW_MASK, PIO_CLEAR_OUT) ;

//* Column configured as PIO input

at91_pio_open (&PIO_DESC, KEYBOARD_COLUMN_MASK, PIO_INPUT_IRQ BIT);

//* set PIO interrupt
//* open external PIO interrupt
at91_irqg open (PIO_DESC.periph_id,5,AIC_SRCTYPE_INT EDGE_TRIGGERED,

pio_asm_irqg handler) ;

//* Enable the PIO Clock
at91_clock_open (PIO_DESC.periph_id);

//* TIMER configuration
//* Open the clock of the timer

at91_clock_open (TCO_ID) ;

//* Initialize the mode of the channel 0

TCO_CMR =
TC_WAVE| /* WAVE : Waveform mode */
TC_CLKS_MCK32;/* TCCLKS : MCKI/32 */

//* disable interrupts

TCO_IDR = O0x1FF;//* disable interrupt

//* Initialize the RC Register value

AIMEL 1

2669A-ATARM-01/03 I ®

ATMEL

TCO_RC = 40000; //* MCKI=66MHz, TCCLKS= MCKI/32, debouncing time:20ms

//* LEVEL sensitive interrupt!!
at91_irqg open(TCO_ID,5, AIC_SRCTYPE_INT_LEVEL_SENSITIVE,

timer0_asm_irqg handler) ;

//* Enable the clock
TCO_CCR = TC_CLKEN;

}//* End

//* Function Name: main
//* Object: main program
//* Input Parameters: none

//* Output Parameters: TRUE

//*LEDs Initialization

at9l_pio_open (&PIO_DESC, LED1|LED2|LED3|LED4, PIO_OUTPUT) ;
at9l_pio_write (&PIO_DESC, LED1|LED2|LED3|LED4, LED_OFF) ;

Keyboard_Initialization();

//* Loop forever
while (1)
{
//* Wait for interrupt
}
return (TRUE) ;
//* End
}

12 Interfacing a 4x4 Keyboard to an AT91 Microcontroller =

2669A-ATARM-01/03

AIMEL

I 7

Atmel Headquarters

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg.

1-24-8 Shinkawa

Atmel Operations

Memory

2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

La Chantrerie

BP 70602

44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18

FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle

13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00

FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.

Colorado Springs, CO 80906
TEL 1(719) 576-3300

RF/Automotive

Theresienstrasse 2
Postfach 3535

74025 Heilbronn, Germany
TEL (49) 71-31-67-0

FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300

FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine

BP 123

38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00

FAX (33) 4-76-58-34-80

Chuo-ku, Tokyo 104-0033
Japan

TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

FAX 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building

East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000

FAX (44) 1355-242-743

e-mail
literature @atmel.com

Web Site
http://www.atmel.com

o
juw)
=
w
=
o
o

ARMa

© Atmel Corporation 2003.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

ATMEL® is the registered trademark of Atmel.

ARM®, ARM® Thumb® and ARM Powered® are the registered trademarks of ARM Ltd. Other terms and product

names may be the trademarks of others.)
@ Printed on recycled paper.

2669A-ATARM-01/03 oM

	AT91 Keyboard interface
	AT91 Configuration
	I/O configuration
	Timer Counter Configuration
	Interrupt
	Keyboard Scan
	Flow Charts
	Software Modules
	Irq_pio.arm
	Software Delivery
	Keyboard.h
	Keyboard.c

