Features

- Utilizes the AVR[®] RISC Architecture
- AVR High-performance and Low-power RISC Architecture
 - 89 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Up to 12 MIPS Throughput at 12 MHz
- Data and Nonvolatile Program Memory
 - 1K Bytes of In-System Programmable Flash Endurance: 1,000 Write/Erase Cycles
 - 64 Bytes of In-System Programmable EEPROM Endurance: 100,000 Write/Erase Cycles
 - Programming Lock for Flash Program and EEPROM Data Security
- Peripheral Features
 - One 8-bit Timer/Counter with Separate Prescaler
 - On-chip Analog Comparator
 - Programmable Watchdog Timer with On-chip Oscillator
 - SPI Serial Interface for In System Programming
- Special Microcontroller Features
 - Low-power Idle and Power Down Modes
 - External and Internal Interrupt Sources
 - Selectable On-chip RC Oscillator for Zero External Components
- Specifications
 - Low-power, High-speed CMOS Process Technology
 - Fully Static Operation
- Power Consumption at 4 MHz, 3V, 25°C
 - Active: 2.0 mA
 - Idle Mode: 0.4 mA
 - Power Down Mode: <1 μA
- I/O and Packages
 - 15 Programmable I/O Lines
 - 20-pin PDIP and SOIC
- Operating Voltages
 - 2.7 6.0V (AT90S1200-4)
 - 4.0 6.0V (AT90S1200-12)
- Speed Grades
 - 0 4 MHz, (AT90S1200-4)
 - 0 12 MHz, (AT90S1200-12)

Description

The AT90S1200 is a low-power CMOS 8-bit microcontroller based on the AVR RISC architecture. By executing powerful instructions in a single clock cycle, the

(continued)

Pin Configuration

PDIP/SOIC/SSOP			
RESET C PD0 C PD1 C	1 2 3	20 19 18	□ VCC □ PB7 (SCK) □ PB6 (MISO)
XTAL2	4	17	□ PB5 (MOSI)
	5	16	□ PB4
(INT0) PD2	6	15	□ PB3
PD3	7	14	□ PB2
(T0) PD4 □	8	13	□ PB1 (AIN1)
PD5 □	9	12	□ PB0 (AIN0)
GND □	10	11	□ PD6

Rev. 0838ES-04/99

Note: This is a summary document. For the complete 65 page document, please visit our web site at *www.atmel.com* or e-mail at *literature@atmel.com* and request literature #0838E.

8-bit **AVR**[®] Microcontroller with 1K bytes In-System Programmable Flash

AT90S1200

AT90S1200 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

The AVR core combines a rich instruction set with the 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

Block Diagram

Figure 1. The AT90S1200 Block Diagram

AT90S1200

The architecture supports high level languages efficiently as well as extremely dense assembler code programs. The AT90S1200 provides the following features: 1K bytes of In-System Programmable Flash, 64 bytes EEPROM, 15 general purpose I/O lines, 32 general purpose working registers, internal and external interrupts, programmable Watchdog Timer with internal oscillator, an SPI serial port for program downloading and two software selectable power saving modes. The Idle Mode stops the CPU while allowing the registers, timer/counter, watchdog and interrupt system to continue functioning. The power down mode saves the register contents but freezes the oscillator, disabling all other chip functions until the next external interrupt or hardware reset.

The device is manufactured using Atmel's high density non-volatile memory technology. The on-chip In-System Programmable Flash allows the program memory to be reprogrammed in-system through an SPI serial interface or by a conventional nonvolatile memory programmer. By combining an enhanced RISC 8-bit CPU with In-System Programmable Flash on a monolithic chip, the Atmel AT90S1200 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The AT90S1200 AVR is supported with a full suite of program and system development tools including: macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

Pin Descriptions

vcc

Supply voltage pin.

GND

Ground pin.

Port B (PB7..PB0)

Port B is an 8-bit bi-directional I/O port. Port pins can provide internal pull-up resistors (selected for each bit). PB0 and PB1 also serve as the positive input (AIN0) and the negative input (AIN1), respectively, of the on-chip analog comparator. The Port B output buffers can sink 20 mA and thus drive LED displays directly. When pins PB0 to PB7 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not active.

Port D (PD6..PD0)

Port D has seven bi-directional I/O pins with internal pull-up resistors, PD6..PD0. The Port D output buffers can sink 20 mA. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not active.

RESET

Reset input. A low level on this pin for more than 50 ns will generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.

XTAL1

Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

XTAL2

Output from the inverting oscillator amplifier.

Architectural Overview

The fast-access register file concept contains 32 x 8-bit general purpose working registers with a single clock cycle access time. This means that during one single clock cycle, one ALU (Arithmetic Logic Unit) operation is executed. Two operands are output from the register file, the operation is executed, and the result is stored back in the register file - in one clock cycle.

The ALU supports arithmetic and logic functions between registers or between a constant and a register. Single register operations are also executed in the ALU. Figure 2 shows the AT90S1200 AVR Enhanced RISC microcontroller architecture. The AVR uses a Harvard architecture concept - with separate memories and buses for program and data memories. The program memory is accessed with a two stage pipeline. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed in every clock cycle. The program memory is In-System Programmable Flash memory.

With the relative jump and relative call instructions, the whole 512 address space is directly accessed. All AVR instructions have a single 16-bit word format, meaning that every program memory address contains a single 16-bit instruction.

During interrupts and subroutine calls, the return address program counter (PC) is stored on the stack. The stack is a 3 level deep hardware stack dedicated for subroutines and interrupts.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, Timer/Counters, A/D-converters, and other I/O functions. The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional global interrupt enable bit in the status register. All the different interrupts have a separate interrupt vector in the interrupt vector table at the beginning of the program memory. The different interrupts have priority in accordance with their interrupt vector position. The lower the interrupt vector address, the higher the priority.

AT90S1200 Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
COE	SDEC	5.07	<u>Біі ў</u> т		0		N	7	Dir v
 \$3⊏	Reserved	I	I		3	v	IN	2	C
\$3D	Reserved								
\$30	Reserved								
\$3B	GIMSK	-	INTO	-	-	-	-	-	_
\$3A	Reserved								
\$39	TIMSK	-	-	-	-	-	-	TOIE0	_
\$38	TIFR	-	-	-	-	-	-	TOVO	-
\$37	Reserved							1010	
\$36	Reserved								
\$35	MCUCR	-	_	SE	SM	-	-	ISC01	ISC00
\$34	Reserved				0			10001	
\$33	TCCR0	-	-	-	-	-	CS02	CS01	CS00
\$32	TCNT0				Timer/Cou	unter0 (8 Bit)			
\$31	Reserved								
\$30	Reserved								
\$2F	Reserved								
\$2E	Reserved								
\$2D	Reserved								
\$2C	Reserved								
\$2B	Reserved								
\$2A	Reserved								
\$29	Reserved								
\$28	Reserved								
\$27	Reserved								
\$26	Reserved								
\$25	Reserved								
\$24	Reserved								
\$23	Reserved								
\$22	Reserved								
\$21	WDTCR	-	-	-	-	WDE	WDP2	WDP1	WDP0
\$20	Reserved								
\$1F	Reserved								
\$1E	EEAR	-			EEPR	OM Address F	Register		
\$1D	EEDR				EEPROM	Data Register			
\$1C	EECR	-	-	-	-	-	-	EEWE	EERE
\$1B	Reserved								
\$1A	Reserved								
\$19	Reserved					1			
\$18	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0
\$17	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0
\$16	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0
\$15	Reserved								
\$14	Reserved								
\$13	Reserved								
\$12	PORTD	-	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0
\$11	DDRD	-	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0
\$10	PIND	-	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0
\$0F	Reserved								
	Reserved								
\$09	Reserved	105		400		A C		10:01	4.010.0
\$08	ACSR	ACD	-	ACO	ACI	ACIE	-	ACIS1	ACIS0
	Reserved								
\$00	Reserved								

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

2. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.

Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC	AND LOGIC I	NSTRUCTIONS			
ADD	Rd, Rr	Add two Registers	Rd ← Rd + Rr	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
SUB	Rd. Rr	Subtract two Registers	Rd ← Rd - Rr	Z.C.N.V.H	1
SUBI	Rd. K	Subtract Constant from Register	Rd ← Rd - K	Z.C.N.V.H	1
SBC	Rd. Rr	Subtract with Carry two Registers	$Rd \leftarrow Rd - Rr - C$	Z.C.N.V.H	1
SBCI	Rd. K	Subtract with Carry Constant from Reg.	$Rd \leftarrow Rd - K - C$	Z.C.N.V.H	1
AND	Rd Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z N V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z.N.V	1
OR	Rd. Rr	Logical OR Registers	$Rd \leftarrow Rd \vee Rr$	Z.N.V	1
ORI	Rd K	Logical OR Register and Constant	$Rd \sim Rd v K$	Z N V	1
FOR	Rd Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z N V	1
COM	Rd	One's Complement	Rd ← \$FF - Rd	Z C N V	1
NEG	Rd	Two's Complement	$Rd \leftarrow \$00 - Rd$	Z C N V H	1
SBR	RdK	Set Bit(s) in Register	$Rd \leftarrow Rd \vee K$	Z N V	1
CBR	Rd K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (FFh - K)$	Z N V	1
INC	Rd		$Rd \leftarrow Rd + 1$	Z N V	1
DEC	Rd	Decrement	$Rd \leftarrow Rd - 1$	Z,N,V	1
TST	Rd	Test for Zero or Minus		Z,N,V	1
	Rd	Clear Register	$Rd \leftarrow Rd \bullet Rd$		1
SER	Rd	Set Register		Z,N,V	1
	TRUCTIONS	Set Register	itu ← φi i	NULLE	I
RIMP	k	Relative lump	PC = PC + k + 1	None	2
RCALL	r k	Relative Subroutine Call		None	2
DET	ĸ	Subrouting Boturn		None	3
				I	4
	Pd Pr		if (Pd = Pr) PC + PC + 2 or 2	Nono	1/2
CF3E		Compare, Skip II Equal	$ (Ru = RI) FC \leftarrow FC + 2013$		1/2
	RU,RI	Compare with Corry			1
		Compare With Carry			1
	Ru,K	Compare Register with Immediate			1/0
SBRC	Rr, D	Skip if Bit in Register Cleared	If $(Rf(D)=0) PC \leftarrow PC + 2 \text{ of } 3$	None	1/2
SBRS		Skip II Bit in Register is Set	$ (RI(D)=1) PC \leftarrow PC + 2 0I 3$	None	1/2
SBIC	P, D	Skip if Bit in I/O Register Cleared	If $(P(D)=0) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2
SBIS	P, D	Skip if Bit in I/O Register is Set	If $(P(D)=1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2
BRBS	S, K	Branch if Status Flag Set	If $(SREG(S) = 1)$ then $PC \leftarrow PC + K + 1$	None	1/2
BRBC	S, K	Branch If Status Flag Cleared	If $(SREG(s) = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BREQ	к	Branch if Equal	If $(Z = 1)$ then $PC \leftarrow PC + K + 1$	None	1/2
BRNE	к	Branch if Not Equal	If $(Z = 0)$ then $PC \leftarrow PC + K + 1$	None	1/2
BRUS	ĸ	Branch if Carry Set	If $(C = 1)$ then $PC \leftarrow PC + K + 1$	None	1/2
BRCC	ĸ	Branch if Carry Cleared	If $(C = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRSH	к	Branch if Same or Higner	If $(C = 0)$ then $PC \leftarrow PC + K + 1$	None	1/2
BRLO	ĸ	Branch If Lower	If $(C = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRIMI	K	Branch If Minus	If $(N = 1)$ then PC \leftarrow PC + K + 1	None	1/2
BKPL	K	Branch If Plus	If $(N = 0)$ then $PC \leftarrow PC + K + 1$	None	1/2
BRGE	к	Branch If Greater or Equal, Signed	If $(\mathbb{N} \oplus \mathbb{V} = 0)$ then $\mathbb{PC} \leftarrow \mathbb{PC} + \mathbb{K} + 1$	None	1/2
BRLI	ĸ	Branch If Less Than Zero, Signed	If $(\mathbb{N} \oplus \mathbb{V} = 1)$ then $\mathbb{PC} \leftarrow \mathbb{PC} + \mathbb{K} + 1$	None	1/2
BRHS	ĸ	Branch If Half Carry Flag Set	If (H = 1) then PC \leftarrow PC + k + 1	None	1/2
BRHC	ĸ	Branch it Halt Carry Flag Cleared	If (H = 0) then PC \leftarrow PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	If $(I = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	If $(I = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	If $(V = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC \leftarrow PC + k + 1	None	1/2
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC \leftarrow PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC \leftarrow PC + k + 1	None	1/2
DATA TRANS	FER INSTRUC	TIONS			
LD	Rd,Z	Load Register Indirect	$Rd \leftarrow (Z)$	None	2
ST	Z,Rr	Store Register Indirect	$(Z) \leftarrow Rr$	None	2
MOV	Rd, Rr	Move Between Registers	$Rd \leftarrow Rr$	None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
IN	Rd, P	In Port	$Rd \leftarrow P$	None	1
OUT	P, Rr	Out Port	P ← Rr	None	1

AT90S1200

Instruction Set Summary (Continued)

Mnemonics	Operands	Description	Operation	Flags	#Clocks
BIT AND BIT-	TEST INSTRU	CTIONS			
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	$I/O(P,b) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	Rd(0)←C,Rd(n+1)⊢ Rd(n),C←Rd(7)	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	Rd(7)←C,Rd(n) _← Rd(n+1),C←Rd(0)	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	Rd(n) ← Rd(n+1), n=06	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BSET	S	Flag Set	SREG(s) ← 1	SREG(s)	1
BCLR	S	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	Т	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	$C \leftarrow 0$	С	1
SEN		Set Negative Flag	N ← 1	Ν	1
CLN		Clear Negative Flag	$N \leftarrow 0$	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	$Z \leftarrow 0$	Z	1
SEI		Global Interrupt Enable	I ← 1	1	1
CLI		Global Interrupt Disable	$I \leftarrow 0$	1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	$S \leftarrow 0$	S	1
SEV		Set Twos Complement Overflow	V ← 1	V	1
CLV		Clear Twos Complement Overflow	$V \leftarrow 0$	V	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	$T \leftarrow 0$	Т	1
SEH		Set Half Carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	3
WDR		Watch Dog Reset	(see specific descr. for WDR/timer)	None	1

Ordering Information⁽¹⁾

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
4	2.7 - 6.0V	AT90S1200-4PC	20P3	Commercial
		AT90S1200-4SC	20S	(0°C to 70°C)
		AT90S1200-4YC	20Y	
		AT90S1200-4PI	20P3	Industrial
		AT90S1200-4SI	20S	(-40°C to 85°C)
		AT90S1200-4YI	20Y	
12	4.0 - 6.0V	AT90S1200-12PC	20P3	Commercial
		AT90S1200-12SC	20S	(0°C to 70°C)
		AT90S1200-12YC	20Y	
		AT90S1200-12PI	20P3	Industrial
		AT90S1200-12SI	20S	(-40°C to 85°C)
		AT90S1200-12YI	20Y	

Note: 1. Order AT90S1200A-XXX for devices with the RCEN fuse programmed.

	Package Type
20P3	20-lead, 0.300" Wide Plastic Dual Inline Package (PDIP)
20S	20-lead, 0.300" Wide, Plastic Gull-Wing Small Outline (SOIC)
20Y	20-lead, 5.3 mm Wide, Plastic Shrink Small Outline Package (SSOP)

AT90S1200

Packaging Information

AT90S1200

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL (408) 441-0311 FAX (408) 487-2600

Europe

Atmel U.K., Ltd. Coliseum Business Centre Riverside Way Camberley, Surrey GU15 3YL England TEL (44) 1276-686-677 FAX (44) 1276-686-697

Asia

Atmel Asia, Ltd. Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

Atmel Japan K.K. 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Atmel Colorado Springs 1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL (719) 576-3300 FAX (719) 540-1759

Atmel Rousset Zone Industrielle 13106 Rousset Cedex France TEL (33) 4-4253-6000 FAX (33) 4-4253-6001

Fax-on-Demand North America:

1-(800) 292-8635 International: 1-(408) 441-0732

e-mail literature@atmel.com

Web Site http://www.atmel.com

BBS 1-(408) 436-4309

© Atmel Corporation 1999.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Marks bearing [®] and/or [™] are registered trademarks and trademarks of Atmel Corporation.

Terms and product names in this document may be trademarks of others.

