Features

- High-performance, Low-power AVR® 8-bit Microcontroller
- Advanced RISC Architecture
 - 90 Powerful Instructions Most Single-clock Cycle Execution
 - 32 x 8 General-purpose Working Registers
 - Fully Static Operation
- Nonvolatile Program and Data Memories
 - 1K bytes In-System Programmable Flash Program Memory Endurance: 1,000 Write/Erase Cycles
 - 64 bytes EEPROM
 - Endurance: 100,000 Write/Erase Cycles
 - Programming Lock for Flash Program Data Security
- Peripheral Features
 - Interrupt and Wakeup on Pin Change
 - Two 8-bit Timer/Counters with Separate Prescalers
 - One150 kHz, 8-bit High-speed PWM Output
 - 4 channel 10-bit ADC
 - One Differential Voltage Input with Optional Gain of 20x
 - On-chip Analog Comparator
 - Programmable Watchdog Timer with On-chip Oscillator
- Special Microcontroller Features
 - In-System Programmable via SPI Port
 - Enhanced Power-on Reset Circuit
 - Programmable Brown-out Detection Circuit
 - Internal, Calibrated 1.6 MHz Tuneable Oscillator
 - Internal 25.6 MHz Clock Generator for Timer/Counter
 - External and Internal Interrupt Sources
 - Low-power Idle and Power-down Modes
- I/O and Packages
 - 8-pin PDIP/SOIC: 6 Programmable I/O Lines
- Operating Voltages
- 2.7V 5.5V (ATtiny15L)
- Internal 1.6 MHz System Clock
- Commercial and Industrial Temperature Ranges

Description

The ATtiny15L is a low-power CMOS 8-bit microcontroller based on the AVR RISC architecture. By executing powerful instructions in a single-clock cycle, the ATtiny15L achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

(continued)

Pin Configuration

PDIP/SOIC (RESET/ADC0) PB5 1 8 VCC (ADC3) PB4 2 7 PB2 (ADC1/SCK/T0/INT0) (ADC2) PB3 3 6 PB1 (AIN1/MISO/OC1A) GND 4 5 PB0 (AIN0/AREF/MOSI)

8-bit **AVR**[®] Microcontroller with 1K Bytes Flash

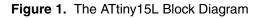
ATtiny15L

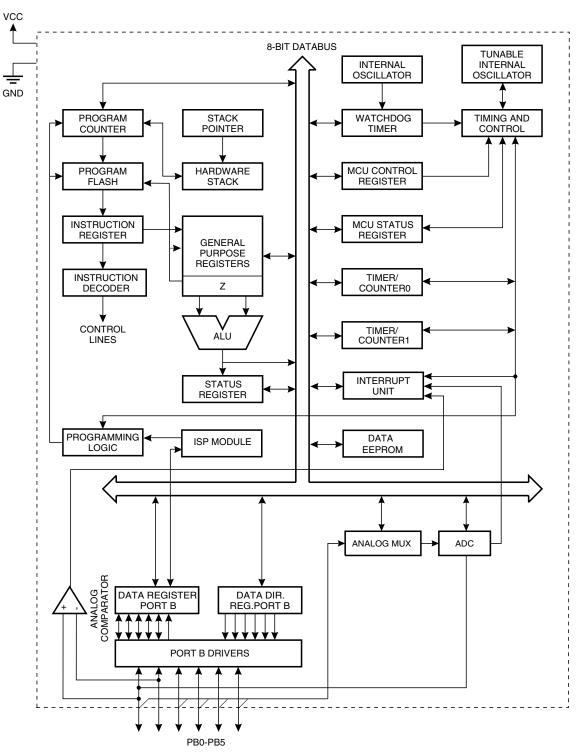
Advance Information

Note: This is a summary document. For the complete 70-page document, please visit our web site at *www.atmel.com* or e-mail at *literature@atmel.com* and request literature #1187B.

Rev. 1187BS-03/00

The AVR core combines a rich instruction set with 32 general-purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.


The ATtiny15L provides 1K bytes of Flash, 64 bytes EEPROM, 6 general-purpose I/O lines, 32 general-purpose working registers, two 8-bit timer/counters, one with high speed PWM output, internal oscillators, internal and external interrupts, programmable Watchdog Timer, 4-channel 10-bit Analog to Digital Converter with one differential voltage input with optional 20x gain, and three software-selectable power-saving modes. The Idle mode stops the CPU while allowing the ADC, analog comparator, timer/counters and interrupt system to continue functioning. The ADC Noise Reduction mode facilitates high-accuracy ADC measurements by stopping the CPU while allowing the ADC to continue functioning. The Power-down mode saves the register contents but freezes the oscillators, disabling all other chip functions until the next interrupt or hardware reset. The wake-up or interrupt on pin change features enable the ATtiny15L to be highly responsive to external events, still featuring the lowest power consumption while in the power-saving modes.


The device is manufactured using Atmel's high density nonvolatile memory technology. By combining an enhanced RISC 8-bit CPU with Flash on a monolithic chip, the Atmel ATtiny15L is a powerful microcontroller that provides a highly-flexible and cost-efficient solution to many embedded control applications. The peripheral features make the ATtiny15L particularly suited for battery chargers, lighting ballasts, and all kinds of intelligent sensor applications.

The ATtiny15L AVR is supported with a full suite of program and system development tools including macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

ATtiny15L

Block Diagram

Pin Descriptions

vcc

Supply voltage pin.

GND

Ground pin.

Port B (PB5..PB0)

Port B is a 6-bit I/O port. PB4..0 are I/O pins that can provide internal pull-ups (selected for each bit). PB5 is input or opendrain output. The use of pin PB5 is defined by a fuse and the special function associated with this pin is external Reset. The port pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B also accommodates analog I/O pins. The Port B pins with alternate functions are shown in Table 1:

	Table 1.	Port B Alternate Functions
--	----------	----------------------------

Port Pin	Alternate Function
PB0	MOSI (Data Input Line for Memory Downloading) AREF (ADC Voltage Reference)
1 20	AIN0 (Analog Comparator Positive Input)
PB1	MISO (Data Output Line for Memory Downloading) OC1A (Timer/Counter PWM Output) AIN1 (Analog Comparator Negative Input)
PB2	SCK (Serial Clock Input for Serial Programming) INT0 (External Interrupt0 Input) ADC1 (ADC Input Channel 1) T0 (Timer/Counter0 External Counter Input)
PB3	ADC2 (ADC Input Channel 2)
PB4	ADC3 (ADC Input Channel 3)
PB5	RESET (External Reset Pin) ADC0 (ADC Input Channel 0)

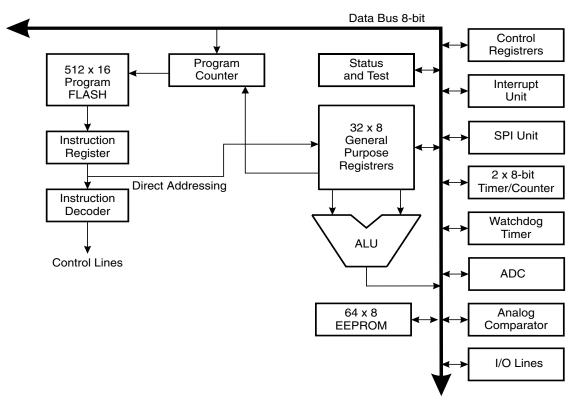
Analog Pins

Up to four analog inputs can be selected as inputs to Analog to digital converter (ADC).

Internal Oscillators

The internal oscillator provides a clock rate of nominally 1.6 MHz for the system clock CK. Due to large initial variation (0.8 MHz -1.6 MHz) of the internal oscillator, a tuning capability is built in. Through an eight bit control register OSCCAL, the system clock rate can be tuned with less than 1% steps of the nominal clock.

There is an internal PLL that provides a 16x clock rate locked to the system clock (CK) for the use of the Peripheral Timer/Counter1. The nominal frequency of this peripheral clock, PCK, is 25.6 MHz.


ATtiny15L Architectural Overview

The fast-access register file concept contains 32 x 8-bit general-purpose working registers with a single-clock-cycle access time. This means that during one single-clock cycle, one ALU (Arithmetic Logic Unit) operation is executed. Two operands are output from the register file, the operation is executed, and the result is stored back in the register file – in one clock cycle.

ATtiny15L

Two of the 32 registers can be used as a 16-bit pointer for indirect memory access. This pointer is called the Z-pointer, and can address the register file, IO file, and the Flash program memory.

The ALU supports arithmetic and logic functions between registers or between a constant and a register. Single-register operations are also executed in the ALU. Figure 2 shows the ATtiny15L AVR RISC microcontroller architecture. The AVR uses a Harvard architecture concept with separate memories and buses for program and data memories. The program memory is accessed with a two-stage pipelining. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed in every clock cycle. The program memory is in-system programmable Flash memory.

With the relative jump and relative call instructions, the whole address space is directly accessed. All AVR instructions have a single 16-bit word format, meaning that every program memory address contains a single 16-bit instruction.

During interrupts and subroutine calls, the return address program counter (PC) is stored on the stack. The stack is a 3 level deep hardware stack dedicated for subroutines and interrupts.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, Timer/Counters, and other I/O functions. The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional global interrupt enable bit in the status register. All the different interrupts have a separate interrupt vector in the interrupt vector table at the beginning of the program memory. The different interrupts have priority in accordance with their interrupt vector position. The lower the interrupt vector address, the higher the priority.

ATtiny15L Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
\$3F	SREG	I	Т	Н	S	V	N	Z	С	11
\$3E	Reserved									
\$3C	Reserved									
\$3B	GIMSK	-	INT0	PCIE	-	-	-	-	-	19
\$3A	GIFR	-	INTF0	PCIF	-	-	-	-	-	19
\$39	TIMSK	-	OCIE1A	-	-	-	TOIE1	TOIE0	-	20
\$38	TIFR	-	OCF1A	-	-	-	TOV1	TOV0	-	20
\$37	Reserved									
\$36	Reserved			1	•					
\$35	MCUCR	-	PUD	SE	SM1	SM0	-	ISC01	ISC00	21
\$34	MCUSR	-	-	-	-	WDRF	BORF	EXTRF	PORF	17
\$33	TCCR0	-	-	-	-	-	CS02	CS01	CS00	26
\$32	TCNT0				Timer/Cou	nter0 (8-Bit)				27
\$31	OSCCAL			(Oscillator Calil	pration Registe	er			23
\$30	TCCR1	CTC1	PWM1	COM1A1	COM1A0	CS13	CS12	CS11	CS10	28
\$2F	TCNT1					nter1 (8-Bit)				29
\$2E	OCR1A			Timer/Cour	nter1 Output C	Compare Regis	ster A (8-Bit)			29
\$2D	OCR1B			Timer/Cour	nter1 Output C	Compare Regis	ster B (8-Bit)			31
\$2C	SFIOR	-	-	-	-	-	FOC1A	PSR1	PSR0	25
\$2B	Reserved									
\$2A	Reserved									
\$29	Reserved									
\$28	Reserved									
\$27	Reserved									
\$26	Reserved									
\$25	Reserved									
\$24	Reserved									
\$23	Reserved									
\$22	Reserved									
\$21	WDTCR	-	-	-	WDTOE	WDE	WDP2	WDP1	WDP0	32
\$20	Reserved									
\$1F	Reserved									
\$1E	EEAR	-	-	EEAR5	EEAR4	EEAR3	EEAR2	EEAR1	EEAR0	33
\$1D	EEDR			E	EPROM Data	Register (8-B	it)	•	•	34
\$1C	EECR	-	-	-	-	EERIE	EEMWE	EEWE	EERE	34
\$1B	Reserved			•	•	•	•	•		
\$1A	Reserved									
\$19	Reserved									
\$18	PORTB	-	-	-	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	46
\$17	DDRB	-	-	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	46
\$16	PINB	-	-	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	46
\$15	Reserved				=			=		
\$14	Reserved									
\$13	Reserved									
\$12	Reserved									
\$11	Reserved									
\$10	Reserved									
\$0F	Reserved									
\$0E	Reserved									
\$0D	Reserved									
\$0C	Reserved									
\$0B	Reserved									
\$0A	Reserved									
\$09	Reserved									
\$08	ACSR	ACD	ACBG	ACO	ACI	ACIE	-	ACIS1	ACIS0	36
\$07	ADMUX	REFS1	REFS0	ADLAR	-	-	MUX2	MUX1	MUX0	42
\$06	ADCSR	ADEN	ADSC	ADEAN	ADIF	ADIE	ADPS2	ADPS1	ADPS0	43
\$05	ADCH	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.000			gister High Byt		7,6101	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	43
\$03 \$04	ADCL	1			,	gister Low Byt				43
	Reserved						<u> </u>			40
	i lesei veu									

ATtiny15L

ATtiny15L Instruction Set Summary

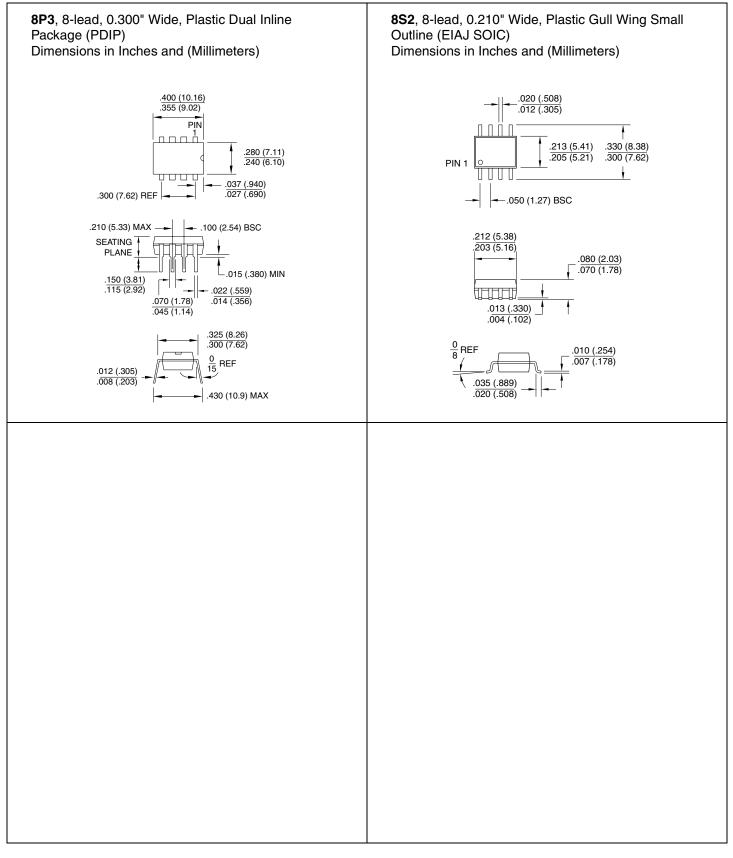
Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC A	ND LOGIC INST	RUCTIONS		-	
ADD	Rd, Rr	Add two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
SUB	Rd, Rr	Subtract two Registers	Rd ← Rd - Rr	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \leftarrow Rd - K - C$	Z,C,N,V,H	1
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \gets Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$Rd \leftarrow Rd \lor Rr$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \lor K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	$Rd \leftarrow \$FF - Rd$	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← \$00 - Rd	Z,C,N,V,H	1
SBR	Rd, K	Set Bit(s) in Register	$Rd \leftarrow Rd \lor K$	Z,N,V	1
CBR	Rd, K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (FFh - K)$	Z,N,V	1
INC	Rd	Increment	$Rd \leftarrow Rd + 1$	Z,N,V	1
DEC	Rd	Decrement	Rd ← Rd - 1	Z,N,V	1
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \bullet Rd$	Z,N,V	1
CLR	Rd	Clear Register	Rd ← Rd⊕Rd	Z,N,V	1
SER	Rd	Set Register	$Rd \leftarrow \$FF$	None	1
BRANCH INSTR	UCTIONS			•	
RJMP	k	Relative Jump	$PC \leftarrow PC + k + 1$	None	2
RCALL	k	Relative Subroutine Call	$PC \leftarrow PC + k + 1$	None	3
RET		Subroutine Return	$PC \leftarrow STACK$	None	4
RETI		Interrupt Return	PC ← STACK	1	4
CPSE	Rd, Rr	Compare, Skip if Equal	if (Rd = Rr) PC \leftarrow PC + 2 or 3	None	1/2
CP	Rd, Rr	Compare	Rd - Rr	Z, N,V,C,H	1
CPC	Rd, Rr	Compare with Carry	Rd - Rr - C	Z, N,V,C,H	1
CPI	Rd, K	Compare Register with Immediate	Rd - K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC ← PC + 2 or 3	None	1/2
SBRS	Rr, b	Skip if Bit in Register is Set	if $(Rr(b)=1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2
SBIC	P, b	Skip if Bit in I/O Register Cleared	if (P(b)=0) PC ← PC + 2 or 3	None	1/2
SBIS	P, b	Skip if Bit in I/O Register is Set	if (P(b)=1) PC \leftarrow PC + 2 or 3	None	1/2
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then $PC \leftarrow PC + k + 1$	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then $PC \leftarrow PC + k + 1$	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC \leftarrow PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if (Z = 0) then PC \leftarrow PC + k + 1	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC \leftarrow PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC \leftarrow PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if (N \oplus V= 0) then PC \leftarrow PC + k + 1	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if (N \oplus V= 1) then PC \leftarrow PC + k + 1	None	1/2
BRHS	k	Branch if Half-carry Flag Set	if (H = 1) then PC \leftarrow PC + k + 1	None	1/2
BRHC	k	Branch if Half-carry Flag Cleared	if (H = 0) then PC \leftarrow PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC \leftarrow PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC \leftarrow PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC \leftarrow PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if $(V = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC \leftarrow PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC \leftarrow PC + k + 1	None	1/2

ATtiny15L Instruction Set Summary (Continued)

Mnemonics	Operands	Description	Operation	Flags	#Clocks
DATA TRANSFER IN	STRUCTIONS	·			
LD	Rd, Z	Load Register Indirect	$Rd \leftarrow (Z)$	None	2
ST	Z, Rr	Store Register Indirect	$(Z) \leftarrow Rr$	None	2
MOV	Rd, Rr	Move Between Registers	Rd ← Rr	None	1
LDI	Rd, K	Load Immediate	$Rd \leftarrow K$	None	1
IN	Rd, P	In Port	$Rd \leftarrow P$	None	1
OUT	P, Rr	Out Port	P ← Rr	None	1
LPM		Load Program Memory	$R0 \leftarrow (Z)$	None	3
BIT AND BIT-TEST IN	NSTRUCTIONS		• • • •		
SBI	P, b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P, b	Clear Bit in I/O Register	I/O(P,b) ← 0	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	Rd(0)←C,Rd(n+1)⊢ Rd(n),C←Rd(7)	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	Rd(7)←C,Rd(n)⊢ Rd(n+1),C←Rd(0)	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	Rd(n) ← Rd(n+1), n=06	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BSET	S	Flag Set	$SREG(s) \leftarrow 1$	SREG(s)	1
BCLR	S	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	Т	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	$C \leftarrow 0$	С	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	$N \leftarrow 0$	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	$Z \leftarrow 0$	Z	1
SEI		Global Interrupt Enable	I ← 1	1	1
CLI		Global Interrupt Disable	$I \leftarrow 0$	1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	$S \leftarrow 0$	S	1
SEV		Set Twos Complement Overflow	V ← 1	V	1
CLV		Clear Twos Complement Overflow	$V \leftarrow 0$	V	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	$T \leftarrow 0$	Т	1
SEH		Set Half-carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half-carry Flag in SREG	$H \leftarrow 0$	Н	1
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	3
WDR		Watch Dog Reset	(see specific descr. for WDR/timer)	None	1

ATtiny15L

Ordering Information


Power Supply	Speed (MHz)	Ordering Code	Package	Operation Range
2.7 - 5.5V	1.6	ATtiny15L-1PC ATtiny15L-1SC	8P3 8S2	Commercial (0°C to 70°C)
		ATtiny15L-1PI ATtiny15L-1SI	8P3 8S2	Industrial (-40°C to 85°C)

Package Type			
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)		
8S2	8-lead, 0.200" Wide, Plastic Gull Wing Small Outline (EIAJ SOIC)		

Packaging Information

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL (408) 441-0311 FAX (408) 487-2600

Europe

Atmel U.K., Ltd. Coliseum Business Centre Riverside Way Camberley, Surrey GU15 3YL England TEL (44) 1276-686-677 FAX (44) 1276-686-697

Asia

Atmel Asia, Ltd. Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

Atmel Japan K.K. 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Atmel Colorado Springs 1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL (719) 576-3300 FAX (719) 540-1759

Atmel Rousset Zone Industrielle 13106 Rousset Cedex France TEL (33) 4-4253-6000 FAX (33) 4-4253-6001

Fax-on-Demand North America: 1-(800) 292-8635 International: 1-(408) 441-0732

e-mail literature@atmel.com

Web Site http://www.atmel.com

BBS 1-(408) 436-4309

© Atmel Corporation 2000.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Marks bearing [®] and/or [™] are registered trademarks and trademarks of Atmel Corporation.

Terms and product names in this document may be trademarks of others.

