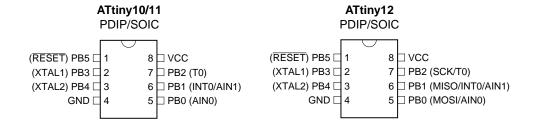
Features

- Utilizes the AVR® RISC Architecture
- High-performance and Low-power 8-bit RISC Architecture
 - 90 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Up to 8 MIPS Throughput at 8 MHz
- Nonvolatile Program and Data Memory
 - 1K Byte of Flash Program Memory

QuickFlash[™] One-time Programmable (ATtiny10)

In-System Programmable (ATtiny12)


Endurance: 1,000 Write/Erase Cycles (ATtiny11/12)

- 64 Bytes of In-System Programmable EEPROM Data Memory (ATtiny12)

Endurance: 100,000 Write/Erase Cycles

- Programming Lock for Flash Program and EEPROM Data Security
- Peripheral Features
 - Interrupt and Wake-up on Pin Change
 - One 8-bit Timer/Counter with Separate Prescaler
 - On-chip Analog Comparator
 - Programmable Watchdog Timer with On-chip Oscillator
- Special Microcontroller Features
 - Low-power Idle and Power-down Modes
 - External and Internal Interrupt Sources
 - In-System Programmable via SPI Port (ATtiny12)
 - Enhanced Power-on Reset Circuit (ATtiny12)
 - Internal Calibrated RC Oscillator (ATtiny12)
- Specification
 - Low-power, High-speed CMOS Process Technology
 - Fully Static Operation
- Power Consumption at 4 MHz, 3V, 25°C
 - Active: 2.2 mA
 - Idle Mode: 0.5 mA
 - Power-down Mode: <1 μA
- Packages
 - 8-pin PDIP and SOIC
- ATtiny10 is the QuickFlash OTP Version of ATtiny11
- Operating Voltages
 - 1.8 5.5V (ATtiny12V-1)
 - 2.7 5.5V (ATtiny11L-2 and ATtiny12L-4)
 - 4.0 5.5V (ATtiny11-6 and ATtiny12-8)
- Speed Grades
 - 0 1 MHz (ATtiny12V-1)
 - 0 2 MHz (ATtiny11L-2)
 - 0 4 MHz (ATtiny12L-4)
 - 0 6 MHz (ATtiny11-6)
 - 0 8 MHz (ATtiny12-8)

Pin Configuration

8-bit **AVR**® Microcontroller with 1K Bytes Flash

ATtiny10 ATtiny11 ATtiny12

Preliminary

Rev. 1006BS-10/99

Note: This is a summary document. For the complete 77-page document, please visit our web site at www.atmel.com or e-mail at literature@atmel.com and request literature #1006B.

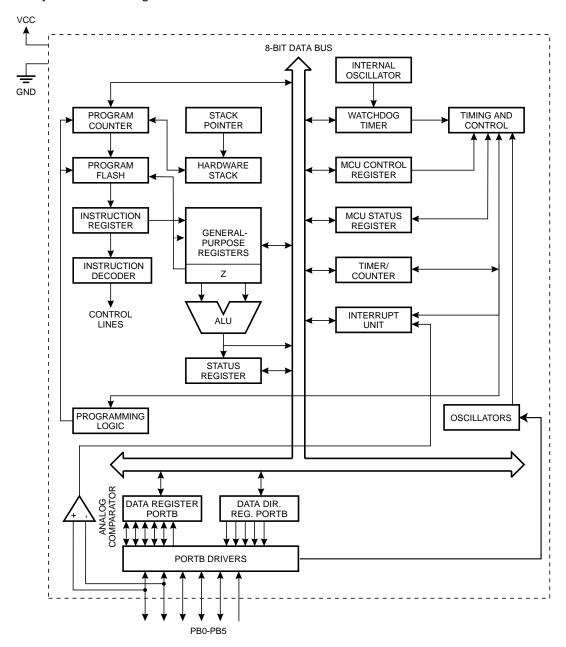
Description

The ATtiny10/11/12 is a low-power CMOS 8-bit microcontroller based on the AVR RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny10/11/12 achieves throughputs approaching 1 MIPS per MHz, allowing the system designer to optimize power consumption versus processing speed.

The AVR core combines a rich instruction set with 32 general-purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

Table 1. Parts Description

Device	Flash	EEPROM	Register	Voltage Range	Frequency
ATtiny10/11L	1K	-	32	2.7 - 5.5V	0-2 MHz
ATtiny10/11	1K	-	32	4.0 - 5.5V	0-6 MHz
ATtiny12V	1K	64 B	32	1.8 - 5.5V	0-1 MHz
ATtiny12L	1K	64 B	32	2.7 - 5.5V	0-4 MHz
ATtiny12	1K	64 B	32	4.0 - 5.5V	0-8 MHz

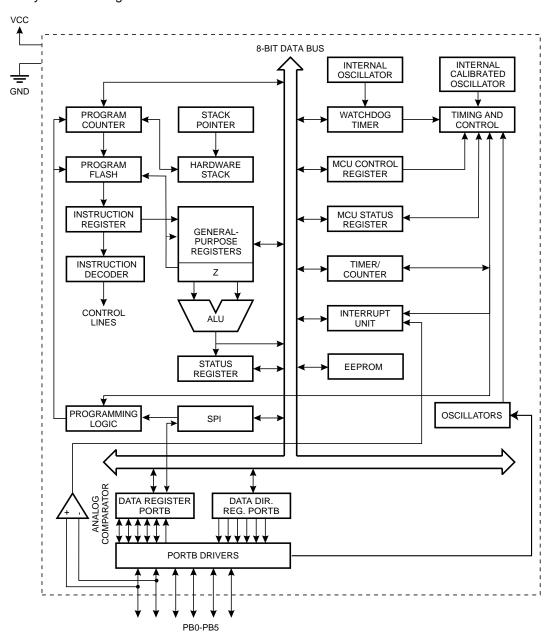

ATtiny10/11 Block Diagram

The ATtiny10/11 provides the following features: 1K bytes of Flash, up to five general-purpose I/O lines, one input line, 32 general-purpose working registers, an 8-bit timer/counter, internal and external interrupts, programmable Watchdog Timer with internal oscillator, and two software-selectable power-saving modes. The Idle Mode stops the CPU while allowing the timer/counters and interrupt system to continue functioning. The Power-down Mode saves the register contents but freezes the oscillator, disabling all other chip functions until the next interrupt or hardware reset. The wake-up or interrupt on pin change features enable the ATtiny10/11 to be highly responsive to external events, still featuring the lowest power consumption while in the power-down modes.

The device is manufactured using Atmel's high-density nonvolatile memory technology. By combining an RISC 8-bit CPU with Flash on a monolithic chip, the Atmel ATtiny10/11 is a powerful microcontroller that provides a highly-flexible and cost-effective solution to many embedded control applications.

The ATtiny10/11 AVR is supported with a full suite of program and system development tools including: macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

Figure 1. The ATtiny10/11 Block Diagram



ATtiny12 Block Diagram

Figure 2. The ATtiny12 Block Diagram

The ATtiny12 provides the following features: 1K bytes of Flash, 64 bytes EEPROM, up to six general-purpose I/O lines, 32 general-purpose working registers, an 8-bit timer/counter, internal and external interrupts, programmable Watchdog Timer with internal oscillator, and two software-selectable power-saving modes. The Idle Mode stops the CPU while allowing the timer/counters and interrupt system to continue functioning. The Power-down Mode saves the register contents but freezes the oscillator, disabling all other chip functions until the next interrupt or hardware reset. The wake-up or interrupt on pin change features enable the ATtiny12 to be highly responsive to external events, still featuring the lowest power consumption while in the power-down modes.

The device is manufactured using Atmel's high-density nonvolatile memory technology. By combining an RISC 8-bit CPU with Flash on a monolithic chip, the Atmel ATtiny12 is a powerful microcontroller that provides a highly-flexible and cost-effective solution to many embedded control applications.

The ATtiny12 AVR is supported with a full suite of program and system development tools including: macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

Pin Descriptions

VCC

Supply voltage pin.

GND

Ground pin.

Port B (PB5..PB0)

Port B is a 6-bit I/O port. PB4..0 are I/O pins that can provide internal pull-ups (selected for each bit). On ATtiny10/11, PB5 is input only. On ATtiny12, PB5 is input or open-drain output. The port pins are tri-stated when a reset condition becomes active, even if the clock is not running. The use of pins PB5..3 as input or I/O pins is limited, depending on reset and clock settings, as shown below.

Table 2. PB5..PB3 Functionality vs. Device Clocking Options

Device Clocking Option	PB5	PB4	PB3
External Reset Enabled	Used ⁽¹⁾	_(2)	-
External Reset Disabled	Input ⁽³⁾ /I/O ⁽⁴⁾	-	-
External Crystal	-	Used	Used
External Low-frequency Crystal	-	Used	Used
External Ceramic Resonator	-	Used	Used
External RC Oscillator	-	I/O ⁽⁵⁾	Used
External Clock	-	I/O	Used
Internal RC Oscillator	-	I/O	I/O

Notes:

- 1. "Used" means the pin is used for reset or clock purposes.
- 2. "-" means the pin function is unaffected by the option.
- 3. Input means the pin is a port input pin.
- 4. On ATtiny10/11, PB5 is input only. On ATtiny12, PB5 is input or open-drain output.
- 5. I/O means the pin is a port input/output pin.

XTAL1

Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

XTAL 2

Output from the inverting oscillator amplifier.

RESET

Reset input. An external reset is generated by a low level on the RESET pin. Reset pulses longer than 50 ns will generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.

Clock Options

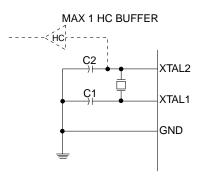
The device has the following clock source options, selectable by Flash fuse bits as shown:

Table 3. Device Clocking Options Select

Device Clocking Option	ATtiny10/11 CKSEL20	ATtiny12 CKSEL30
External Crystal/Ceramic Resonator	111	1111 - 1010
External Low-frequency Crystal	110	1001 - 1000
External RC Oscillator	101	0111 - 0101
Internal RC Oscillator	100	0100 - 0010
External Clock	000	0001 - 0000
Reserved	Other Options	-

Note: "1" means unprogrammed, "0" means programmed.

The various choices for each clocking option give different start-up times as shown in Table 7 on page 18 and Table 9 on page 19.

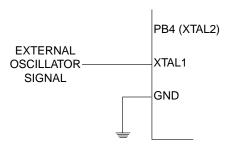

Internal RC Oscillator

The internal RC oscillator option is an on-chip oscillator running at a fixed frequency of 1 MHz. If selected, the device can operate with no external components. The device is shipped with this option selected. On ATtiny10/11, the Watchdog Oscillator is used as a clock, while ATtiny12 uses a separate calibrated oscillator.

Crystal Oscillator

XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. Either a quartz crystal or a ceramic resonator may be used.

Figure 3. Oscillator Connections



Note: When using the MCU Oscillator as a clock for an external device, an HC buffer should be connected as indicated in the figure.

External Clock

To drive the device from an external clock source, XTAL1 should be driven as shown in Figure 4.

Figure 4. External Clock Drive Configuration

External RC Oscillator

For timing insensitive applications, the external RC configuration shown in Figure 5 can be used. For details on how to choose R and C, see Table 29 on page 53.

Figure 5. External RC Configuration

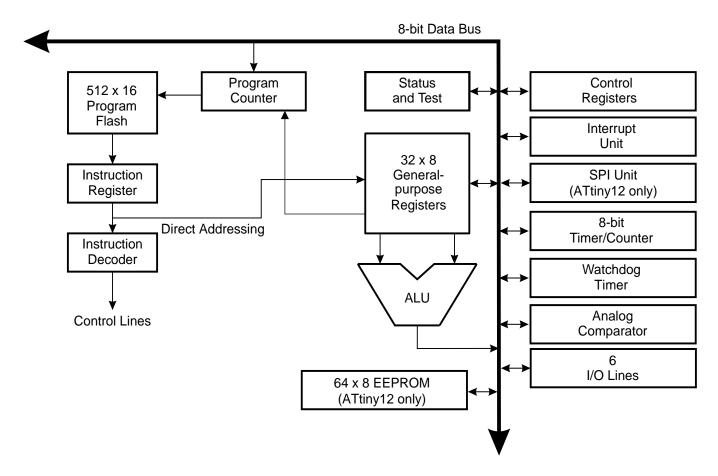
Architectural Overview

The fast-access register file concept contains 32 x 8-bit general-purpose working registers with a single-clock-cycle access time. This means that during one single clock cycle, one ALU (Arithmetic Logic Unit) operation is executed. Two operands are output from the register file, the operation is executed, and the result is stored back in the register file – in one clock cycle.

Two of the 32 registers can be used as a 16-bit pointer for indirect memory access. This pointer is called the Z-pointer, and can address the register file and the Flash program memory.

The ALU supports arithmetic and logic functions between registers or between a constant and a register. Single-register operations are also executed in the ALU. Figure 2 shows the ATtiny10/11/12 AVR RISC microcontroller architecture. The AVR uses a Harvard architecture concept with separate memories and buses for program and data memories. The program memory is accessed with a two-stage pipelining. While one instruction is being executed, the next instruction is prefetched from the program memory. This concept enables instructions to be executed in every clock cycle. The program memory is reprogrammable Flash memory.

With the relative jump and relative call instructions, the whole 512 address space is directly accessed. All AVR instructions have a single 16-bit word format, meaning that every program memory address contains a single 16-bit instruction.



During interrupts and subroutine calls, the return address program counter (PC) is stored on the stack. The stack is a 3-level-deep hardware stack dedicated for subroutines and interrupts.

The I/O memory space contains 64 addresses for CPU peripheral functions as control registers, timer/counters, and other I/O functions. The memory spaces in the AVR architecture are all linear and regular memory maps.

Figure 6. The ATtiny10/11/12 AVR RISC Architecture

A flexible interrupt module has its control registers in the I/O space with an additional global interrupt enable bit in the status register. All the different interrupts have a separate interrupt vector in the interrupt vector table at the beginning of the program memory. The different interrupts have priority in accordance with their interrupt vector position. The lower the interrupt vector address, the higher the priority.

Register Summary ATtiny10/11

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
\$3F	SREG	ı	Т	Н	S	V	N	Z	С	page 14
\$3E	Reserved									
\$3D	Reserved									
\$3C	Reserved									
\$3B	GIMSK	-	INT0	PCIE	-	-	-	-	-	page 24
\$3A	GIFR	-	INTF0	PCIF	-	-	-	-	-	page 25
\$39	TIMSK	-	-	-	-	-	-	TOIE0	-	page 25
\$38	TIFR	-	-	-	-	-	-	TOV0	-	page 25
\$37	Reserved									
\$36	Reserved									
\$35	MCUCR	-	-	SE	SM	-	-	ISC01	ISC00	page 26
\$34	MCUSR	-	-	-	-	-	-	EXTRF	PORF	page 22
\$33	TCCR0	-	-	-	-	-	CS02	CS01	CS00	page 30
\$32	TCNT0		•	•	Timer/Cou	nter0 (8 Bit)	•		'	page 31
\$31	Reserved									
\$30	Reserved									
	Reserved									
\$22	Reserved									
\$21	WDTCR	-	-	-	WDTOE	WDE	WDP2	WDP1	WDP0	page 31
\$20	Reserved									
\$1F	Reserved									
\$1E	Reserved									
\$1D	Reserved									
\$1C	Reserved									
\$1B	Reserved									
\$1A	Reserved									
\$19	Reserved									
\$18	PORTB	-	-	-	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	page 37
\$17	DDRB	-	-	-	DDB4	DDB3	DDB2	DDB1	DDB0	page 37
\$16	PINB	-	-	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	page 37
\$15	Reserved								•	
	Reserved									
\$0A	Reserved									
\$09	Reserved									
\$08	ACSR	ACD	-	ACO	ACI	ACIE	-	ACIS1	ACIS0	page 35
	Reserved					<u> </u>			"	
\$00	Reserved									

- Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
 - 2. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.

Register Summary ATtiny12

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
\$3F	SREG	I	Т	Н	S	V	N	Z	С	page 14
\$3E	Reserved			•	•	•			•	
\$3D	Reserved									
\$3C	Reserved									
\$3B	GIMSK	-	INT0	PCIE	-	-	-	-	-	page 24
\$3A	GIFR	-	INTF0	PCIF	-	-	-	-	-	page 25
\$39	TIMSK	-	-	-	-	-	-	TOIE0	-	page 25
\$38	TIFR	-	-	-	-	-	-	TOV0	-	page 25
\$37	Reserved		•							
\$36	Reserved									
\$35	MCUCR	-	PUD	SE	SM	-	-	ISC01	ISC00	page 26
\$34	MCUSR	-	-	-	-	WDRF	BORF	EXTRF	PORF	page 23
\$33	TCCR0	-	-	-	-	-	CS02	CS01	CS00	page 30
\$32	TCNT0		•	•	Timer/Cou	nter0 (8 Bit)			'	page 31
\$31	OSCCAL			(Oscillator Calib	oration Registe	er			page 28
\$30	Reserved									
	Reserved									
\$22	Reserved									
\$21	WDTCR	-	-	-	WDTOE	WDE	WDP2	WDP1	WDP0	page 32
\$20	Reserved			•		•			•	
\$1F	Reserved									
\$1E	EEAR	-	-			EEPROM Add	dress Register	•		page 33
\$1D	EEDR					ata Register				page 33
\$1C	EECR	-	-	-	-	EERIE	EEMWE	EEWE	EERE	page 33
\$1B	Reserved		1						•	· -
\$1A	Reserved									
\$19	Reserved									
\$18	PORTB	-	-	-	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	page 37
\$17	DDRB	-	-	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	page 37
\$16	PINB	-	-	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	page 37
\$15	Reserved								1	
	Reserved									
\$0A	Reserved									
\$09	Reserved									
\$08	ACSR	ACD	AINBG	ACO	ACI	ACIE	-	ACIS1	ACIS0	page 35
	Reserved					<u> </u>			"	. · ·
\$00	Reserved									

Note:

- 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
- 2. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.

Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC A	ND LOGIC INST	RUCTIONS	<u> </u>		
ADD	Rd, Rr	Add two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
SUB	Rd, Rr	Subtract two Registers	$Rd \leftarrow Rd - Rr$	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	Rd ← Rd - K	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \leftarrow Rd - K - C$	Z,C,N,V,H	1
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$Rd \leftarrow Rd \ v \ Rr$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd v K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	Rd ← \$FF - Rd	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← \$00 - Rd	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	$Rd \leftarrow Rd \vee K$	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (FFh - K)$	Z,N,V	1
INC	Rd	Increment	Rd ← Rd + 1	Z,N,V	1
DEC	Rd	Decrement	Rd ← Rd - 1	Z,N,V	1
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \bullet Rd$	Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1
SER	Rd	Set Register	Rd ← \$FF	None	1
BRANCH INSTR	RUCTIONS		<u> </u>	•	
RJMP	k	Relative Jump	PC ← PC + k + 1	None	2
RCALL	k	Relative Subroutine Call	PC ← PC + k + 1	None	3
RET		Subroutine Return	PC ← STACK	None	4
RETI		Interrupt Return	PC ← STACK	1	4
CPSE	Rd,Rr	Compare, Skip if Equal	if $(Rd = Rr) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2
CP	Rd,Rr	Compare	Rd - Rr	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	Rd - Rr - C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd - K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC ← PC + 2 or 3	None	1/2
SBRS	Rr, b	Skip if Bit in Register is Set	if (Rr(b)=1) PC ← PC + 2 or 3	None	1/2
SBIC	P, b	Skip if Bit in I/O Register Cleared	if (P(b)=0) PC ← PC + 2 or 3	None	1/2
SBIS	P, b	Skip if Bit in I/O Register is Set	if (P(b)=1) PC ← PC + 2 or 3	None	1/2
BRBS	s, k	Branch if Status Flag Set	if $(SREG(s) = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if $(SREG(s) = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BREQ	k	Branch if Equal	if $(Z = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRNE	k	Branch if Not Equal	if $(Z = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC ← PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC ← PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC ← PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC ← PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC ← PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC ← PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if (N \oplus V= 0) then PC \leftarrow PC + k + 1	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if $(N \oplus V= 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC ← PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC ← PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC ← PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC ← PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC ← PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC ← PC + k + 1	None	1/2
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC ← PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC ← PC + k + 1	None	1/2

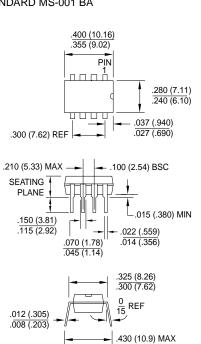
Instruction Set Summary (Continued)

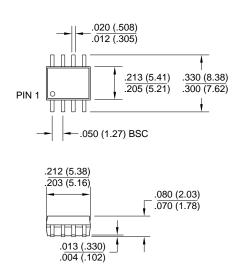
Mnemonics	Operands	Description	Operation	Flags	#Clocks
DATA TRANSFE	R INSTRUCTIO	NS		<u>L</u>	
LD	Rd,Z	Load Register Indirect	$Rd \leftarrow (Z)$	None	2
ST	Z,Rr	Store Register Indirect	(Z) ← Rr	None	2
MOV	Rd, Rr	Move Between Registers	Rd ← Rr	None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
IN	Rd, P	In Port	$Rd \leftarrow P$	None	1
OUT	P, Rr	Out Port	P ← Rr	None	1
LPM		Load Program Memory	R0 ← (Z)	None	3
BIT AND BIT-TE	ST INSTRUCTION	ONS		•	
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	$I/O(P,b) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$Rd(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n = 06$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	$Rd(30) \leftarrow Rd(74), Rd(74) \leftarrow Rd(30)$	None	1
BSET	s	Flag Set	SREG(s) ← 1	SREG(s)	1
BCLR	s	Flag Clear	SREG(s) ← 0	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	T	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	C ← 0	С	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	I ← 1	1	1
CLI		Global Interrupt Disable	I ← 0	1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Twos Complement Overflow	V ← 1	V	1
CLV		Clear Twos Complement Overflow	V ← 0	V	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	T ← 0	T	1
SEH		Set Half Carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	3
WDR		Watch Dog Reset	(see specific descr. for WDR/timer)	None	1

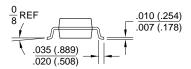
Ordering Information

Power Supply	Speed (MHz)	Ordering Code	Package	Operation Range
2.7 - 5.5V	2	ATtiny11L-2PC ATtiny11L-2SC	8P3 8S2	Commercial (0°C to 70°C)
		ATtiny11L-2PI ATtiny11L-2SI	8P3 8S2	Industrial (-40°C to 85°C)
4.0 - 5.5V	6	ATtiny11-6PC ATtiny11-6SC	8P3 8S2	Commercial (0°C to 70°C)
		ATtiny11-6PI ATtiny11-6SI	8P3 8S2	Industrial (-40°C to 85°C)
1.8 - 5.5V	1	ATtiny12V-1PC ATtiny12V-1SC	8P3 8S2	Commercial (0°C to 70°C)
		ATtiny12V-1PI ATtiny12V-1SI	8P3 8S2	Industrial (-40°C to 85°C)
2.7 - 5.5V	4	ATtiny12L-4PC ATtiny12L-4SC	8P3 8S2	Commercial (0°C to 70°C)
		ATtiny12L-4PI ATtiny12L-4SI	8P3 8S2	Industrial (-40°C to 85°C)
4.0 - 5.5V	8	ATtiny12-8PC ATtiny12-8SC	8P3 8S2	Commercial (0°C to 70°C)
		ATtiny12-8PI ATtiny12-8SI	8P3 8S2	Industrial (-40°C to 85°C)

Note: The speed grade refers to maximum clock rate when using an external crystal or external clock drive. The internal RC oscillator has the same nominal clock frequency for all speed grades.


Package Type				
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)			
8S2	8-lead, 0.200" Wide, Plastic Gull-Wing Small Outline (EIAJ SOIC)			




Packaging Information

8P3, 8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP) Dimensions in Inches and (Millimeters) JEDEC STANDARD MS-001 BA

8S2, 8-lead, 0.200" Wide, Plastic Gull Wing Small Outline (EIAJ SOIC) Dimensions in Inches and (Millimeters)

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL (408) 441-0311 FAX (408) 487-2600

Europe

Atmel U.K., Ltd. Coliseum Business Centre Riverside Way Camberley, Surrey GU15 3YL England TEL (44) 1276-686-677 FAX (44) 1276-686-697

Asia

Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan

Åtmel Japan K.K. 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Atmel Colorado Springs 1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL (719) 576-3300 FAX (719) 540-1759

Atmel Rousset

Zone Industrielle 13106 Rousset Cedex France TEL (33) 4-4253-6000 FAX (33) 4-4253-6001

> Fax-on-Demand North America: 1-(800) 292-8635 International: 1-(408) 441-0732

e-mail literature@atmel.com

Web Site http://www.atmel.com

BBS 1-(408) 436-4309

© Atmel Corporation 1999.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Marks bearing ® and/or [™] are registered trademarks and trademarks of Atmel Corporation.

Printed on recycled paper.