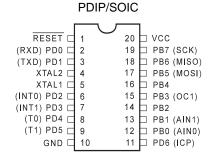
Features


- Utilizes the AVR® RISC Architecture
- AVR High-performance and Low-power RISC Architecture
 - 118 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Up to 10 MIPS Throughput at 10 MHz
- Data and Nonvolatile Program Memory
 - 2K Bytes of In-System Programmable Flash Endurance 1,000 Write/Erase Cycles
 - 128 Bytes of SRAM
 - 128 Bytes of In-System Programmable EEPROM Endurance: 100,000 Write/Erase Cycles
 - Programming Lock for Flash Program and EEPROM Data Security
- Peripheral Features
 - One 8-bit Timer/Counter with Separate Prescaler
 - One 16-bit Timer/Counter with Separate Prescaler,
 Compare, Capture Modes and 8-, 9- or 10-bit PWM
 - On-chip Analog Comparator
 - Programmable Watchdog Timer with On-chip Oscillator
 - SPI Serial Interface for In-System Programming
 - Full Duplex UART
- • Special Microcontroller Features
 - Low-power Idle and Power Down Modes
 - External and Internal Interrupt Sources
- Specifications
 - Low-power, High-speed CMOS Process Technology
 - Fully Static Operation
- Power Consumption at 4 MHz, 3V, 25°C
 - Active: 2.8 mA
 - Idle Mode: 0.8 mA
 - Power Down Mode: <1 μA
- I/O and Packages
 - 15 Programmable I/O Lines
 - 20-pin PDIP and SOIC
- Operating Voltages
 - 2.7 6.0V (AT90S2313-4)
 - 4.0 6.0V (AT90S2313-10)
- Speed Grades
 - 0 4 MHz (AT90S2313-4)
 - 0 10 MHz (AT90S2313-10)

Description

The AT90S2313 is a low-power CMOS 8-bit microcontroller based on the AVR RISC architecture. By executing powerful instructions in a single clock cycle, the

(continued)

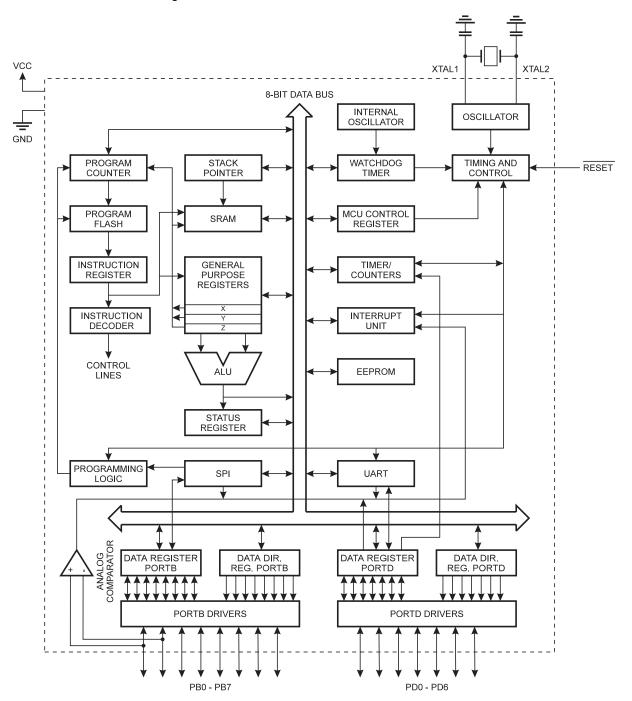
Pin Configuration

8-bit AVR®
Microcontroller
with 2K bytes
In-System
Programmable
Flash

AT90S2313

Rev. 0839ES-04/99

Note: This is a summary document. For the complete 87 page document, please visit our web site at www.atmel.com or e-mail at literature@atmel.com and request literature #0839E.



AT90S2313 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

Block Diagram

Figure 1. The AT90S2313 Block Diagram

The AT90S2313 provides the following features: 2K bytes of In-System Programmable Flash, 128 bytes EEPROM, 128 bytes SRAM, 15 general purpose I/O lines, 32 general purpose working registers, flexible timer/counters with compare modes, internal and external interrupts, a programmable serial UART, programmable Watchdog Timer with internal oscillator, an SPI serial port for Flash Memory downloading and two software selectable power saving modes. The Idle Mode stops the CPU while allowing the SRAM, timer/counters, SPI port and interrupt system to continue functioning. The power down mode saves the register contents but freezes the oscillator, disabling all other chip functions until the next external interrupt or hardware reset.

The device is manufactured using Atmel's high density nonvolatile memory technology. The on-chip In-System Program-mable Flash allows the program memory to be reprogrammed in-system through an SPI serial interface or by a conventional nonvolatile memory programmer. By combining an enhanced RISC 8-bit CPU with In-System Programmable Flash on a monolithic chip, the Atmel AT90S2313 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The AT90S2313 AVR is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

Pin Descriptions

VCC

Supply voltage pin.

GND

Ground pin.

Port B (PB7..PB0)

Port B is an 8-bit bi-directional I/O port. Port pins can provide internal pull-up resistors (selected for each bit). PB0 and PB1 also serve as the positive input (AIN0) and the negative input (AIN1), respectively, of the on-chip analog comparator. The Port B output buffers can sink 20mA and can drive LED displays directly. When pins PB0 to PB7 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not active.

Port D (PD6..PD0)

Port D has seven bi-directional I/O port with internal pull-up resistors, PD6..PD0. The Port D output buffers can sink 20 mA. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not active.

RESET

Reset input. A low level on this pin for more than 50 ns will generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.

XTAL1

Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

XTAL2

Output from the inverting oscillator amplifier

Architectural Overview

The fast-access register file concept contains 32 x 8-bit general purpose working registers with a single clock cycle access time. This means that during one single clock cycle, one ALU (Arithmetic Logic Unit) operation is executed. Two operands are output from the register file, the operation is executed, and the result is stored back in the register file - in one clock cycle.

Figure 2. The AT90S2313 AVR RISC Architecture

AVR AT90S2313 Architecture Data Bus 8-bit Program Status Control 1K x 16 Counter and Test Registrers Program **FLASH** Interrupt 32 x 8 Unit Instruction General Register Purpose SPI Registrers Unit Instruction Decoder Serial ndirect Addressing **Direct Addressing UART** ALU Control Lines 8-bit Timer/Counter 16-bit Timer/Counter 128 x 8 with PWM Data SRAM Watchdog Timer 128 x 8 Analog **EEPROM** Comparator 15 I/O Lines

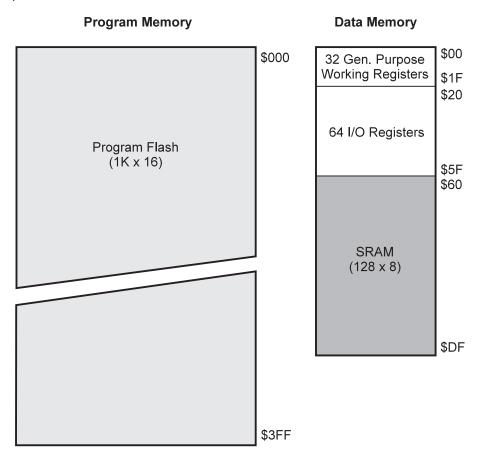
Six of the 32 registers can be used as three 16-bits indirect address register pointers for Data Space addressing - enabling efficient address calculations. One of the three address pointers is also used as the address pointer for the constant table look up function. These added function registers are the 16-bits X-register, Y-register and Z-register.

The ALU supports arithmetic and logic functions between registers or between a constant and a register. Single register operations are also executed in the ALU. Figure 2 shows the AT90S2313 AVR RISC microcontroller architecture.

In addition to the register operation, the conventional memory addressing modes can be used on the register file as well. This is enabled by the fact that the register file is assigned the 32 lowermost Data Space addresses (\$00 - \$1F), allowing them to be accessed as though they were ordinary memory locations.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, Timer/Counters, A/D-converters, and other I/O functions. The I/O memory can be accessed directly, or as the Data Space locations following those of the register file, \$20 - \$5F.

The AVR has Harvard architecture - with separate memories and buses for program and data. The program memory is accessed with a two stage pipeline. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed in every clock cycle. The program memory is In-system Programmable Flash memory.


With the relative jump and call instructions, the whole 1K address space is directly accessed. Most AVR instructions have a single 16-bit word format. Every program memory address contains a 16- or 32-bit instruction.

During interrupts and subroutine calls, the return address program counter (PC) is stored on the stack. The stack is effectively allocated in the general data SRAM, and consequently the stack size is only limited by the total SRAM size and the usage of the SRAM. All user programs must initialize the SP in the reset routine (before subroutines or interrupts are executed). The 8-bit stack pointer SP is read/write accessible in the I/O space.

The 128 bytes data SRAM + register file and I/O registers can be easily accessed through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

Figure 3. Memory Mapss

A flexible interrupt module has its control registers in the I/O space with an additional global interrupt enable bit in the status register. All the different interrupts have a separate interrupt vector in the interrupt vector table at the beginning of the program memory. The different interrupts have priority in accordance with their interrupt vector position. The lower the interrupt vector address the higher the priority.

Register Summary

Address	Nome	D:4 7	Dia c	D:4 F	D:4.4	D:4 2	D:4 2	D:4.4	Bit 0	Dome
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
\$3F (\$5F) \$3E (\$5E)	SREG	I	Т	Н	S	V	N	Z	С	19
\$3E (\$5E) \$3D (\$5D)	Reserved SPL	SP7	SP6	CDE	CD4	CD2	CDO	SP1	CDO	20
	Reserved	SP7	SP6	SP5	SP4	SP3	SP2	SPT	SP0	20
\$3C (\$5C) \$3B (\$5B)	GIMSK	INT1	INT0	-	-	_	-	_	-	25
\$3A (\$5A)	GIFR	INTF1	INTF0	-	-	-	-	-	-	26
\$39 (\$59)	TIMSK	TOIE1	OCIE1A	-	_	TICIE1	-	TOIE0	-	26
\$38 (\$58)	TIFR	TOV1	OCF1A	-	-	ICF1	-	TOV0	-	27
\$37 (\$57)	Reserved	1001	OCITA	-			_	1000	_	21
\$36 (\$56)	Reserved									
\$35 (\$55)	MCUCR			SE	SM	ISC11	ISC10	ISC01	ISC00	28
\$34 (\$54)		-	-) SE	SIVI	13011	13010	13001	13000	20
\$34 (\$54)	Reserved TCCR0			l <u>-</u>		1	CS02	CS01	CS00	21
\$32 (\$52)	TCNT0	Timer/Cou	nter0 (8 Bit)	-	_	-	U302	CSUI	C300	31 31
\$32 (\$52)	Reserved	Timei/Cou	ileio (o bil)							31
\$30 (\$50)	Reserved									
\$2F (\$4F)	TCCR1A	COM1A1	COM1A0		1	1	1	PWM11	PWM10	22
\$2F (\$4F) \$2E (\$4E)		ICNC1		-	-	- CTC4	- 0010			33 34
\$2E (\$4E) \$2D (\$4D)	TCCR1B TCNT1H		ICES1	r Register Hi		CTC1	CS12	CS11	CS10	35
\$2D (\$4D) \$2C (\$4C)	TCNT1h			er Register Hig er Register Lo						35
\$2B (\$4B)	OCR1AH									36
\$2B (\$4B) \$2A (\$4A)	OCR1AH OCR1AL			are Register H	· ·					
		Timer/Cou	iter i - Compa	are Register L	ow byte					36
\$29 (\$49)	Reserved									
\$28 (\$48)	Reserved									
\$27 (\$47)	Reserved									
\$26 (\$46)	Reserved ICR1H	Times/Cou	atort Innut C	Santura Dania	lor I limb Duto					36
\$25 (\$45) \$24 (\$44)	ICR1L			Capture Regis						36
\$24 (\$44)	Reserved	Timer/Cou	nter i - input C	apture Regis	ler Low Byte					30
\$23 (\$43)	Reserved									
\$22 (\$42)	WDTCR	-	-	_	WDTOE	WDE	WDP2	WDP1	WDP0	38
\$20 (\$40)	Reserved	-	-	-	I WDIOE	I WDE	I WDF2	WDFI	I WDF0	30
\$1F (\$3F)	Reserved									
\$1E (\$3E)	EEAR	-	EEDDOM /	Address Regis	tor					40
\$1D (\$3D)	EEDR		Data register	Address Regis	ilei					40
\$1D (\$3D) \$1C (\$3C)	EECR	-	-	-	-	-	EEMWE	EEWE	EERE	40
\$1B (\$3B)	Reserved	-	-			<u> </u>	LLIVIVVL	LLVVL	LLKL	40
\$1A (\$3A)	Reserved									
\$1A (\$3A) \$19 (\$39)	Reserved									
\$18 (\$38)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	50
\$17 (\$37)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	50
\$16 (\$36)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	50
\$15 (\$35)	Reserved	I IIADI	י וואטט	LINDO	I IIVD4	ר ווווו	I IINDZ	וטאווון	I IIADO	30
\$13 (\$33)	Reserved									
\$13 (\$33)	Reserved									
\$12 (\$32)	PORTD	-	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	55
\$12 (\$32)	DDRD	-	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	55
\$10 (\$30)	PIND	-	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	55
φιο (ψοο)	Reserved			1 11150	1 11104	1 1 1120	1 11102	1 11121	1 11120	30
\$0C (\$2C)	UDR	LIART I/O	Data Register							44
\$0C (\$2C) \$0B (\$2B)	USR	RXC	TXC	UDRE	FE	OR	_	_	_	45
\$0B (\$2B) \$0A (\$2A)	UCR	RXCIE	TXCIE	UDRIE	RXEN	TXEN	CHR9	RXB8	TXB8	45
\$08 (\$28)	UBRR		d Rate Regist		IXALIN	IALIN	OTINS	IVADO	IVDO	47
\$08 (\$28)	ACSR	ACD	u Nate Negist	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	48
	Reserved	ACD	•	1 400	ACI	ACIE	ACIC	ACIOI	ACIOU	40
\$00 (\$20)	Reserved									
φυυ (φ∠υ)	Reserved									

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

^{2.} Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.

Instruction Set Summary

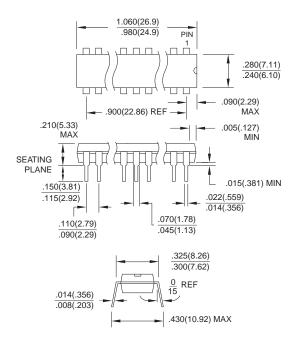
Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AND	LOGIC INSTRUCTION	ONS		•	•
ADD	Rd, Rr	Add two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl,K	Add Immediate to Word	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	$Rd \leftarrow Rd - Rr$	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1
SBIW	Rdl,K	Subtract Immediate from Word	$Rdh:Rdl \leftarrow Rdh:Rdl - K$	Z,C,N,V,S	2
SBC	Rd, Rr	Subtract with Carry two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \leftarrow Rd - K - C$	Z,C,N,V,H	1
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$Rd \leftarrow Rd v Rr$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \vee K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	$Rd \leftarrow FF - Rd$	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← \$00 – Rd	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	$Rd \leftarrow Rd \vee K$	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (\$FF - K)$	Z,N,V	1
INC	Rd	Increment	$Rd \leftarrow Rd + 1$	Z,N,V	1
DEC	Rd	Decrement	$Rd \leftarrow Rd - 1$	Z,N,V	1
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \bullet Rd$	Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1
SER	Rd	Set Register	Rd ← \$FF	None	1
BRANCH INSTRUC	TIONS				
RJMP	k	Relative Jump	PC ← PC + k + 1	None	2
IJMP		Indirect Jump to (Z)	$PC \leftarrow Z$	None	2
RCALL	k	Relative Subroutine Call	$PC \leftarrow PC + k + 1$	None	3
ICALL		Indirect Call to (Z)	$PC \leftarrow Z$	None	3
RET		Subroutine Return	$PC \leftarrow STACK$	None	4
RETI		Interrupt Return	$PC \leftarrow STACK$	1	4
CPSE	Rd,Rr	Compare, Skip if Equal	if (Rd = Rr) PC \leftarrow PC + 2 or 3	None	1/2
CP	Rd,Rr	Compare	Rd – Rr	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	Rd – Rr – C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC \leftarrow PC + 2 or 3	None	1/2
SBRS	Rr, b	Skip if Bit in Register is Set	if $(Rr(b)=1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2
SBIC	P, b	Skip if Bit in I/O Register Cleared	if (P(b)=0) PC \leftarrow PC + 2 or 3	None	1/2
SBIS	P, b	Skip if Bit in I/O Register is Set	if $(R(b)=1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2
BRBS	s, k	Branch if Status Flag Set	if $(SREG(s) = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if $(SREG(s) = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BREQ	k	Branch if Equal	if $(Z = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRNE	k	Branch if Not Equal	if $(Z = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC \leftarrow PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if $(N = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if (N \oplus V= 0) then PC \leftarrow PC + k + 1	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if (N \oplus V= 1) then PC \leftarrow PC + k + 1	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC ← PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC \leftarrow PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC \leftarrow PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC \leftarrow PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC \leftarrow PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if $(V = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC ← PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC ← PC + k + 1	None	1/2

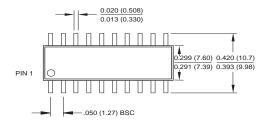
Instruction Set Summary (Continued)

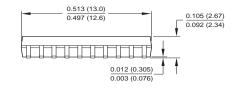
Mnemonics	Operands	Description	Operation	Flags	#Clocks
DATA TRANSFER IN	ISTRUCTIONS				
MOV	Rd, Rr	Move Between Registers	$Rd \leftarrow Rr$	None	1
LDI	Rd, K	Load Immediate	$Rd \leftarrow K$	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1, Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1$, $Rd \leftarrow (Y)$	None	2
LDD LD	Rd,Y+q Rd, Z	Load Indirect with Displacement Load Indirect	$Rd \leftarrow (Y + q)$ $Rd \leftarrow (Z)$	None None	2 2
LD	Rd, Z+	Load Indirect Load Indirect and Post-Inc.	$Rd \leftarrow (Z)$ $Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Post-inc. Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect and Fre-Dec. Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	$Rd \leftarrow (k)$	None	2
ST	X, Rr	Store Indirect	$(X) \leftarrow Rr$	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1, (X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	(Y) ← Rr	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None	2
STD	Y+q,Rr	Store Indirect with Displacement	(Y + q) ← Rr	None	2
ST	Z, Rr	Store Indirect	(Z) ← Rr	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $(Z) \leftarrow Rr$	None	2
STD	Z+q,Rr	Store Indirect with Displacement	$(Z + q) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	(k) ← Rr	None	2
LPM		Load Program Memory	R0 ← (Z)	None	3
IN	Rd, P	In Port	Rd ← P	None	1
OUT	P, Rr	Out Port	P ← Rr	None	1
PUSH	Rr	Push Register on Stack	STACK ← Rr	None	2
POP	Rd	Pop Register from Stack	Rd ← STACK	None	2
BIT AND BIT-TEST II		T 0 + P'' : 1/0 P : +	1/0/01)	T N	
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI LSL	P,b Rd	Clear Bit in I/O Register	$I/O(P,b) \leftarrow 0$	None Z,C,N,V	1
LSR	Rd	Logical Shift Left Logical Shift Right	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$ $Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$ $Rd(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotate Left Through Carry Rotate Right Through Carry	$Rd(0) \leftarrow C, Rd(11+1) \leftarrow Rd(11), C \leftarrow Rd(7)$ $Rd(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	$Rd(30) \leftarrow Rd(74), Rd(74) \leftarrow Rd(30)$	None	1 1
BSET	s	Flag Set	SREG(s) ← 1	SREG(s)	1 1
BCLR	S	Flag Clear	SREG(s) ← 0	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	T	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	C ← 0	С	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	I ← 1	1	1
CLI	ļ	Global Interrupt Disable	I ← 0	1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Twos Complement Overflow	V ← 1	V	1
CLV	-	Clear Twos Complement Overflow	V ← 0	V	1
SET	1	Set T in SREG	T ← 1	T	1
CLT	-	Clear T in SREG	T ← 0	T	1
SEH	-	Set Half Carry Flag in SREG	H ← 1	H	1
CLH	-	Clear Half Carry Flag in SREG	H ← 0	H	1
NOP	-	No Operation	(and appointed dense for Olever former)	None	1
SLEEP	-	Sleep Watchdog Boost	(see specific descr. for Sleep function)	None	3
WDR	ļ	Watchdog Reset	(see specific descr. for WDR/timer)	None	1

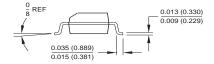
Ordering Information

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
4	2.7 - 6.0V	AT90S2313-4PC	20P3	Commercial
		AT90S2313-4SC	20S	(0°C to 70°C)
		AT90S2313-4PI	20P3	Industrial
		AT90S2313-4SI	20S	(-40°C to 85°C)
10	4.0 - 6.0V	AT90S2313-10PC	20P3	Commercial
		AT90S2313-10SC	20S	(0°C to 70°C)
		AT90S2313-10PI	20P3	Industrial
		AT90S2313-10SI	20S	(-40°C to 85°C)


Package Type				
20P3	20-lead, 0.300" Wide, Plastic Dual In-Line Package (PDIP)			
20\$	20-lead, 0.300" Wide, Plastic Gull-Wing Small Outline (SOIC)			




Packaging Information


20P3, 20-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP) Dimensions in Inches and (Millimeters) JEDEC STANDARD MS-001 BA

20S, 20-lead, 0.300" Wide, Plastic Gull-Wing Small Outline (SOIC) Dimensions in Inches and (Millimeters)

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL (408) 441-0311 FAX (408) 487-2600

Europe

Atmel U.K., Ltd.
Coliseum Business Centre
Riverside Way
Camberley, Surrey GU15 3YL
England
TEL (44) 1276-686-677
FAX (44) 1276-686-697

Asia

Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan

Åtmel Japan K.K. 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Atmel Colorado Springs 1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL (719) 576-3300 FAX (719) 540-1759

Atmel Rousset
Zone Industrielle
13106 Rousset Cedex
France
TEL (33) 4-4253-6000
FAX (33) 4-4253-6001

Fax-on-Demand North America: 1-(800) 292-8635 International: 1-(408) 441-0732

e-mail literature@atmel.com

Web Site http://www.atmel.com

BBS 1-(408) 436-4309

© Atmel Corporation 1999.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Marks bearing $^{\text{\tiny{8}}}$ and/or $^{\text{\tiny{TM}}}$ are registered trademarks and trademarks of Atmel Corporation.